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ABSTRACT. This paper proposes a method of successive approximations for analysis of
statically indeterminate rigid frames including a new variable; that variable is the shear
deformations, which is an extension to the method of successive approrimations which
bears the name Hardy Cross method, which is used to analyze all kinds of structures in
the plane. This methodology considers the deformations by flexure and shear, which is
the innovative part of this research. The classical method takes into account only the
deformations by flexure and without taking into account the deformations by shear; this
is how it usually develops structural analysis of statically indeterminate rigid frames. It
also makes a comparison between the proposed method and the classical method as can
be seen in the results tables of the problems considered; in the classical method not all
values are of the side of safety. Therefore, the usual practice, without considering the
deformations by shear will not be a recommended solution. Then is proposed the use of
method developed in this paper, because deformations by shear is taken into account and
also is more attached to real conditions, since shear forces of any type of structure are
present.

Keywords: Deformations by shear, Poisson’s ratio, Successive approximation method,
Stiffness factor, Factor of carry-over, Distribution factor

1. Introduction. Hardy Cross (1885-1959) professor at the University of Illinois, in 1930
presented in his work, the analysis for continuous rigid frames, the method of successive
approximations that bears his name, can be said that it revolutionized the structures
analysis for continuous frames of reinforced concrete and can be considered one of the
greatest contributions to the analysis of indeterminate structures. This method of suc-
cessive approximations evades solving equations systems, as presented in the methods of
Mohr and Maxwell. The general concepts of the method of successive approximations
were extended subsequently in the study of pipes flow. Later became more popular the
methods of Kani and Takabeya also of type iterative [1-6].

Method of Cross is a procedure designed to solve the problem of reticular structures.
The calculation is relatively simple, without the appearance in develop complex integra-
tions or complicated systems of equations. Moreover, once understood the mechanism
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of the method, operations are reduced to addition, subtraction, multiplication and divi-
sion. Also, is not required remember anything of memory. If the tables of moments are
available, stiffness factors and factors of carry-over can be solved any structure [1-6].

Method of Cross is a procedure of successive approximations, which does not mean that
is approximates. It means that the precision degree in the calculation can be as elevated
as the calculist want, between greater number of cycles have been made, the greater the
accuracy [1-6].

The method permits to follow step by step process of moment distribution in the struc-
ture, giving a clear physical meaning to the mathematical operations that are performed
[1-6].

Luévanos-Rojas developed a method of structural analysis for beams and rigid frames
statically indeterminate, in this method takes into account the deformations by flexure
and shear. That previously was considered only the deformations by flexure [7,8].

Structural analysis is the study of structures such as discrete systems [9-14]. The theory
of the structures is essentially based on the fundamentals of mechanics with which are
formulated the different structural elements. The laws or rules that define the balance and
continuity of a structure can be expressed in different ways, including partial differential
equations of continuous mediums three-dimensional, ordinary differential equations that
define a member or the theories several of beams, or simply, algebraic equations for
a discrete structure [15,16]. The more delves into the physics of problem, are being
developed theories that are most appropriate for solving certain types of structures and
that prove more useful for practical calculations. However, in each new theory are made
hypotheses about how the system behaves or element. Therefore, we must always be
aware of these hypotheses when evaluating results, fruit of the theories that apply or
develop [1-8].

Structural analysis can be addressed using three main approaches: a) tensor formu-
lations (Newtonian mechanics and vectorial), b) formulations based on the principles of
virtual work, c) formulations based on classical mechanics [17-19].

As regards the conventional techniques of structural analysis for rigid frames using the
method of successive approximations, the common practice is to consider only deforma-
tions by flexure (classic method) [1-8].

This paper proposes the successive approximation method considering the deformations
by flexure and shear, for structural analysis of rigid frames. In this paper is presented
developed mathematic for obtaining the stiffness factor, the carry-over factor and distri-
bution factor. Also this paper shows a comparison between the classic method and the
proposed method through a practical example to observe the differences.

2. Development.

2.1. Theoretical principles. In the scheme of deformation of a structure member in
Figure 1 is illustrated the difference between the Timoshenko theory and Euler-Bernoulli
theory: the first “0;” and “dy/dz” not necessarily coincides, while in the second are equal
[7,8,20].

