
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 8, August 2013 pp. 3115–3132

MINING FREQUENT PATTERNS BY THE GROUPING
COMPRESSION TREE

Ray-I Chang and Chi-Cheng Chuang

Department of Engineering Science
National Taiwan University

No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
{ rayichang; d95525005 }@ntu.edu.tw

Received June 2012; revised October 2012

Abstract. Traditional association rule methods that are used to discover large item
sets must set the minimum support (MS) value in advance. However, users cannot in
reality, determine an optimal value for the MS. Therefore, multiple frequent pattern min-
ing processes with different MSs are often required to obtain satisfactory results. In this
study, the authors propose a novel Grouping Compression Tree (GCT) data structure and
develop an efficient GCT based mining method. Once a GCT is built, frequent pattern
mining with different supports can be performed without rebuilding the tree. In design-
ing the method, the authors have modified and synthesized a number of useful concepts
including prefix trees, grouping compression techniques, and a projection approach. The
method has been tested using several widely used test datasets. The performance study
shows that the new algorithm not only speeds up the mining performance but also saves
the memory usage in some cases.
Keywords: Data mining, Association rule, Grouping compression, Projection, Ad-
justable threshold of support

1. Introduction. Discovering association rules that identify relationships among sets
of items is an important problem in data mining that has been applied to many areas
including e-commerce, prediction, security, and recommendation [1-4]. The problem of
mining association rules can be divided into two phases: discovering the large item sets
and using the large item sets to generate association rules [5]. The overall performance
of mining association rules is determined primarily by the first step, which has therefore
attracted significant research attention [6-9]. Existing algorithms must set the minimum
support (MS) value in advance and then generate frequent patterns, depending on the
MS. However, users could not, in realistic scenarios, determine an optimal value for the
MS. The most difficult problem is how to select a good MS threshold because the MS
is usually query-dependent. Multiple frequent pattern mining processes with different
supports are often required to obtain satisfactory results.

To resolve this problem, several new approaches [9-11] have been proposed that do not
require the MS value to be set in advance and can postpone the setting to the second
phase, which is the stage in which the association rules are generated. The benefit of
this type of approach is that it avoids the recurrent constructions of candidate item sets
because of a change in the MS. These proposed data structures store in memory all of the
transaction data that are not influenced when the MS is altered and thus, rescanning the
database is not required. However, there are three persisting problems: 1. the process
of construction and data structure is too complicated; 2. the ordering of the data is
inconsistent, so that it will affect the search speed; 3. the activities of mining are too
complicated. Due to above problems the performance is inefficient.
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In this article, the authors propose a novel Grouping Compression Tree (GCT or GC
Tree) data structure that groups and compresses frequent patterns that have the same
prefix items, and that develops an efficient GCT based mining method, GC-mining, for
mining the complete set of large patterns by projection techniques. The authors’ goals
that are to solve above problems are as follows. First, assure that the items are arranged
concerted to reduce mining complications. Second, simplify the construction processes
so that the building time can decrease. Finally, raise the performance by adopting the
projection technique.
The remainder of this paper is organized as follows: Section 2 surveys related studies.

Section 3 introduces the GCT structure, the algorithm for building it and the GC-mining
algorithm. Section 4 presents some experimental results. Conclusions are given in Section
5.

2. Related Works. Association rules for a set of transactions in which each transaction
is a set of items bought by a customer were first studied in [12]. Since then, this problem
has been recognized as one of the important types of data mining problems and many
algorithms have been proposed to improve its performance. The most important problem
of mining for association rules is the method that can be adopted for efficiently generating
the frequent item sets. The strategies for discovering frequent item sets can be divided
into two categories [13]. The first category is based on the candidate generation-and-
test approach. Apriori [6] and its several variations [14-16] belong to this category. The
algorithm from Apriori computes the frequent item sets in the database through several
iterations. Iteration i computes all of the frequent i-item sets (item sets with i elements)
[5]. In this approach, a set of candidate item sets of length i + 1 is generated from the
set of item sets of length I, and then, each candidate item set is checked to see whether
it meets the support threshold. The second approach is the pattern-growth methods.
These methods adopt a divide-and-conquer philosophy to project and partition databases
based on the currently discovered frequent patterns and to grow such patterns into longer
patterns in the projected database [17]. Algorithms in this category include FP-Growth
[8], H-Mine [18], Tree Projection [19], and Opportune Project [20].
The candidate generation-and-test approach suffers from poor performance when min-

