
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 9, September 2013 pp. 3779–3797

AN EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING
DISTRIBUTED SYSTEMS

My EL Hassan Charaf, Mohammed Benattou and Salma Azzouzi

LARIT: Laboratory of Research in Computer Science and Telecommunication
Faculty of Science

Ibn Tofail University
Kenitra 14000, Morocco

{ charaf; salma.azzouzi }@gmail.com; mbenattou@yahoo.fr

Received June 2012; revised December 2012

Abstract. In the distributed test context, where a set of parallel testers exchange some
I/O messages to perform the test, the implementation process must consider the mech-
anisms and functions required to support interaction as long as the communication and
the coordination between distributed testing components. The typical reactions of such
systems are the generation of errors such as time outs, locks, channels and network fail-
ures. Nowadays, rule based systems provide an interesting approach for representing and
interpreting such kind of messages exchange using the artificial intelligence features. In
this paper, we suggest two algorithms allowing the generation of rules to be respected by
the test system to avoid the coordination/synchronization problems. Then, we explain the
advantages of the study and how the proposed architecture based on expert systems can
avoid the use of the coordination messages and resolve the coordination problems. Thus,
the testers will exchange only the observation messages which will reduce significantly the
use of external messages and I/O operations.
Keywords: Expert system, Distributed test, Rules, Controllability and observability
problems, Synchronization

1. Introduction. Nowadays, the distributed computing becomes the key issue in mod-
ern systems design. It provides new high promises for Web-based applications. However,
the inherent complexity of the architecture of distributed systems requires special testing
techniques. In fact, contrary to the centralized test where the entire activity of the test
(injection of stimulis and observing reactions of the implementation under test: (IUT)1

is performed by a single entity; this activity is performed by a set of parallel testers
called (PTCS)2 in the distributed context [5]. However, many problems influencing faults
detection during the conformance testing process arise if there is no coordination be-
tween PTCs. In fact, the use of multiple testers introduces the possibility of coordination
problems amongst remote testers. These potential problems are known as controllability
and observability fault detections which are fundamental features of conformance in dis-
tributed testing [14]. Concretely, to test Web-Based application for example, the model
of the Web application can be obtained by partitioning the application into collections of
web pages and software modules that implement some logical function. Then, the web
pages that include more than one HTML form, each of which is connected to a different
back-end software module, can also be modeled as multiple Logical Web Pages in order
to facilitate testing of these modules. Generally, we simulate the implementation under

1IUT : Implementation Under Test
2PTC : Parallel Tester Component

3779

3780 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

test as a “black-box”, and its behavior is known only by interactions through its inter-
faces with the environment or other systems. Additionally, the implementation process
is more complex and must consider the mechanisms and functions required to support
interaction as long as the communication and the coordination between the distributed
testing components. The typical reactions of such systems are the generation of set of
errors: time outs, locks, channels and network failures [2].
To avoid the problems related to distributed test, many works [3,5,14,16] propose to

introduce some coordination messages which leads each tester to determine when to apply
a particular input to the IUT and whether a correct output from the IUT is generated in
response to a specific input, respectively. In this approach, the difficulty lies in writing
the procedure for coordination between the PTCs. Given its importance in the validation
process, it should not reject a conform implementation or lead to the acceptance of an
incorrect one. Compared with these works that deduce local test sequences for each
tester from the global one and including some coordination and observation messages to
ensure coordination between testers, we suggest in this paper two algorithms allowing the
generation of rules to be respected by the test system to avoid the coordination problem
without requiring the use of coordination messages because such messages exchange can
introduce delays especially if there are some timing constraints. The basic idea behind
introducing the rule’s concept in the distributed test context is that the exchange of
messages to perform the test is sequential. In fact, for each transition in the test process,
the next messages to be sent to the IUT depend mainly on the previous messages received
even from the IUT or from other testers. The idea is to write the rules to be respected
by the testers to guarantee their coordination. To communicate with the IUT, the testers
follow some instructions described through these rules. When the necessary conditions
(facts) have arisen, the tester proceeds in applying results as described in its local rules.
The proposed algorithms are inspired from works done by [3,5]. The first algorithm
generates a matrix of local rules to be fulfilled by each tester. However, as detailed in the
article, we can notice that the verdict of the test can be obtained by calculating if all the
local rules have been respected in each tester during the test execution. In fact, for each
message xi sent to the IUT or an observation message, the tester supports the process
of sending this message. If xi is an expected message from the IUT or an observation
message, the tester waits for this message. If no message is received, or if the received
message is not expected, the tester returns a verdict Fail (fail). If all the local rules
of the tester have been satisfied, then it gives a verdict Accept (accepted). Thus, if all
testers return a verdict Accept, then the test system ends the test with a global verdict
Accept. Thus, in the point of view of the Test system, the coordination is ensured using
some global rules. The second algorithm generates the list of facts and the global rules
to be respected by the whole system. In the other hand, the emphasis of recent works
is to minimize the use of external coordination message exchanges among testers [11,14]
or to identify conditions on a given FSM under which controllability and observability
problems can be overcome without using external coordination messages [13,15]. The idea
of such works is to construct a test sequence that causes no controllability or observability
problems during its application in distributed test architecture. For some specifications,
such test sequence exists where the coordination is achieved via their interactions with
the IUT [12]. However, this case is not always true as detailed in [9,13]. In this paper,
we explain the advantages of the study and how the proposed architecture can avoid
the use of the coordination messages and resolve the coordination problems. Thus, the
testers will exchange only the observation messages which will reduce significantly the
use of external messages and I/O operations. In fact, each tester executes only a part of
the global reasoning, and diffuses through the network the obtained results. By the way,