The fundamental difference between the Euler-Bernoulli theory and Timoshenko’s the-
ory is that in the first the relative rotation of the section is approximated by the derivative
of vertical displacement, this is an approximation valid only for long members in relation
to the dimensions of cross section, and then it happens that due to shear deformations are
negligible compared to the deformations caused by moment. On the Timoshenko theory,
which considers the deformation due to the shear, i.e., and is valid therefore for short
members and longs, the equation of the elastic curve is given by the equations system
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most complex:
dy
G|-Z>—-0,) =" 1
(dx Z> A, (1)

E (%) _ Af (2)

where: G = shear modulus, dy/dz = total rotation around axis “Z”, §; = rotation
around axis “Z”, due to the flexure, V}, = shear force in direction “Y”, A; = shear area,
dfz/dx = d*y/dx?, E = elasticity modulus, M, = moment around axis “Z”, I, = moment
of inertia around axis “Z”.

Deriving Equation (1) and substituting into Equation (2), it is arrived at the equation
of the elastic curve including the effect of shear stress:

Py 1AV, M,

dz2 ~ GA, dv ' EL ®)
From Equation (1) is obtained dy/dz:
dy 'V,
Ir GAL + 0y (4)
And of Equation (2) is given 0:
M,
02 = [ s (5)
Now substituting Equation (5) into Equation (4) is:
dy 'V, M,

= + d 6
dr ~ GA, | BL,™ (6)
2.2. General description of the proposed method. The method of successive ap-
proximations can be used to analyze all types of beams or rigid frames statically indeter-
minate.

2.2.1. Rigid frames without sidesway in the joints. The application of the moment-distrib-
ution method to the analysis of statically indeterminate frames wherein no joint move-
ments or “sidesway” is involved is very similar to that of beams, except that in the case
of frames there are frequently more than two members meeting in one joint. In such cases
the unbalance at any joint is distributed to the ends of the several members meeting at
the joint in the ratio of their relative stiffnesses. There are several ways in which the work
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FIGURE 2. Derivation of moment-distribution equations

for the moment distribution may be arranged, but the tabular form in which all members
meeting at the same joint are grouped together is used here and is suggested as the most
convenient form.

In order to develop the method, it will be helpful to consider the following problem:
If a clockwise moment of Mg is applied at the simple support of a straight member
of constant cross section simply supported at one end and fixed at the other, find the
rotation #, at the simple support and the moment Mg, at the fixed end, as shown in
Figure 2.

The additional end moments, M p and Mpg4, should be such as to cause rotations of
04 and Op, respectively. If 64, and fp, are the end rotations caused by M,p, according
to Figure 2(b), and 045 and €5y by Mg, they are observed in Figure 2(c).

The conditions of geometry required are [7,8,21-24]:

04 =041 — 040 (7)

0=0p —0p (8)

The beam of Figure 2(b) is analyzed to find #4; and 65, in function of M4p:
It is considered that V4 = Vg, doing the sum of moments in B and value of Mg in
function of V, is obtained:

Mag = V4L 9)
Therefore, the shear forces and moments at a distance “xz” are:
Myp
2 (10)
M
M, = zBu;—x) (11)

where: V, is shear force at a distance “x” and M, is the moment at a distance “z”.

Substituting M, and V, in function of Mp into Equation (6) and is separated the
deformation by shear and flexure to obtain the stiffness, it is presented as follows:
e Deformation by shear:
dy  Map
dr — GA,L

(12)
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Integrating Equation (12) is presented as follows:

_ Myp

YT GAL

Considering the conditions of border, when x = 0; y = 0; is presented of the following
way C; = 0, and is substituted into Equation (13):

Mag
= 14
YT eaL” (14)
e Deformation by flexure:
dy Mag
— = L—z)d 1
dz EIZL/( z)d (15)
Developing the integral, it is obtained:
dy  Myup x?
—Z — Lr — — 1
dz EIZL<x y TG (16)
Integrating Equation (16), it is shown:
MAB L 2 1'3
- ST e 1
Yy ETZL<2x 6+02x+03 (17)

Considering the conditions of border, when x = 0; y = 0; is presented of the following
way C3 = 0, and substituted into Equation (17):

. MAB L 9 1'3
y = FLL <2x 5 + Cox (18)

Now considering the conditions of border, when x = L and y = 0, is presented Cy =
—L?/3, and substituting into Equation (16) and (18) shown below:

dy Mg x?  L?
- = Ly — ——— 19
dz EIZL< T3 (19)
Mg (L, & L°
_ L. & L 20
YT ELL (25” 6 3 (20)