ing dense datasets because the database must be scanned many times to test the support
of candidate item sets. The alternative pattern growth approaches reduce the cost by
combining pattern generation with support counting [13]. However, both of the strategies
must set the MS in advance, to find out the large patterns. The generation process is
usually iterative because the user must try a variety of thresholds to obtain a satisfactory
result. Therefore, this time-consuming process must be repeated several times. To resolve
this problem, several studies [9-11] have proposed solutions. They do not need to set the
MS in advance and can postpone the setting to the stage when association rules are gen-
erated. Accordingly, the very large costs caused by recurrent re-construction operations
can be reduced.
Woon et al. [10] proposed a SOTrieIT algorithm to hold pre-processed transactional

data. This algorithm can generate large 1-item sets and 2-item sets quickly without
scanning the database and can generate candidates for the second time. The efficiency
of generating large 1-item sets and 2-item sets in the SOTrieIT algorithm improves the
performance dramatically. However, it is difficult to use in an interactive mining system
because the change in support can lead to repetition of the mining processes. Lin and Lee
[11] presented a knowledge base assisted algorithm to take advantage of the knowledge
that has been previously computed and to generate a knowledge base for further queries
about sequential patterns with various support values. Nevertheless, the knowledge base
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requires enormous spaces. Moreover, a suitable problem is the sequential pattern mining
and not the association rules.

In [9], a Compressed and Arranged Transaction Sequence Tree (CATS Tree) is intro-
duced. In contrast to existing approaches that need repeated construction processes, all
of the transactions are mapped onto the CATS Tree structure. Once the tree is built,
the algorithm must identify frequent item sets; it enables mining with different supports
without rebuilding the tree structure. The benefit of “build once, mine many” increases
with the amount number of frequent pattern mining that is performed. Nevertheless,
the construction processes of the CATS Tree are too complicated because of the incon-
sistency in the order of items. Furthermore, this algorithm mines frequent item sets by
constructing the conditional tree repeatedly and traverses both up and down to include
all of the frequent items. The procedure is very elaborate and time-consuming. In this
paper, a novel Grouping Compression Tree (GCT) data structure is proposed to improve
the above-mentioned deficiencies. This proposed method can, in some cases, not only
speed up the mining performance but also save the memory usage.

3. GCT Approach. In this study, a new data structure, GCT, and algorithm, GC-
mining, are proposed to improve the efficiency of mining large item sets. The GCT is a
compressed prefix tree that contains all of the transactions in the dataset. Paths from the
root to the leaves in the GCT represent sets of transactions. Figure 1 shows the processes
in the proposed method.

 

 

 

Figure 1. The processes in the GCT method

3.1. GCT. In the dataset, a very large number of transactions can contain the same set
of items. The transaction volume can be reduced by grouping transactions that share
common items. This operation could be performed using a modified prefix tree. In this
article, the authors have adopted the grouping compression technique [13] to construct
a GCT that can reduce the number of nodes in the original prefix tree. The technique
groups together the nodes with common items. In a GCT, the last node of each pattern
attaches a record to keep the compressed information. This record is to count the entries
for each subset. Each count entry has two fields: the level of the starting item of the
subset and its count. Figure 2 illustrates a GCT for the sample database.

In Figure 2, the record (1, 1) of the extreme left node {n5} means that there is one
transaction with items starting at level 1, {n2}, for this node. The transactions correspond
to the item set {n2, n3, n4, n5}. Each record represents a unique item set in the database.
The starting node of all of the item sets must be the extreme left branch of the tree to
avoid the duplication of item sets in the tree.
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Figure 2. GCT for the sample database

3.2. Pre-processing. As mentioned in Section 2, the construction and mining processes
of the CATS Tree method are very complicated because there is no pre-processing op-
eration for the dataset. However, many industries in reality have a long span that can
perform some pre-processing operations, for example, banks, supermarkets, and depart-
ment stores. These industries have approximately ten hours off per day, which can be used
to pre-process the dataset. The pre-processing process can simplify both the construction
and the mining procedure of the GCT method, thus improving the efficiency of mining
large item sets.
Figure 3 illustrates the pre-processing procedure. First, all of the transactions in the

dataset are read to count the frequencies of items. Upon finishing the counting, the items
are sorted in ascending order of their frequencies. Then, the items are mapped into an
ascending sequence of n-integers, which are shown as the index row in the Index Table.
Finally, the transferred transactions can be created with the sorted indexes.