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3781

other testers can use these results to participate in the global reasoning. To this end, we
present rules and facts as components of a Petri net to benefit of its formalism. Then,
we explain when we have the facts and rules list of the Petri Net diagram, represented
in a matrix form (A: Antecedents, C: Consequences) and the initial state of the system
M0, we can then deduce using simple arithmetic operations (sensitized/fired rules), the
state of the system and decide if some rules can be enabled. The work presents another
way to overcome the coordination/synchronization problems and avoid the exchange of
the external coordination messages among remote testers during the test. As detailed in
the paper, the objective of introducing rules is to ensure coordination using rule based
systems that provide an interesting approach for representing and interpreting such kind of
messages exchange using the artificial intelligence features. This kind of systems permits
the implementation of highly flexible systems capable of adapting themselves to different
situations by seeking to express an automatism in a similar way to as would make it
a human being: “IF antecedents THEN consequents”. Additionally, such systems are
able to take decisions concerning possible malfunctions and decided if the process of test
returns a failed verdict or an accepted one.

This paper presents some technical issues for testing distributed frameworks with Ex-
pert System. The proposed approach consists firstly of exploring the benefits of Ex-
pert systems to concept communication between different components of the distributed
test application. To this end, the paper is organized as follows. The second section
describes the concept of distributed testing, architecture and the test procedure while
referring to the problems of control, observation and synchronization. The third section
introduces our algorithms to generate the rules that will be used to avoid the coordi-
nation/synchronization problem. In the fourth section, we present rules and facts as
components of a Petri net to benefit of its formalism and finally a practical example of a
distributed chat group application is given in the fifth section to demonstrate the effec-
tiveness and efficiency of the main results and the motivation of the practical use of the
results developed.

2. Distributed Test.

2.1. Architecture. The basic idea is to coordinate parallel testers using a communica-
tion service in conjunction with the IUT. Each tester interacts with the IUT through a
port called the Point of Control and Observation (PCO)3 and communicates with other
testers through a multicast channel (Figure 1). An IUT (Implementation Under Test)
is the implementation of the distributed application to test. It can be considered as a
“black-box”, its behavior is known only by interactions through its interfaces with the
environment or other systems.

2.2. Modeling by automaton. To approach the testing process in a formal way, the
specification and the Implementation Under Test (IUT) must be modeled using the same
concepts. The specification of the behavior of a distributed application is described by an
automaton with n-port (FSM Finite State Machine) [1] defining inputs and the results
expected for each PCO. A multi-port FSM with n ports (np-FSM) A is a 6-tuple (Q, Σ,
Γ, δ, λ, q0), where: Q is the finite set of states of A; q0 Q is the initial state of A; Σ is
a n-tuple (Σ1,Σ2, . . . ,Σn) where Σk is the input alphabet of port k, and Σi ∩ Σj = ∅
for i <> j. We denote Σ the input alphabet Σ1 ∪ Σ2 ∪ . . . ∪ Σn of A; Γ is a n-tuple
(Γ1,Γ2, . . .,Γn) where Γk is the output alphabet of port k, and Γi ∩ Γj = ∅ for i <> j.
We write Π for the output alphabet (Γ1 ∪ {})x(Γ2 ∪ {})x . . . x(Γn ∪ {}) of A; δ is the

3PCO : Point of Control and Observation

3782 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

Figure 1. Test architecture

Figure 2. An example of 3p-FSM

transition function, it is a partial function Q × Σ → Q; λ is the output function, it is a
partial function Q×Σ → Π. A transition of an np-FSM is a 4-tuple t = (q, α, γ, q′) where
q, q′ Q, α Σ and γ Π are such that δ(q, α) = q′ and λ(q, α) = γ.
Figure 2 gives an example of 3p-FSM with Q = {q0, q1, q2, q3, q4}, q0 initial state, Σ1 =

{x1}, Σ2 = {x2}, Σ3 = {x3}, and Γ1 = {a1, a2, a3}, Γ2 = {b1, b2, b3}, Γ3 = {c1, c2, c3}. A
test sequence of an np-FSM automaton is a sequence in the form: !x1?y1!x2?y2. . .!xt?yt
that for i = 1, . . . , t : xi Σ, yi ⊂ ∪n

k=1Γk and for each port k |yi ∩ Γk| ≤ 1.