Substituting x = 0 into Equation (19) to find the rotation in support A due to the
deformation by flexure 0,55, it is as follows:

MuapL
3B,

Substituting x = L into Equation (19) to find the rotation in support B due to the
deformation by flexure Opop, it is obtained as follows:

MypL
6F1,

If it is considered that they have his curvature radius in the inferior part. Then, the
rotations are positive:

gAlF = — (21)

931F — (22)

MugL
0 = 23
AlF =+ SEL (23)
MagL
- 24
Opir =+ 6EL (24)

The rotation due to deformation by shear 04,5 and 65, taking into account the cur-

vature radius is:
dy  Map

bas = 3, = GA.L

(25)
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dy _ _ Map

0 = = — 26
PIS 74y~ GA,L (26)
Summing the rotation by flexure and shear in the joint A, it is obtained:
041 = O0air + a1 (27)
Substituting Equations (23) and (25) into Equation (27), it is as follows:
MuspL =~ Map
04 = 28
M= TREL TGAL (28)
The common factor is obtained of Equation (28) for M4p, it is as follows:
MygL 12E1,
01 = 4 29
AT TR < * GASL2> (29)
By replacing [7,8,18,19,25]:
o 12E1, (30)
- GALL?
where @ = form factor.
It is obtained “G” as follows: s
G=— 31
2(1+v) (1)
where v = Poisson’s ratio.
Then, substituting Equation (30) into Equation (29), it is obtained:
MygL
= 44+ 9 2
011 12E[z( + ) (32)

Summing the rotation by flexure and shear in the joint B, and making the simplifica-

tions corresponding, it is presented:
ML
gy = —— (2 -9 33
= TopT ( ) (33)

Analyzing the beam in Figure 2(c) to find 642 and 0, in function of Mpy,, it is making
of the same way as was done in Figure 2(b), it is obtained the following:

_ MpgalL

Opo=——2—-9 34
=T 2-9) (34)
MpaL
= 44+ 9 35
3= Topr 4+ 2) (35)
Now, substituting Equations (33) and (35) into Equation (8), it is as follows:
MupL MpaL
- — o) - 4+
0 12E1, ( ) 12E1, (4+2) (36)
Find Mp,4 in function of M4p:
2—-9
Mpy=|——|M 37
wi= (g ) Man 7
Also, substituting Equations (32) and (34) into Equation (7), it is as follows:
MuagL MpaL
0= 44 ) — 2—0
4= Tapr, W9 g 079 (38)

Substituting Equation (37) into Equation (38), it is obtained:

_ MyugL 2 -0 L(2 - 2)
U= 158T. (4+2) {<4+@> MAB} 12F1, (39)
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Find M 4p in function of 64:

4+ o\ FI,
M= —— 0 40
» <1+®> Ly, (40)

Thus, for a span AB which is simply supported at A and fixed at B, a clockwise rotation
of 04 can be effected by applying a clockwise moment of M5 = [(4+0)/(1+O)|(EI,/L)0 4
at A, which in turn induces a clockwise moment of Mg, = [(2 — @)/(4+ @) M4p on the
member at B. The expression, [(4 + @)/(1 + @)](EI,/L) is usually called the stiffness
factor, which is defined as the moment required to be applied at A to cause a rotation of 1
rad at A of a span AB simply supported at A and fixed at B; the number [(2—@)/(4+ )]
is the carry-over factor, which is the radio of the moment induced at B to the moment
applied at A.

2.2.2. The fized-end moments due to sidesway in the joints. In order to obtain the fixed-
end moments due to sidesway in the joints, it will be helpful to consider the following
problem, as shown in Figure 3.

Taking into account the member of Figure 3 and supposing that M}, = M}z, and,
Va4 = Vg, doing sum of moments in the point B and is obtained M}., 5 in function of Vj:

VuL
MJIWI‘AB = % (41)
Therefore, the shear forces and moments at a distance “x” are:
Vo=Va (42)
L
M, =V, <5 — x) (43)

Substituting M, and V, in function of V, into Equation (6), and separating the shear
deformation and flexure to obtain the stiffness due to the displacement, it is presented as
follows:

e Deformation by shear:
dy _ Vi

= 44
dr  GA; (44)
Integrating Equation (44) is obtained as follows:
V.
y = G;‘sﬂcl (45)
Considering the conditions of border, when x = 0; ¥y = 0; then C; = 0.
(46)
|~
[
B __
é [y
| . =
; ),‘I»{ FBA y
?