 

 

 

Figure 3. Example of the pre-processing process
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3.3. Construction. After pre-processing, a GCT can be constructed with transferred
transactions. The GCT method compresses a very large amount of data to reduce memory
usage, and the data can be stored in memory, which decreases the time for scanning the
database and increases the efficiency. The operation of the GCT construction is illustrated
by the following example.

The authors have used the transferred transactions data shown in Figure 3 to illustrate
the construction of a GCT. In step 1, all of the indexes in the Index Table of Figure
3 are read to construct a left skew tree in descending order of the supports. As men-
tioned earlier, this procedure avoids the duplication of item sets in the tree. In Figure
3, there are five indexes in the Index Table. The descending sequence of supports is
{n1, n2, n3, n4, n5}. The left skew tree can be constructed as shown in Figure 4. Each
node represents an index and has a corresponding record to keep its frequent information.
The dotted rectangles show the records in Figure 4 as an illustration (they do not need
to be created at the beginning).

 

 

 

Figure 4. An example diagram of the left skew tree

In step 2, all of the transferred transactions are read to construct the GCT. Each
transaction is inserted into the tree using the mapping indexes in the transferred index
and is represented by one and only one path from its starting level. It is important
to note that the starting level of each transaction must be from one of the left skew
nodes. The ordering of items labeling nodes along any path follows the imposed ordering,
which is the order of the indexes in the Index Table of Figure 3. The operations of the
GCT construction are illustrated in Figure 5 and the algorithm is given in Figure 6. For
example, initially, the GCT is a left skew tree that contains only five nodes. Transaction
1, T1{n1, n2, n4, n5}, is performed first. As shown in Figure 5(a), the existence of the
item set, in other words, the path in the tree, is checked first. If the path is present in
the tree, then the count of the path is increased; otherwise, a new path must be created.
As described in Section 3.1, each path of the tree has an additional record that maintains
a count of the transactions. In Figure 5(a), the record (0, 1) is attached to the last node
{n5}. This record represents that the starting level is 0 and the count is 1. After adding
the transaction 3, T3{n2, n3, n4, n5}, the common items, {n2, n3, n4}, can be found.
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Figure 5. An illustration of the construction processes of the GCT

The GC Tee construction algorithm is as follows：
(1) input transferred transactions

(2) output GCT

(3) BuildGCT(transferred_transactions trans[]){

(4)   If(GCT = = null)

(5)  Create a left skew tree；
(6)   Else{

(7)  For(int i = 0 i<trans.length i++)

(8) AddTran(trans[i])；
(9) }

(10)   return GCT；
(11) }

(12) AddTran(item_index tran[]){

(13) For(int i = 0 i<tran.length i++){

(14) If(i = = 0){

(15) current_node = the node which index the same with i

(16) s = current_node’s level； //start level

(17)       }

(18)   else{

(19)     if(tran.[i] = = current_node.child’s index label)

(20) current_node = current.node.child；
(21) else{

(22) create a new node；
(23) new node’s index label = tran[i]；
(24) current_node.link = new node；
(25) current_node = new node；
(26) }

(27)   }

(28) if(i = = tran.length - 1)

(29)   modify current node’s record table

(30) }

Figure 6. The algorithm of GCT construction

Then, the common items can be grouped together as shown in Figure 5(c). The last
node, {n5}, corresponds to the record (1, 1), which means that the item starts at level 1.
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Figure 5(e) shows the result of step 2 for the sample database. From this figure, there are
only eight nodes in the GCT, whereas the original item sets have 20 items.