• !xi : Denotes sending the message xi to IUT.
• ?yi : Denotes the reception of messages belonging to the yi from the IUT.

An example of a test sequence of 3p-FSM illustrated in Figure 2 is:

!x1?{a1, b1, }!x2?{a2, b2, c2}!x1?{a2, b1, }!x3?{a1, b3, }!x1?{a1, , c3}!x3?{ , b1, c3}. (1)

Generally, test sequences are generated from the specification of the IUT and charac-
terized by fault coverage. Several methods exist for generating test sequences from I/O
FSM specifications. They are mainly for detecting the following types of fault: output
faults, transfer faults or combination of both of them [2]. An edge with an incorrect out-
put has an output fault which is generally observable. Any generation method providing
a test suite traversing each transition of an FSM at least once is capable of detecting such
faults. An edge with an incorrect starting state or ending state has a transfer fault. Since
states are not directly observable, these faults are relatively more difficult to detect. In
the distributed test architecture, the application of a test sequence may introduce some
issues known as controllability and observability problems. These problems occur if a
tester cannot determine either when to apply a particular input to the IUT, or whether
a particular output from the IUT has been generated in response to a specific input,
respectively.

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3783

Figure 3. Example of a faulty IUT for Figure 2

2.3. Distributed test problems. Many kinds of problems can arise in the distributed
test context; we define these notions by referring [3].
Controllability problem can be defined from Test System view as capability of a Test
System to force the IUT to receive inputs in the given order. It arises when Test cannot
guarantee that IUT will receive event of transition (i) before event of transition (i+1). In
other way, it is the capability of the test system to realize input events at corresponding
PCOs in a given order.
Observability problem can be defined from Test System view as capability of a Test
System to observe the outputs of the IUT and decide which input is the cause of each
output. For distributed test architecture where a transition contains at most single output
for each output, the observability problem arises when two consecutive transition (i) and
transition (i+1) occurs on the same port k but only one of the transitions has an output
in port k and the other one is an empty transition with no output. In this case the Test
System cannot decide whether transition (i) or transition (i+ 1) is the cause of output.
EXAMPLES: Let us explain these situations by giving a faulty IUT related the global
test sequence (1) as shown in the Figure 3.

The projections of (1) on ports alphabets are required to get the test sequence re-
lated to each tester. Projections w1, w2, w3 of the global test sequence are w1 =!x1?
a1?a2!x1?a2?a1!x1?a1, w2 =?b1!x2?b2?b1?b3?b1 and w3 =?c2!x3?c3!x3?c3. By applying these
sequences to the IUT of Figure 3 using the remote method, we will have these situations:
Situation 1. When the IUT is in state q2, it gets both x1 on port 1 and x3 on port 3
respectively. Then, either it follows the intended path reading x1 before x3, or it reads x3

before x1. In the first case, tester 1 receives a1 before a2 and it detects an output fault.
However, if the IUT decides to read a2 before a1 then none of the testers is able to detect
this fault.
Situation 2. When the IUT is in the state q2, it receives x1 and then it sends b1 and c3
instead of a1 and c3. In the state q3, it receives x3 and sends a1 and c3 instead of b1 and
c3. In this situation, we can notice that there are two successive output faults but none
of the testers can detect them.

To resolve such problems, authors in [11] propose an algorithm to generate local test
sequences from the global test sequence. We will get the following local test sequences by
applying the algorithm mentioned above to the global test sequence (1):

w1 = !x1?a1?a2!O3!x1?a2?a1!O{2,3}!x1?a1?O3,

w2 =?b1!O3!x2?b2?b1!C3?b3?O1?O3?b1,

w3 = ?O2?c2?O1?C2!x3?O1?c3!O{1,2}!x3?c3.

(2)

As shown in the obtained local test sequences, some coordination messages (Ck) are
added to the projections to avoid both the controllability and observability problems when
using the complete test sequence. We notice two kinds of coordination messages:

3784 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

• !C{t1,..,tr}(!O{t1,..,tr} resp.) the sending of a coordination message (observation message
resp.) to the testers t1..tr.

• ?Ct(?Ot resp.) the receipt of a coordination message (observation message resp.)
from the tester t.