FiGURE 3. The fixed-end moments due to sidesway in the joints
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e Deformation by flexure:

dy VA L
27 - _ d 4
dz EIZ/<2 I) v (47)
Developing the integral of Equation (47), it is the following expression:
dy Vi (L z?
A - 4
dr ~ EL (25” > +02> (48)
Taking into account the conditions of border, when = = 0; dy/dx = 0; it is obtained
that 02 = 0.
dy Vi (L z?
27 iy 4
dz  EBL (2:” 2 ) (49)
Integrating Equation (49) is presented the following:
. VA L 9 :L'3

Taking into account the conditions of border, when x = 0; y = 0; it is obtained that

Cy = 0.
. VA L 2 :L'3
YT EL <Z$ F) (51)

It is developed the sum of Equation (46) due to deformation by shear and Equation
(51) due to deformation by flexure and presents as follows:

L 3

Y=a6a," T EL \1 6

Substituting x = L; y = A, into Equation (52) for to find the displacement in the B
support, it is as follows:

A

(53)

_ Vu4L? [ 12FI, 1
- 12E1, \ GA,L?

It is replaced Equation (30) into Equation (53) and is obtained value of V4 of the form
follows:

12E1T
V4= — "2 54
AT (o) (54)
Substituting Equation (54) into Equation (41) is presented the following way:
6F1
Mg = ——""A 95
FAB L2 (@ + 1) ( )

Then the equations of fixed-end moments due to sidesway in the joints M.,z = Mjiga
is shown as follows:

6F1,

Mpap = mA (56)
6F1,

Mll';BA = (57)

L2(®+1)A
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2.2.3. Rigid frames with sidesway in the joints. The application of the moment-distrib-
ution method to the analysis of statically indeterminate frames in which sidesway or joints
movements are involved consists in the following:

1. The joints are first held against sidesway. The fixed-end moments as caused by the
applied loading are distributed, and a first set of balanced end moments are obtained.

2. The unloaded frame is assumed to have a certain amount of sidesway which will
cause a set of fixed-end moments. These fixed-end moments are then distributed, and a
second set of balanced end moments are obtained.

3. The resulting set of end moments can be obtained by adding the first set and
the product of a ratio and the second set, the ratio being determined by use of shear
conditions, as will be explained.

Take, for example, the rigid frame shown in Figure 4. It is required to analyze this
statically indeterminate frame by the moment-distribution method. The given frame
shown in Figure 4(a) is equivalent to the sum of Figure 4(b) and Figure 4(c). In Figure
4(b) the joints B and C are held against sidesway by the fictitious support at C, the
horizontal reaction of which is denoted as H.. If the fictitious support at C' is removed,

4 l 4
I ] 4 T T
a
I
fl’;
Py
N D Hp
1
Vp
v 4l H
f;;a;; Mpc
Mg

J L _1 "
kH"c H”C
—

B C B[ B~ c|” T
= + k times
Py
D Hp D H'p
M—
W.. Y
D ‘"D
4 d—H'A u A H" V
Y, 74 o Y/ 7 e
& Vs
Mg T
(b) (c)

FIGURE 4. The rigid frame. (a) The rigid frame is shown, (b) the joints
are held against sidesway, (¢) the unloaded frame with sidesway.
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the force H{, would act at joint C. In Figure 4(c), A" is the sidesway caused by any
arbitrary force H.. If H{, is equal to kH{, where k is the unknown ratio, the actual
amount of the sidesway, A’, must be equal to kA". Let Mz, Mp,, Mpe, M{g, M{p,
and M}, be the balanced moments obtained by distributing the fixed-end moments due
to the applied loading while only permitting joints B and C' to rotate but holding their
locations in Figure 4(b). Let Mz, Mphi, Mo, M{g, M{.p,, and M}~ be the balanced
moments obtained by distributing the fixed-end moments due to any assumed amount A"
of the horizontal movement of joint B or C.