Explanation: In the algorithm shown in Figure 6, the (1)st row indicates that the
input data is the transferred transaction data; the (2)nd row indicates that the last
output data is a GCT. First off, in the (3)rd row we read the transferred transaction
data: represented by the trans. The (4)th to (5)th rows are mainly for checking whether
GCT is null; if it is null, the action in step 1 should be done (to create the left skew
tree). If the GCT is not null, it means the step 1 is already completed and in the (6)th
to (9)th rows we will add data one by one into the GCT. The (8)th row indicates that
when the function AddTran() will be called for subsequent procession when a transaction
data is read. In the end, when all the above are constructed the (10)th row will output
the complete GCT. Next, let us take a closer look at the processed content of function
AddTran(). In the (12)th row we start with reading a transaction data, and this data
may have more than one index number; therefore, we need the arrays to receive the index
numbers in the transaction data. The (14)th to (17)th rows are mainly for finding the
initial class of the read transaction data, and the (19)th and (20)th rows are for judging
whether the remained index numbers in the transaction data are located in the subsidiary
trees of initial class nodes; if not, the (21)th to (26)th rows should be operated to search
for the unfound node and concatenate them in the current node. Lastly, we should judge
whether we should execute till the last number of the transaction data; if so, we will
modify the node record table that corresponds to this number, which is the action we do
in the (28)th to (29)th rows.

 

 

 

Figure 7. The GCT with an ILL table

In step 3, by traversing the tree, the Index Linked List (ILL) linked to the GCT is
developed. The ILL table contains all of the individual index records. Each record
consists of four fields: the index, the corresponding item, the support count and a link to
the first occurrence of that item node in the GCT. Figure 7 shows the result for the final
GCT in Figure 5(e). As shown in the figure, the same indexes in different transactions
can be connected by the ILL table. In other words, there is a link that connects all of
the same items in the GCT. In the later mining stage, the links can facilitate filtering
the items that lower the frequency of the MS, thus improving the mining performance.
Moreover, both the mapping indexes and the original items are stored in the table, which
saves the time that would otherwise be needed to convert the indexes to the items when
presented with large item sets. The mining process is described explicitly in the next
section.

3.4. GC-mining algorithm. Similar to the CATS Tree [9], once the GCT is built, it can
be mined repeatedly for frequent patterns with different support thresholds without the
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need to rebuild the tree. The “build once, mine many” property can increase the mining
performance. However, similar to existing methods [8], the CATS Tree algorithm mines
frequent itemsets by repeatedly constructing a conditional tree. There are two problems
that should be considered. One problem is the CPU time consumption because of the
recurrent construction; the other problem is the need for extra spaces in the conditional
tree. In this study, a new algorithm called GC-mining is proposed to mine large item
sets; this algorithm adopts the pseudo projection technique [20]. This technique involves
projection of a subtree of node x from the original GCT; this subtree shares nodes with
the projection subtree. Hence, this algorithm can be CPU time efficient and can save
memory. The key points in the mining processes are discussed next.

3.5. Upward counting. Unlike the FP tree or the CATS tree, the records in the GCT
are attached only to the last node of each pattern. Hence, the GC-mining algorithm must
accomplish the process of upward counting. It searches every extreme left node in the
GCT from the bottom to the top by an index linked list. Supporting the search node
is cn (current node), and the count of cn is added to its pn (parent node) recurrently
until the starting level of cn is larger than the level of pn. For example, in Figure 8(a),
the process of upward counting begins at the bottom node, {n5}. The mining algorithm
traverses the entire node {n5} in the GCT, following the linked list and adding the count
of {n5} to its parent node. Figure 8(d) shows the final result.
The process of upward counting can be built either as temporal or permanent according

to the memory availability. This process is arranged at the last step of construction to
save the mining time while the memory is sufficient, whereas the process is postponed to
the mining stage for reducing the memory usage.

 

 

 

Figure 8. The process of upward counting
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3.6. Bottom-up mining. In the mining step, all of the frequent item sets are mined
by using the GC-mining algorithm with a recursive function and a bottom-up projection
strategy. For a pattern r, the projection tree of r is a tree projected from transactions
that contain pattern r. Transactions contained in a projection tree can be easily gathered
by traversing the indexed links of pattern r. For example, suppose that the user wants to
obtain frequent item sets with an MS 3. The operation of the projection is illustrated in
Figures 9 through 11. Each item in the ILL table is used as a starting project point to
mine all of the longer frequent item sets. Using bottom-up as a projection strategy, the
bottom item {n5} is explored first, and the topmost item {n1} is explored last. Starting
with item {n5}, the link is followed to obtain all of the other items that occur together
with item {n5}, and the count of each item is accumulated. As shown in Figure 9, the item
{n5(3)} is frequent where the support of each pattern is given in parenthesis. Because
there are no subnodes under item {n5}, item {n4} is mined next. From Figure 10, one
can see that item {n4(3)} is frequent. The projection tree of item {n4} is then built
because item {n4} has children nodes. In Figure 10, the item set {n4, n5(2)} is discarded
because the support is smaller than the MS.