Synchronization problem. As explained above, the algorithm in [3] allows the gen-
eration of local test sequences to be performed by each tester. When these local test
sequences have been obtained, each tester is running its local test sequence produced
from the global test sequence of the IUT. Thus, the testers are working together but
independently, which leads us to manage the problem of synchronization of testers.
The first fragments of the local test sequences obtained in (2).

wf1 = !x1?a1,

wf2 =?b1!O3!x2,

wf3 =?O2?c2.

(3)

The execution of the fragments wf1, wf2 and wf3 should give the result shown in Figure
4(a) but the execution of our prototype provides an incorrect result given in Figure 4(b).
Indeed, in last diagram the second tester sends the message x2 the IUT before the first
tester receives the message a1 from the IUT. So, the execution of local testing is not
conform with the specification in (1), where the message ‘x2’ must be sent only if all
messages due to the sending of ‘x1’ by the tester-1 are received by the IUT. In the
following of this paper, we will take – for simplicity, the test sequence of 3p-FSM shown
in Figure 1 defined as:

!x1?{a1, b1, }!x2?{a2, b2, c2}!x3?{ , , c3}. (4)

2.4. Related works. Many works have been made to avoid the problems described in the
previous section. Indeed, the author in [4] shows that controllability and observability are
indeed resolved if and only if the test system respects some timing constraints. Then the
article determines these timing constraints and other timing constraints which optimize
the duration of test execution. In this context, we determine in other work [21] timing
conditions that guarantee communication between components of distributed testing ar-
chitecture and we propose a distributed architecture for testing distributed Real-Time
Systems then we propose our Multi-Agent architecture for testing these systems. In [5],
the authors explain how both controllability and observability problems can be overcame
through the use of coordination messages among remote testers.
The work [6] proposes a new method to generate a test sequence utilizing multiple

unique input/output (UIO) sequences. The method is essentially guided by the way of
minimizing the use of external coordination messages and input/output operations. In
[7], the authors suggest to construct a test or checking sequence from the specification
of the system under test such that it is free from these problems without requiring the

(a) (b)

Figure 4. The execution result

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3785

use of external coordination messages. In this context, they propose some algorithms for
constructing subsequences that eliminate the need for external coordination messages.

Another work [8] shows that the use of coordination messages can introduce delays and
this can cause problems where there are timing constraints. Thus, sometimes it is desired
to construct a checking sequence from the specification of the system under test that
will be free from controllability and observability problems without requiring the use of
external coordination message exchanges. To this end, the authors suggest an algorithm
that achieves this.

The main idea in [9-11] is to construct a test sequence that causes no controllability
or observability problems during its application in a distributed test architecture. For
some specifications, such test sequence exists where the coordination is achieved via their
interactions with the IUT [12]. However, this case is not always true as detailed in [9,13].

The emphasis of recent works is to minimize the use of external coordination message
exchanges among testers [11,14] or to identify conditions on a given FSM under which
controllability and observability problems can be overcome without using external coor-
dination messages [13,15].

Finally, our work is mainly based on [5,16] and the algorithm proposed in [3] for writing
test coordination procedures in a distributed testing architecture.

The paper can be considered as a continuity of [17,19] and [20] where we propose to
introduce some concepts issued from Artificial Intelligence especially the use of agents,
rule based systems or the MAS (multi-agent system) incorporated with ontology. In the
next section, we propose our solution by defining some rules to be implemented in each
tester to overcome problems related to the distributed test.

3. Testing Rules Generation. The basic idea behind introducing the rule’s concept
in the distributed test context is that the exchange of messages to perform the test is
sequential. In fact, for each transition in the test process, the next messages to be sent
to the IUT depend mainly on the previous messages received even from the IUT or from
other testers. The idea is to write algorithms to deduce –from the global test sequence–
the rules to be respected by the testers to guarantee their coordination. In fact, each rule
is composed by two parts, conditions and results. These components are shared between
the IUT and the testers as facts. To communicate with the IUT, the testers follow some
instructions described through these rules. When the necessary conditions (facts) have
arisen, the tester proceeds in applying results as described in its local rules.

Let us take the global test sequence !x1?{a1, b1, }!x2?{a2, b2, c2}!x3?{ , , c3} defined
in (4). It can be translated on a set of rules as follows:

• If the tester T1 send a message x1 to the IUT (!x1.T 1) then the tester T1 will receive
a message a1 from the IUT (?a1.T 1) and the tester T2 will receive a message b1 from
the IUT (?b1.T 2).

• If the message a1 is received in the tester T1 (?a1.T 1) and the message b1 is received
in the tester T2 (?b1.T 2). Then the tester T2 will apply the message x2 to the IUT
(!x2.T 2).