The shear condition required of the frame shown in Figure 4(a) is:

Hy+Hp=P (58)
since M M P
H, = AB + Mpa L ha (59)
hq hq
and \ \
Hy = cp + Mpce (60)
ho
The shear condition becomes:
Mag+ M P, Mep + M
AB BA + 1a + CD DC _ P, (61)

hy hy ho
Also, by superposition,
Map = Mg+ k(M}g); Mpa= Mp, +k(Mpg,)
Mpo = Mpe + k(Mpe);  Mep = Meg + k(Mcp) (62)
Mcp = Mép + k(Mép);  Mpe = Mpe + k(Mpe)
By substituting Equation (62) into Equation (61),
(Mg + Mp,) + k(Mg + Mp,) I Pia I (M¢p + Mpe) + k(Mép + Mp)
h1 h1 hZ
The unknown ratio k& can then be found by solving Equation (63). Once k is known,
all end moments acting on the frame of Figure 4(a) can be found from Equation (62).
Where two or more unknown movements of sidesway are involved, the resulting set of
end moments can be expressed as the sum of (1) the balanced end moments by distributing
the fixed-end moments due to the applied loading, and (2) the products of an unknown
ratio and the balanced end moments found by distributing the fixed-end moments due
to a certain amount of the first movement in sidesway, and (3) the products of a second
unknown ratio and the balanced end moments due to a certain amount of the second

movement in sidesway, and so on. The unknown ratios are determined from the shear
conditions.

=P (63)

3. Application. It developed the structural analysis of a steel rigid frame, in three
different problems, as shown in Figure 5, by the classic method and the proposed method,
i.e., without taking into account and to consider the shear deformations, on the basis of
the followings data that appear next:

L =10.00m; 5.00m; 3.00m

P = 49.05kN

h = 5.00m

E = 20019.6kN/cm”

Properties of the beam W24X94

A =178.71cm?
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A, = 80.83cm?
I, =111966cm*
Properties of the column W24X61

A = 116.13cm?
A, = 64.06cm?
I, = 64100cm®
v =20.32
P >
1 B c D
h
JL I I I I
E F G H
L L L

Ficure 5. Rigid frame of steel of three lengths equal for beams, with a
discrete load in joint A

Using Equation (31), it is obtained the shear modulus, as follows:
G = 7583.182kN/cm®

Once that is obtained the shear modulus is found the form factor through Equation
(30) as follows:
For beam of 10.00m is:

Tap = Dpc = Fep = 0.04388324731
For beam of 5.00m is:

Pap = Dpc = Fep = 0.1755329892
For beam of 3.00m is:

Dap = Dpc = Dep = 0.4875916368
For column of 5.00m is:

Dar = Dpr = Fog = Dpg = 0.1267991258
The fixed-end moments for members due to loads in all the cases are:
Mpap = Mrpc = Mrcp = Mppa = Mrep = Mrpc =0

Mpagr = Mrga = Mppr = Mrrg = Mrceg = Mrage = Mrpr = Mppp =0
Evaluation of “EI” is:
For all beams is:

ET = 2241514534kN-cm? = 224151.4534kN-m?
For all columns is:
ET = 1283256360kN-cm? = 128325.636kN-m?

The stiffness for each one of the members by the proposed method is:

4
K = i+2) BL
1+@) L
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For beam of 10.00m is:

Kip = Kpc = Keop = 86833.68658kN-m
For beam of 5.00m is:

Kip = Kpc = Kep = 159238.7108kN-m
For beam of 3.00m is:

K p = Kpc = Kop = 225397.9212kN-m
For column of 5.00m is:

Kuir = Kpr = Ko = Kpg = 93996.1898kN-m

The stiffness for each one of the members by the classical method is:

4FET
K=—
L

For beam of 10.00m is:

Kip = Kpe = Kep = 89660.58136kN-m
For beam of 5.00m is:

Kap = Kpe = Kop = 179321.1627kN-m
For beam of 3.00m is:

Kip = Kpc = Kop = 298868.6045kN-m
For column of 5.00m is:

Kap = Kpr = Ko = Kpg = 102660.5088kN-m

The distribution factor (FD) for both methods are obtained:

K;;
FD;; = <

The distribution factors are presented in Table 1, for the three different cases.