Generating frequent patterns in GC-mining is a recursive procedure. After generating
the frequent item sets of items {n5} and {n4}, GC-mining recursively generates frequent
sets of items {n3}, {n2}, and so on. In the end, the recursive process calls item {n1}.
Figure 11 shows the final result of node {n1}. First, a frequent item {n1(5)} is obtained.
Second, projecting {n1}, there are two patterns that are larger than the MS: {n1, n2(4)}
and {n1, n3(3)}. Then, the projection tree of the two patterns are created and a large
item set {n1, n2, n3(3)} is obtained. The algorithm of GC-mining is given in Figure 12.

 

 

 

Figure 9. The projection of index n5

 

 

 

Figure 10. The projection of index n4
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Figure 11. The projection of index n1

(1) input：GCT, index linked list, support threshold

(2) output：large item sets

(3) MineLISets(GCT gt , index linked list ind , support_threshold MS){

(4)   For(int i=ind.length-1;i>=0;i--){

(5) if(ind[i].count >= MS){

(6) add ind[i].item to large item sets and support = ind[i].count;

(7)   GCT pTree = projectTree(ind[i].index);

(8)   index_link_list new_ind = create_index_link_list(pTree);

(9)   MiningProjectionTree(pTree,new_ind,ind[i].item);

(10)     }

(11)   }

(12) }

(13) MineProjectTree(GCT pt , index_link_list ind , LargeItemSet L){

(14) For(int i=ind.length-1;i>=0;i--){

(15)      if(ind[i].count >= MS){

(16)    LargeItemSets L1 = L ∪ ind[i].item;

(17)    add L1 to large item sets and support = ind[i].count;

(18)    GCT pTree = projectTree(ind[i].index);

(19) new_ind = create_index_link_list(pTree);

(20)    MiningProjectionTree(pTree , new_ind , L1);

(21)  }

(22)    }

(23) }

Figure 12. The algorithm of GC-mining

Explanation: In the algorithm, the (1)st row indicates that the input data is GCT,
index linked list, and MS set by the user. The (2)nd row indicates that the data is output
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as large item sets after the handling. At first the function MineLISets in (3)rd row is
operated, in which the three data initially input would be received. Then the (4)th to
(11)th rows will do bottom-up mining, in which the (4)th row will start operation from
the last data in the index linked list, and the (5)th row will judge whether it meets the
MS limitation. If the action in (6)th to (10)th row is completed, the (6)th row will add
the product items larger than MS into large item sets and record the support size; the
(7)th row will project the index numbers that comply with MS and require the new GCT,
then the (8)th row will construct the index linked list in connection with the projected
new tree; lastly the (9)th row will do further mining in the projected new tree and
call the function MineProjectTree. The (13)th to (23)rd rows are the handling actions
of the function MineProjectTree; at first in the (13)th row the three parameters which
include the projected new tree, the trees’ index linked list, and the current large item
set L are received; then in the (14)th to (22)nd rows the bottom-up mining is performed
in the received new tree. Different from the (6)th to (10)th rows, the (16)th row will
unite the data items that meet MS setting and the received large item set L by function
MineProjectTree. Repeatedly, eventually we are able to receive all the large item sets
that meet MS setting.

Observably, one can find the advantages of the projection technique. First, there is no
need for extra spaces. Second, the projection for one specific node is traversed by the
index linked list. The procedure is concise and efficient. Third, this approach can speed
up the mining time.

4. Performance Evaluation. In this section, a performance comparison of the GCT
algorithm with the recently proposed efficient method, the CATS Tree algorithm, is pre-
sented using several artificial datasets and two real-world datasets. All of the experiments
are performed on an AMD Athlon XP 2500 PC machine with 512 megabytes of main mem-
ory, running on Microsoft Windows XP. All of the programs are written in Java. The
algorithm of the CATS Tree has been implemented to the best of the authors’ knowledge
based on the published paper. A comparison has been made in the same running environ-
ment. To make the time measurements more reliable, no other application was running
on the machine while the experiments were running.