At this stage, we have an observability problem so we will introduce an observation
message O3 to be sent by tester T2 to the tester T3. In this case, the next rule is as
follows:

• If the tester T2 send a message x2 to the IUT (!x2.T 2) then the tester T1 will receive
a message a2 from the IUT (?a2.T 1) and the tester T2 will receive a message b2 from
the IUT (?b2.T 2) and the tester T3 will receive a message c2 from the IUT (?c2.T 3)
and the tester T2 will send an observation message O3 to tester T3 (!O3.T 2).

3786 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

All these rules can be expressed over each tester as local rules as follows:

• !x1.T1 ?a1.T1; !x1.T1 ?b1.T2;
• ?a1.T1 !x2.T2; ?b1.T2 !x2.T2;
• !x2.T2 ?a2.T1; !x2.T2 ?b2.T2; !x2.T2 ?c2.T3; !x2.T2 !O3.T2

However, we can notice that the verdict of the test over the whole system can be
obtained by calculating if all the local rules have been respected in each tester during the
test execution. Thus, in the point of view of the Test system, the coordination is ensured
using the global rules as follows:

• !x1.T1 ?a1.T
∧
1 ?b1.T2,

• ?a1.T
∧
1 ?b1.T2 !x2.T2,

• !x2.T2 ?a2.T
∧
1 ?b2.T

∧
2 ?c2.T

∧
3 !O3.T2.

In the next subsections, we explain how we can generate (local/global) rules from a
given global test sequence. To this end, we introduce two algorithms to achieve the rules
generation.

3.1. Local testing rules. In this section, we describe the algorithm1 allowing the gen-
eration of the local rules to be respected by the testers to avoid the coordination problem.
The algorithm is inspired from woks done by [3,5]. Contrary to their works that generate
some local test sequences from the global test sequence and that introduce coordination
and observation messages, the proposed algorithm generates local rules Rij to be fulfilled
by each tester. We denote by ‘/’ the set difference and ‘∆’ the symmetrical difference:
A∆B = (A/B) U (B/A). The function Port gives the port corresponding to a given mes-
sage. For a set y of messages, the function Ports is defined by: Ports(y) = {k|∃a y s.t.
k = Port(a)}.
Let us take the global test sequence defined in (4) as the input of the algorithm below.

The algorithm generates a matrix of local rules by browsing the ‘t’ messages to be sent
to the IUT in the global test sequence (line 1), e.g., ‘t’ represents the number of lines of
the matrix of local rules. Then, the local rules will be constructed as:

• Each message ‘m’ belonging to yi is a part of a rule in the matrix as a consequence of
sending message xi (lines 5, 6, 7), we denote ‘!RRi’ the set of local rules generated
in response of sending the message xi.

!RRi = {Rij : !xi.Ti →?m.Tj/j = 1..p}, p is the cardinality of yi.

• Each message ‘m’ belonging to yi is a part of a rule in the matrix as an antecedent
of sending message xi+1 (lines 12, 13, 14), we denote ‘?LRi’ the set of local rules
needed to send the message xi+1.

?LRi =

{
{Rij : ?m.Tj →!xi+1.Ti+1/j = 1..p}, p is the cardinality of yi: if i < t.
Ø otherwise.

To avoid observation problems, each tester receiving a message h yi−1 should be able
to determinate that h has been sent by IUT after IUT has received xi−1 and before IUT
receives xi. (lines 19, 20). Afterwards, we introduce the observation messages to write
rules for avoiding this problem (lines 21, 22, 23, 24). We denote:

ζi = {Ports(yi)∆Ports(yi−1)}\{port(xi)} (5)

We define also ‘!ORi’ and ‘?ORi’ the sets of local rules generated to overcome the
problem of observability as:

• !ORi = {Rij :
!xi.Ti →! Ok.Ti/k ζi and j = 1..q}

• ?ORi = {Rij :
!Ok.Ti →? Oi.Tk/k ζi and j = 1..q}; q is the cardinality of ζi.

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3787

Thus, we can deduce the number of local rules to be generated for each message xi to
send to the IUT as:

£i = card(!RRi) + card(?LRi) + card(!ORi) + card(?ORi) for i = 1..t− 1,

£t = card(!RRi) + card(!ORi) + card(?ORi).

£i = 2 ∗ (p+ q) for i = 1..t− 1 and £t = p+ 2 ∗ q (6)

We will obtain then the local rules matrix Rnm with n the number of lines which
correspond to the number of messages ‘t’ to be sent to the IUT and m the number of
columns that correspond to the max{£i/i = 1..t}.

In the case of the global test sequence defined in “Equation (4)” we will have:

• For i = 1, p = 2 and q = 0 then £1 = 4.
• For i = 2, p = 3 and q = card ({1, 2, 3}∆{1, 2}\{2}) = 1 then £2 = 8.
• For i = 3, p = 1 and q = card ({3}∆{1, 2, 3}\{3}) = 2 then £3 = 5.