TABLE 1. The distribution factors in each one of the members

Case 1 Case 2 Case 3
Member L = 10.00m L = 5.00m L = 3.00m
PM CM PM CM PM CM
AB = DC 0.48020 | 0.46620 | 0.62882 | 0.63593 | 0.70570 | 0.74433
AE = DH 0.51980 | 0.53380 | 0.37118 | 0.36407 | 0.29430 | 0.25567
BA = BC = CD = CB | 0.32441 | 0.31797 | 0.38606 | 0.38873 | 0.41373 | 0.42671
BF = CG 0.35117 | 0.36407 | 0.22788 | 0.22254 | 0.17254 | 0.14657
EA = FB = GC = HD 0 0 0 0 0 0

PM = proposed method
CM = classical method

The carry-over factor (FC) (proposed method) is:
2—-9
Mji = <—> M,
4+

Mj; = 0.48372M;;

For beam of 10.00m is:
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B C D
¥ E Hgy F Heg G Hge H Hpgp
N -l 4
W, \=] Lec| A | S
Mgy Mgz Mee Mg

FIGURE 6. Free body diagram of whole frame

For beam of 5.00m is:
M;; = 0.43694M;;
For beam of 3.00m is:
M;; = 0.33702M;;
For column of 5.00m is:
M;; = 0.45391 M,
The carry-over factor (FC) (classical method) for all the members is:
M;; = 0.5M;;
The fixed-end moments due to sidesway are:
For proposed method is:
MJIL;AE :MJIWI‘EA = MZ‘BF = MJIWI‘FB = MJI';C’G = MJI';G’C = MJIWI‘DH = MZ‘HD
6ET, 6(128325.636)
=— A= A = 27332.42504A
L?(@+1) (5)2(0.1267991258 + 1)

For classical method is:

MIIGI‘AE :MIZEA = Ml,”l‘BF = MIIL;FB = MIIGI‘C’G = MIIGI‘GC = MIIL;DH = Ml,”l‘HD
B 6EIZA _ 6(128325.636)
L2 - (5)2
The distribution of moments due to the application of the loads, because there are no
transverse loads, the moments are zero. Only is considered the distribution of moments
due to sidesway.
Below are presented in Tables 2, 3, 4, 5, 6 and 7, the results by the method of successive
approximations.
Applying Equation (62), for the problem will be:

Map = Mg+ k(M}p); Mpa= Mp, + k(M)
Mpc = MJIBC’ +k(Mge); Mep = Mog + k(M)
M¢p);  Mpe = Mpe + k(Mpe)
Myp); Mpa= My, + k(Mg,)
)’ Mpp = MJI‘?B + k(MJIWI‘B)
Meg = Mo + k(Még); Moo = Mge + k(M)
Mpy = Mpy +k(Mpg);  Mup = Myp + k(Mpp)

The equilibrium condition is generated for shear forces at the base of frame, as shown
in Figure 6, which is:

A = 30798.15264A

P—Hpy— Hpp — Hge — Hgp =0
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Shear forces on the base of frame are expressed in terms of the final moments, as shown
in Figure 7, which are:

Hpa = Mg —il; MEA; Hpp = Mpr —;t MFB;
Hee = Mea J}: MGC; Hyp = Mpu J}: Myp

The condition of shear is converted as is shown:
Myg+ Mpa  Mpr+ Mpp  Mce + Mge  Mpy + Mup
o Tt h

Substituting:

Mip + k(Mip) + Mips + k(Mg,) | Mpp + k(Mpy) + Mip + k(Myp)
h h
L Mog + k(Még) + Moe + k(Mge) | Mpy + k(Mpy) + My + k(Mp)
h h

=P

Or
M)+ Mgy + Mpp + Mpg + M¢g + Mge + Mpg + Mpp
+ k(MY + Mg, + Mgp + Mpg + Ml + Mo + My + My ) = Ph
For this case is:
M+ Mpy+ Mpp+ Mpg + Mig+ Moo + Mpy + My, =0

Substituting into the above equation and solving for the ratio k, in Table 8 shows the
values for the problems developed.

TABLE 8. Values k for the six cases

Case 1 Case 2 Case 3
) L = 10.00m L = 5.00m L = 3.00m
Ratio k ——pyg CM PM CM PM CM
0.001367 | 0.001508 | 0.001200 | 0.001357 | 0.001126 | 0.001304

Vog

Vs Ver Vee
/l‘\.\m /" N\ Mar /I\M(g /‘ N\ Mo#
A - B, Hgr G » Hee D >

Hpg

I h I I

\EJ/ Hgy F Hrp G Hec H Hgp
Mgy \/ Mgz \p Mcge \-[/ Mgp

Veq Vg Vec Vap

FI1GURE 7. Free body diagram of each column
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Once that are found the values of £ were subsequently substituted into the equations
corresponding to localize the final moments at the ends of the members. Now by static
equilibrium, shear forces are obtained for each member. Then, it is obtains the diagrams
shear forces, axial forces and moments.