4.1. Datasets. The datasets that were used in these experiments are described in this
section. The synthetic datasets that were used for these experiments were generated with
the data generator by IBM QUEST [21]. All of the data files were generated with the
following parameters: the average length of transactions was 10; the average length of
large item sets was 4; and the number of distinct items was 500. Four values were chosen
for a number of transactions: 50k, 100k, 150k, and 200k. The two real-world datasets,
BMS-WebView-1, and BMS-WebView-2, were used in the KDD-Cup 2000 competition
[22]. The BMS-WebView-1 and BMS-WebView-2 datasets contain several months’ worth
of click stream data from two e-commerce web sites. Each transaction in these datasets
is a web session that consists of all of the product detail pages viewed in that session [23].
The basic features of the real-world datasets are listed in Table 1.

Table 1. Characteristics of the datasets

Trans. Number Distinct Items Max Trans. size Aver. Trans. Size
BMS-WebView-1 (D1) 59,602 497 267 2.5
BMS-WebView-2 (D2) 77,512 3,340 161 5.0
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4.2. Experiments on synthetic datasets. The scalability of the GCT and CATS Tree
algorithms were first studied using synthetically generated datasets. As mentioned earlier,
the tree builders of the two methods require only one run. Once the trees have been built,
they can be used for multiple mining efforts with different supports. To test the building
time scalability with the number of transactions, experiments on several datasets are used.
The results are presented in Figure 13.
Both the GCT and the CATS Tree algorithms show linear scalability, with the number

of transactions set from 50K to 200K. However, the building time of the GCT is less
than the CATS Tree in all of the transactions. This relationship occurs because the
construction process of GCT is static and has no adjustment or swap actions. In contrast,
the CATS Tree method adopts complicated dynamic constructions. Because there is no
preprocessing stage in the CATS Tree method, this method must combine nodes that
have the same frequency continuously; furthermore, it must adjust nodes upwardly and
exchange sibling nodes in its construction.
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Figure 13. Scalability with the number of transactions

The second experiment is for a performance measure that evaluates the mining time
(seconds) of the two algorithms on one dataset, with the MS threshold decreasing from
1.25% to 0.25%. Figure 14 shows performance curves of the two algorithms. The time
required by the two algorithms increases as the support decreases. However, the GCT
algorithm scales much better than the CATS Tree algorithm at all of the support thresh-
olds. This improvement occurs because the items that have different patterns in the GCT
are arranged in the same order because of the pre-processing process. The GC-mining
can simply mine the frequent item sets using a one-way process, whereas the CATS Tree
method traverses the tree both up and down to ensure that all of the frequent patterns
are captured. Although the CATS Tree construction needs only one database scan, its
mining performance is limited to the items order of the dataset. The CATS Tree method
is more complex than GC-mining and hence needs a longer run time than the GCT. Fur-
thermore, GC-mining uses a projection technique instead of the recurrent construction
of the conditional tree, thus reducing the mining complexity and saving running time.
In Figure 14, the dataset to be used in the experiment contains 100k transactions. The
other three datasets (50k, 150k, and 200k) show similar results. These figures have been
omitted for space reasons.
Other than performance, the memory requirements for the two algorithms are com-

pared. From Figure 15, one can see that the memory usage of the CATS Tree is smaller
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Figure 14. Scalability with the GCT and the CATS Tree with different
support thresholds
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Figure 15. Memory comparison of the GCT and the CATS Tree, with
different transactions

than that for the GCT. Because the CATS Tree adopts a dynamic construction, it can
perform further adjustment and compression of the nodes. In the GCT, although the
construction process uses a group compression technique to reduce the needed space of
the nodes, it does not include an advanced combination and adjustment of the nodes.
Therefore, the GCT consumes 25% more memory than the CATS Tree. However, the
synthetic datasets are generated with random functions by IBM QUEST. The probabili-
ties of the patterns are equal, which reduces the grouping effect of the GCT. In the next
section, further analysis and discussion of the GCT performance are presented from using
the real-world datasets of the KDD-Cup 2000 competition.

4.3. Experiments on real-world datasets. To further test the peformance of the two
algorithms, experiments on the real world datasets BMS-WebView-1 (rD1) and BMS-
WebView-2 (rD2), which were used in the KDD-Cup 2000 competition, were used. The
support thresholds were from 0.125% to 1.25%, and the results are presented in Figures
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16(a) and 16(b). According to the experimental results, the GCT runs much faster than
the CATS Tree. However, in the rD2 dataset, the two methods perform almost equally
when the support threshold is more than 1%, but the GCT is better than the CATS tree.
The main cost of the CATS Tree involves constructing conditional trees and mining

bi-directionally. In a database with a large number of frequent items, the conditional tree
can become quite large, and the computational cost can become high. However, the GCT
method uses a projection technique and is mined one way, which saves nontrivial costs.
This scenario explains why the GCT has distinct advantages.