Therefore, by applying Algorithm 1 to the global test sequence (4) defined in our example,
the obtained matrix is a R38 matrix composed by the elements Rij defined as Table 1.

As signaled at the beginning of this section, we can notice that the verdict of the test
can be obtained by calculating if all the local rules have been respected in each tester
during the test execution. In fact, for each message xi sent to the IUT or an observation
message, the tester supports the process of sending this message. If xi is an expected
message from the IUT or an observation message, the tester waits for this message. If
no message is received, or if the received message is not expected, the tester returns a

3788 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

Table 1. The matrix of local rules deduced from (4)

R11 : !x1.T1 ?a1.T1 R21 : !x2.T2 ?a2.T1 R31 : !x3.T3 ?c3.T3

R12 : !x1.T1 ?b1.T2 R22 : !x2.T2 ?b2.T2 R32 : !x3.T3 !O1.T3

R13 : ?a1.T1 !x2.T2 R23 : !x2.T2 ?c2.T3 R33 : !x3.T3 !O2.T3

R14 : ?b1.T2 !x2.T2 R24 : ?a2.T1 !x3.T3 R34 : !O1.T3 ?O3.T1

R15 : R25 : ?b2.T2 !x3.T3 R35 : !O2.T3 ?O3.T2

R16 : R26 : ?c2.T3 !x3.T3 R36 :
R17 : R27 : !x2.T2 !O3.T2 R37 :
R18 : R28 : !O3.T2 !O2.T3 R38 :

verdict Fail (fail). If all the local rules of the tester have been satisfied, then it gives a
verdict Accept (accepted). Thus, if all testers return a verdict Accept, then the test
system ends the test with a global verdict Accept. Thus, in the point of view of the Test
system, the coordination is ensured using some global rules (ri).

3.2. Global testing rules. In this subsection, we will introduce Algorithm 2 allowing
the production of the global rules that will be satisfied by the whole test system. To this
end, we denote RRij (and LRij resp.) the right (and left resp.) parts of the local rules
Rij in the matrix Rnm. Both RRij and LRij are defined only if Rij <> . Then, we
define RR and LR as follows:

• RR = {RRij/ for i = 1..n and j = 1..m },
• LR = {LRij/ for i = 1..n and j = 1..m }
Therefore, we will obtain the list of facts F of the system defined as:

F =RR∆LR (7)

For our example, the list F of facts is defined as:

F =: { !x1.T1− ?a1.T1− ?b1.T2− !x2.T2− ?a2.T1− ?b2.T2− ?c2.T3− !O3.T2

− !x3.T3− ?O2.T3−?c3.T3−!O1.T3− !O2.T3−?O3.T1−?O3.T2}
In Algorithm 2, we browse the set of facts F (line 2) and for each fact related to a

sending message (line 3) we construct then:

• The right side of the global rule rR if the fact is belonging to LR (lines 8 and 9).
• The left side of the global rule rL if the fact is belonging to RR (lines 10 and 11).

We obtain then the global rules ri as:

• ri : f → rR (line 16),
• ri : rL → f (line 20).

Therefore, the list of the global rules R can be deduced from the matrix of local rules
by applying Algorithm 2 as mentioned below:

R = : {r1 − r2 − r3 − r4 − r5 − r6 − r7 − r8}
• r1 : !x1.T1 ?a1.T

∧
1 ?b1.T2,

• r2 : ?a1.T
∧
1 ?b1.T2 !x2.T2,

• r3 : !x2.T2 ?a2.T
∧
1 ?b2.T

∧
2 ?c2.T

∧
3 !O3.T2,

• r4 : ?a2.T
∧
1 ?b2.T

∧
2 ?c2.T3 !x3.T3,

• r5 : !O3.T2 ?O2.T3,
• r6 : !x3.T3 ?c3.T

∧
3 !O1.T

∧
3 !O2.T3,

• r7 : !O1.T3 ?O3.T1,
• r8 : !O2.T3 ?O3.T2.

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3789

In the next section, we introduce the expert systems that will implement rules and facts
described previously. Then, we define interactions between different components of the
system and finally, we describe the test procedure.

4. Test Prototype Based on Expert Systems. An expert system is typically com-
posed of at least three primary components. These are the knowledge base which is a
collection of rules or other information structures derived from the human expert, the
inference engine that enables the expert system to draw deductions from the rules in the
KB and finally the working memory which contains the data that is received from the
user during the expert system session.

4.1. Architecture. A distributed expert system has been proposed to avoid the syn-
chronization problem described above. It is mainly based on the use of distributed nodes
connected to the IUT where nodes participate in the distributed system execution.