Below, the results are presented in Tables 9, 10 and 11, for the three cases.

4. Results. With regard to Table 9, this shows the axial forces of the members between
both methods. According to the results, there are differences, for L = 10.00m is lower 1%
in the members CD, BF and CG, in absolute value for the classical method with respect
to the proposed method, and for L = 3.00m is higher to a 30% in the member BF and
CG@, in absolute value for the classical method with respect to the proposed method. In
Figure 8 is presented the diagram of axial forces in general form for the three problems
different.

In Table 10 which present the shear forces in the ends of the members for the two
methods. For example, for L = 3.00m is lower to a 10% in the member BC, in absolute
value for the classical method with respect to the proposed method, and for L. = 3.00m is
greater to a 6% in the member AFE, in absolute value for the classical method with respect

TABLE 9. The axial forces of each member in kN

Case 1 Case 2 Case 3
L = 10.00m L = 5.00m L = 3.00m
CM PM |CMPM| CM PM |CMPM| CM PM | CM PM
Nap | +38.22 | +38.12 1.00 +37.83 | +37.78 1.00 +37.53 | +37.55 1.00
Npc | +24.52 | +24.53 1.00 +24.52 | +24.52 1.00 +24.52 | +24.52 1.00
N¢p | +10.83 | +10.93 0.99 +11.22 | +11.27 1.00 +11.52 | +11.50 1.00

Nyg | —4.00 | —3.98 1.00 —8.82 | —8.63 1.02 —15.47 | —14.66 1.06
Npr | +1.25 | +1.26 0.99 +3.63 | +3.31 1.10 +7.28 | +5.60 1.30
Neg | —1.25 | —1.26 0.99 -3.63 | —=3.31 1.10 —7.28 | —5.60 1.30

Npg | +4.00 | +3.98 1.00 +8.82 | +8.63 1.02 +15.47 | +14.66 1.06

”

N;j = axial force the member “ij
Nomenclature for the members:
+ Force compression

— Force tension

Nap
Nac
Neo

h - Nz + Nzr - Wee + Npy

™
|
(3]
5

-3
= O
[y
. i
[y

_y

FIiGURE 8. Diagram of axial forces



3154 A. LUEVANOS ROJAS, N. I. KALASHNYKOVA, A. DIOSDADO SALAZAR ET AL.

TABLE 10. The shear forces of each member in kN

Shear Case 1 Case 2 Case 3
Force L = 10.00m L = 5.00m L = 3.00m
CM PM |[CMPM| CM PM |[CMPM| CM PM | CM PM

Vag | —4.00 | —3.98 1.00 —8.82 | —8.63 1.02 —15.47 | —14.66 1.06
Vee | —2.75 | —2.72 1.01 -5.19 | —5.32 0.98 —-8.19 | —9.06 0.90
Vep | —4.00 | —3.98 1.00 —8.82 | —8.63 1.02 —15.47 | —14.66 1.06
Vag | —10.83 | —10.93 0.99 —-11.22 | —11.27 1.00 —11.52 | —11.50 1.00
Ver | —13.70 | —13.60 1.01 —13.30 | —13.25 1.00 —13.00 | —13.02 1.00
Vo | —13.70 | —13.60 1.01 —13.30 | —13.25 1.00 —13.00 | —13.02 1.00
Vpg | —10.83 | —10.93 0.99 —11.22 | —11.27 1.00 —11.52 | —11.50 1.00

Ko

Vij = shear force the member “45”, in the joint
Nomenclature for beams:

+ Force shear upstairs of the axis of reference
— Force shear down of the axis of reference
Nomenclature for columns

+ Force shear to the right of the axis of reference
— Force shear to the left of the axis of reference

W
7

Being: Vap = —Vga; Veec = —Ve; Vep = —Vpes Vag = —Vea; Ver = —Vip; Vog =
_VG’C and VDH = _VHD
4 B C D
r' _ _ _
Vee
Vi Vep
h Vag| - Vee| - Vee| - Vpr| -
_Y - _—
E F G H

Ficure 9. Diagram of shear forces

to the proposed method. In Figure 9 is showed the diagram of shear forces in general
form for the three problems different.