 

 

 

Figure 16. Scalability of the GCT and the CATS Tree with different
support thresholds, using (a) rD1 and (b) rD2

Furthermore, in experiments that use real-world datasets, the compression efficiency of
the GCT was significant. Figure 17 shows the memory usage comparisons of the GCT
and CATS Tree with four artificial datasets and two real-world datasets. Obviously, from
this figure it can be seen that the memory usage of the GCT is more than the CATS
Tree by approximately 20%∼ 30% on the synthetic datasets (50K∼ 200K). However, the
ratios reduce to 0.6%∼ 0.75% in real-world datasets (rD1 and rD2). These results prove
the inferences that were mentioned earlier. Because the synthetic datasets are generated
randomly, the probabilities of all of the patterns are equal, which reduces the grouping
effect of the GCT. It is very clear that the artificial dataset has a very different grouping
effect when compared with the real-world datasets, whereas the distributions of the two
real-world datasets are similar.
Although the GCT expends more memory during the construction stage, it does not

require extra memory during the mining process because it adopts the projection tech-
nique, whereas the CATS Tree recurrently constructs conditional trees that require extra
space to store. The total memory consumption of the two methods is compared, including
the construction space and the mining space. Figures 18(a) and 18(b) show the memory
usage for the two algorithms on two real-world datasets.
Unlike other traditional frequent pattern mining algorithms, the GCT and the CATS

Tree can be built once and can create only one tree. As shown in Figures 18(a) and
18(b), the memory usage of construction Trees is unrelated to the support, whereas the
CATS Tree mining process is sensitive to the support and requires extra memory. For the
purpose of comparison, in the two figures, the memory usage that is required for mining
using the CATS Tree is added to the memory usage for the CATS Tree Total. In Figure
18(a), the GCT consumes less memory than a CATS Tree with all of the supports. In
another case, the GCT could spend more space than the CATS Tree, an example of which
appears in Figure 18(b).
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Figure 17. The increasing ratios of memory usage for the GCT over the
CATS Tree, using four synthetic datasets and two real-world datasets

 

 

 

Figure 18. Memory usage comparison with the GCT and the CATS Tree,
with different support thresholds and using (a) rD1 and (b) rD2

4.4. The experiments for adding real-time dynamic data. This section compares
the processing efficiency of the algorithms when adding new data. How to rapidly output
sale strategies and whether the algorithm is applicable are relatively important in actual
use such as the sales in a marketplace where customers constantly shop and the data keeps
increasing in the database. This experiment conducted real data BMS-WebView-1.dat,
to take x% of the original data to construct GCT and CATS Tree, the rest (100 − x)%
was added in; then the space and mining time were compared. The experiment results
are shown as Table 2.

From Table 2, we are able to see that the adding action in GCT and CATS Tree did
not show huge difference spatially, and GCT is also better than CATS Tree. In the
process of the adding action, it may cause the index to show the items which appear less
frequently instead of the items that appear the most frequently; however, since GCT uses
the grouping compression technique, no matter what the index an item was allocated
with, the grouped nodes can still save the required node space by grouping compression.
That is why the adding action does not affect too much spatially. Besides, since the CATS
Tree uses dynamic compression technique the adding action does not affect the space too
much, either. However, the GCT still performs better than CATS Tree in the adding
process. According to the results, the GCT processes 3.2∼ 3.6 times faster than CATS
Tree which makes it very applicable in the rapid data process area.
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Table 2. The experiment data using the real data BMS-WebView-1.dat
and under MS = 0.25%

Adding Ratio GCT CATS Tree
(100− x)% Node Number Mining Time (s) Node Number Mining Time (s)

10% 55,219 8 52,221 29
30% 55,376 8 52,267 29
50% 55,794 8 52,293 29
70% 56,324 9 52,337 29
90% 56,543 9 52,374 29

4.5. The comparison between GCT and CATS Tree. GCT and CATS Tree are
both the data structures built in connection with the original transaction data; however,
CATS Tree still show insufficient performance in the process of constructing and mining
efficiency. For example, CATS Tree is not applicable in the areas of rapid mining demand.
Therefore, this paper promotes a new structure, GCT, to better the procession. From
Table 3 we can see the difference between GCT and CATS Tree. It is obvious that the
GCT is mainly for simplifying the methods of CATS Tree and speeding up the mining
process for large item sets.