Each node executes only a part of the global reasoning, and diffuses through the network
the obtained results. By the way, other nodes can use these results to participate in the
reasoning. As shown in the Figure 5, the system is composed of the following components:

• The IUT (Implementation Under Test) is the implementation to be tested.
• Some ESTi (Experts System Testers) connected to the IUT using a PCOi (Point of
Control and Observation) to exchange inputs/outputs messages.

• A global KB (Knowledge Base) that store facts, global rules, variables and the States
vector.

Each ESTi uses its inference engine and its working memory to communicate with the
KB for making a global reasoning.

After obtaining the lists of facts and global rules and designing our test architecture, we
describe in the next section the behavior of the test system using the Petri Net formalism

3790 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

Figure 5. Architecture of the distributed test system

Figure 6. The Petri net representation associated to the global test se-
quence (4)

4.2. Behavior of the test system. A Petri net (also known as a place/transition net
or P/T net) is one of several mathematical modeling languages for the description of
distributed systems. A Petri net is a directed bipartite graph, in which the nodes represent
transitions (i.e., events that may occur, signified by bars) and places (i.e., conditions,
signified by circles) [18].
In our case, the places represent facts and transitions represent rules. The diagram

above represents facts and rules deduced from the global test sequence “Equation (4)” by
applying Algorithm 2 explained in the previous section.
Let the structures be defined as follows:

i A: matrix of antecedents, Aij = 1 if the fact fj is antecedent in rule ri else Aij = 0.
ii C: matrix of consequents, Cij = 1 if the fact fj is consequent in rule ri else Cij = 0.
iii M : The state (marking) of a Petri net is defined as follows:

M : P -> N , i.e., a function mapping the set of places onto {0, 1, 2, . . .}.

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3791

In our case, this function M is defined as: M : F -> {0, 1}, i.e., a function mapping the
set of facts onto {0, 1}. M0 is the initial state; M0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The matrices A and C of antecedents and consequents are defined for this case as:

A =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

C =

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

We denote A(., rj) (respectively C(., rj)) the row associated to the rule rj in the matrix

of antecedents A (resp. matrix of consequents C).
Sensitized rules: In a Petri net, a rule rj is sensitized for a marking M if and only if
M ≥ A(., rj). The ≥ is a vectors comparison and it will be done fact by fact as follows:

∀f ∈ F, M(f) ≥ A(f, rj) (8)

In our example below, let us take a markingM = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and
calculate if the rules r2 and r3 are sensitized for this marking or not. We have: A(., r2) =
(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and A(., r3) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

By comparing M with the rows bellow: M ≥ A(., r2) and A(., r3) ≥ M , we can
conclude that the rule r2 is sensitized for the marking M but the rule r3 is not.
Fired rules: In a Petri net, a sensitized rule rj for a marking M can be fired and the
next marking M is defined as follows:

M = M − A(., rj) + C(., rj) (9)

The marking vector M is composed by positive or null values because M ≥ A(., rj) for
the sensitized rule rj. In the example above if the rule rj is fired the next marking
will be M = (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

As conclusion, when we have the facts and rules list represented in a matrix form
(A,C) and the initial state of the system M0, we can then deduce using simple arithmetic
operations the state of the system and decide if some rules can be enabled.

4.3. Test procedure. We describe in this section the test procedure:

(i) For sending an input to the IUT, the Expert System Tester (ESTi) checks the knowl-
edge base to test if the rule is sensitized using the marking M .

(ii) When an ESTi apply an input to the IUT, the IUT sends some outputs messages to
the concerned ESTj.

(iii) After receiving the outputs messages from the IUT, each ESTj check using its In-
ference Engine (IEj) and its Working (WMj) if the message received is the expected
one.

3792 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

Figure 7. Structure of a tester ESTi

As shown in the description of the tester ESTi (Figure 7), the pattern matcher
will match the local rules against the results received from other components of the
test system.
a) If the result is OK => The local rule will be stored in the Agenda in order to

notify the Knowledge Base (rule fired).
b) Else => Test Failed.

(iv) The rules Rij of testers concerned by validating a rule ri must be fired to decide if
the next rule can be sensitized.

5. Testing Carrying Out. This section describes a testing example of a COBRA appli-
cation to compare the both prototype approaches of the test. We notice that in CORBA,
the terms client and server are used to specify the role played by a component in a dis-
tributed application and the object interface specifies only the operations and types that
the objects supports. The application and its interfaces are briefly presented. Related
local test sequences and rules are constructed from a complete test sequence, and then
test results are given and discussed.

5.1. Distributed chat group application. The example to be tested and described
below is based on a distributed chat group application. Actually, for sending a message
to a chat group, the user has to join this group, and then the text message submitted by
the user will be sent to a central server. The server then forwards these messages to other
clients which have joined the same group. The role of the central server is to manage all
messages sent to all chat groups. It receives the messages from client applications and
forwards these messages to other clients appropriately.
The application has two interfaces:

• User interface allowing subscribers to post and to retrieve messages;
• Manager interface allowing one to add and to remove subscribers, to forward mes-
sages to the clients appropriately and to provide some statistical information about
the total number of messages sent through the system for example.