With respect to Table 11, this illustrates the negative moments and positive for both
methods. As soon as to the results, for L = 3.00m is greater in a 10% in the members BA
and CD, in absolute value for the classical method with respect to the proposed method,
and for L = 3.00m is lower in a 10% in the members BC and CB, in absolute value for
the classical method with respect to the proposed method. In Figure 10 is obtained the
diagram of moments in general form for the three problems different.

5. Conclusions. The results of the problem considered, through the application of two
different techniques: classical method (considering deformations by flexure) and the pro-
posed method (considering the deformations by flexure and shear), allowed to conclude
that:

According to the axial forces, shear forces and moments acting on the members. These
mechanical elements are those which govern the design of a structure. The results show
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TABLE 11. The moments of each member in kN-m

Case 1 Case 2 Case 3
Moment L = 10.00m L = 5.00m L = 3.00m

CM PM |CMPM| CM PM |[CMPM| CM PM |CM PM
Muap | +22.06|+22.09| 1.00 |-+25.08|+24.83| 1.01 |+426.84|+26.16 1.03
Mpa —17.89 | —-17.71 1.01 —19.03 | —18.34 1.04 —19.57 | —17.82 1.10
Mpe | +13.73|+13.59| 1.01 +12.98 | +13.30| 0.98 |+4+12.28|+13.58| 0.90
Mcp | —13.73|—-13.59| 1.01 —12.98 | —13.30| 0.98 —12.28 | —13.58 | 0.90
Mep | +17.89 | +17.71 1.01 +19.03 | +18.34| 1.04 |+4+19.57 | +17.82 1.10
Mpe | —22.06|-22.09| 1.00 |—-25.08|—-24.83| 1.01 —26.84 | —26.16 1.03
Mag —22.06 | —22.09 1.00 —25.08 | —24.83 1.01 —26.84 | —26.16 1.03
Mgs | +32.08|+32.54| 0.99 |+31.04|+31.53| 0.98 |+30.77|+31.34| 0.98
Mpr |-31.62|-31.30| 1.01 —-32.01| -31.63| 1.01 —31.85|—-31.40| 1.01
Mpp | +36.86|+36.70| 1.00 |-+34.50|+34.63| 1.00 |-+33.16|-+33.72| 0.98
Mce | —31.62|-31.30| 1.01 —-32.01| -31.63| 1.01 —31.85|—-31.40| 1.01
Mae | +36.86 | +36.70| 1.00 |-+34.50|+34.63| 1.00 |+33.16|+33.72| 0.98
Mpyg |—22.06|—-22.09 1.00 —25.08 | —24.83 1.01 —26.84 | —26.16 1.03
Mgp | +32.08|+32.54| 0.99 |+31.04|+31.53| 0.98 |-+30.77|+31.34| 0.98

33
1

M;; = moment of the member “ij”, in the joint
Nomenclature for moments:
e For horizontal members:

+ Moment upstairs of axis of reference (compression in superior fibers and tension in inferior
fibers)
— Moment down of axis of reference (tension in superior fibers and compression in inferior
fibers)

e For vertical members:
+ Moment to the right of the axis of reference (compression in the right side fibers and
tension in the left side fibers)

— Moment to the left of the axis of reference (tension in the right side fibers and compression
in the left side fibers)

Mg Mgc Mep

Mg \\ Mgr \\k Mce \\ Mpg

+ A B C D
Mgy Mg Mpc

h

_y Mgy Mz Mgc Mzp
F G H

ola |
[ e >

I’y
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Ficure 10. Diagram of moments

that differences exist between the two methods, both on the conservative side as of in-
secure side with respect to the classical method. This means that, it is this designing
wrongly, because for a side some members are more than enough in their cross section
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dimensions and in another situation does not comply with the minimum conditions ac-
cording to building regulations for that a is satisfactory structure. Since that the principle
in civil engineering, with regard to the structural conditions is that have to be safe and
economical.

Therefore, the usual practice of using the classical method (method of successive ap-
proximations considering deformations by flexure) is not a recommended solution.

According to the above, the proposed method of successive approximations (considering
the deformations by flexure and shear), happens to be the more appropriate method
for structural analysis of statically indeterminate rigid frames and also is more become
attached to the real conditions.
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