Table 3. The comparison between GCT and CATS Tree

GCT CATS Tree
Twice of database scanning is needed. Once of database scanning is needed.
The data is pre-processed and sorted, and the
nodes in GC Tree appear in order and make
it easier to search.

The data is not pre-processed and sorted, so
that the products under different paths in
CATS Tree appear randomly and slow down
the search.

GCT uses the grouping compression tech-
nique to further compress the prefix trees.

CATS Tree uses dynamic adjusting to achieve
partial maximization of sub trees.

The nodes in GCT represent the index num-
bers of products, so the data size is smaller.

The nodes in CATS Tree represent a product,
so the data size is larger.

There is no need to adjust nodes in the con-
structing process which makes it easier.

The constructing process is more complex
since the nodes should be adjusted in the pro-
cess.

In GCT, the mining is faster because it only
considers one-way upper path.

The mining in CATS Tree is slower since the
mining considers both upper and lower paths.

The repeat projection on GCT is used for
mining large item sets.

The repeat construction of conditional CATS
Tree to mine the large item sets.

When repeatedly project to construct a cer-
tain tree of index number, only one extra
node space and index link list are needed.

In the process of repeatedly constructing the
conditional CATS Tree, the system needs to
spend extra time and space to build new con-
ditional CATS Tree and its header link list.

In the process of GCT mining, the mined
large item sets must be only.

Repeat large item sets may appear in the
mining process of CATS Tree. So the judge-
ment is required in the algorithm to ensure
the large item sets are the only ones.

The data processing speed of GCT is much better than the current algorithms, but it
is meaningful only when the system needs to tolerate a longer period of pre-processing
time. Many corporations such as banks and wholesale stores in reality are in need of this
solution under their business models. Most of them have a period of closing time in a
day, which can be effectively used to process the original transaction data more efficiently
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and save the future processing time. Take the wholesale stores for example, the closing
time at night can be used to preprocess the customer transactions of the day, including
the purchase time, purchased products, purchased amount, the sales relationship between
products and prices, customer age range and other data pre-processions. On the next day,
the store is able to dynamically mine better sales strategies according to the market sales
situation, customer numbers and the length of shopping time. Further according to the
strategies, the store can immediately adjust the positioning of product, promote dynamic
discount policy for increasing sales amount, or suggest products to customers through
rapid mining to stimulate their desire to purchase and to improve customer satisfaction.
The same approach is applicable to the E-commerce stores, where they can recommend
merchandise and promote consumption through rapid analysis. It can also be applied
to other applications such as the information security firewall, for with it it can rapidly
analyze the invasion rules and user network access behaviors, automatically mine the
firewall rules, and strengthen the anti-hacker ability. The advantage of GCT is its data
processing speed, which can be widely used in the markets with rapid data processing
needs, such as stock market prediction or weather prediction.

5. Conclusions. The authors of this paper have proposed a novel data structure, Group-
ing Compression Tree (GCT), and have developed a specific building method. For the
efficient mining of frequent patterns from the GCT, the algorithm, GC-mining, was also
proposed. Unlike traditional methods, once a GCT is built, frequent pattern mining with
different supports can be performed without rebuilding the tree. The benefit is very re-
markable when the user must repeatedly run the algorithm with different MSs to obtain
the appropriately large item sets. The CATS Tree method can provide an analogous
benefit. However, there are several advantages of the GCT approach over the CATS Tree
approach. First, the data pre-processing stage guarantees a sequence of items, thus reduc-
ing the complexity of GC-mining. Second, the static construction of the GCT speeds up
the building and mining time. Although the GCT requires slightly more memory to main-
tain the source item sets in reality, many enterprises nevertheless have sufficient storage
to conserve the data. They indeed need only a short execution time. Third, GC-mining
adopts the tree-based pseudo projection technique, which avoids the costly generation of
conditional trees. In this context, the total memory usage of the GCT can be less than
that of the CATS Tree.
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