We will use the Interface Definition Language (IDL) for the specification of these interfaces
as it is given in Figure 8.

5.2. Test execution. To illustrate the test execution, we use the following test sequence
Figure 9. This sequence describes the sending of a message by a user to other users who
have joined the group through the manager.

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3793

Figure 8. IDL interfaces of the distributed chat group application

Figure 9. Example of global test sequence

Figure 10. Local test sequences

Local test sequences corresponding to this global test sequence are given above (Figure
10). Notice that a coordination message is sent by the user ‘User1’ to the user ‘User2’ to
coordinate the sending of a message from ‘User1’ to ‘User2’.

3794 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

Each tester uses two interfaces: IUT, related to the IUT interface associated with the
tester, and CC related to the interface with the coordination channel. These sequences
come from testing experiments with the prototype on students’ realizations of chat group
application.
On the other hand and according to the algorithms explained in the previous sections,

the local/global rules corresponding to the situation explained above are given as follows:

Figure 11. Local rules

Figure 12. Global rules

To illustrate more this example, we use the petri net representation for the facts and
the global rules.
The matrices A and C of antecedents and consequents corresponding to this case are

defined as:

A =

1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0

C =

0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1

Flow diagram. Let F and R the lists of facts and global rules respectively be deduced
from the global sequence test of the distributed chat group application and M0 the initial
marking.
SinceM0 is the initial state, and as described in the diagram Figure 14, the tester EST2

will apply input “!Deposit message(msg)” to the IUT. Then r1 is fired and the marking

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3795

Figure 13. The Petri net representation associated to the example

Figure 14. The flow’s diagram for exchanges between ESTi and IUT

will be M1. M1 = M0 − A(., r1) + C(., r1); M1 = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0). While other
testers receive results – induced by applying the input “!Deposit message(msg)” – EST2
checks if it receives the “?ClearBuffer()” and EST1 checks if “?ReceiveMessage(msg)” is
received too. If so, the local rules are fired. Else the test fails. While all local rules
(R11, R12) participating in the global rule r2 are fired then the global rule r2 is fired then
the marking is updated to M2 = M1−A(., r2) +C(., r2); M2 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0).

The Tester3 can then apply the input “!Client connected()” to the IUT. If so, the rule
r3 is fired and the marking is updated to M3; M3 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0). Else the
test fails.

Afterwards, the tester1will receive a message “?Connection verified()” from the IUT
and as the previous case the rule r4 is fired and the marking is updated to M4; M4 =
(0, 0, 0, 0, 0, 1, 0, 0, 0, 0). Else the test fails.

3796 M. E. H. CHARAF, M. BENATTOU AND S. AZZOUZI

Once the verification of the client connection is done by the tester1 (manager), it will
apply the input “!SendMessage(msg)” to the IUT then the rule r5 is fired and the marking
is updated to M5; M5 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0). Else the test fails.
Finally, the tester3 will receive the input “?NewMeessage(msg)” and the tester1 (man-

ager) receive the input “?Incremnet nb msg()” and an observation message will be sent
in this case by the tester3 to the tester1. If so the rule r6 is fired and the marking is
updated to M6; M6 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 1). Else the test fails.
Finally, by introducing the concept of rules based Expert Systems we propose in this ar-

ticle another way to overcome the coordination/synchronization problems. As explained,
the main motivation of the practical use of the results developed is to avoid the use of
the coordination messages and resolve the coordination problems. Thus, the testers will
exchange only the observation messages which will reduce significantly the use of external
messages and I/O operations. In fact, as shown in the previous diagram, each tester
executes only a part of the global reasoning, and diffuses through the network the ob-
tained results. By the way, other testers can use these results to participate in the global
reasoning.

6. Conclusion. As mentioned in the related works above, many researches have been
made to coordinate testers and by the way to minimize or to eliminate the use of co-
ordination messages because such messages can introduce delays especially if there are
some timing constraints. This article presents an architecture, a model and a method
of distributed test that guarantee the principles of coordination and synchronization be-
tween various components of the distributed test platform. In fact, compared with other
works which attempt to deduce local test sequences from the global one and including
some coordination and observation messages to ensure coordination between testers, we
suggest in this paper to deduce local rules to be fulfilled by each tester to guarantee co-
ordination between them. The work presents a way to avoid the exchange of the external
coordination messages among remote testers during the test. As explained, this has done
by introducing the notions of rule based expert systems to propose a prototype of test.
The petri nets formalism in the matrix form is used to introduce the firing and sensitiz-
ing notions and to calculate the state of the system by referring to the marking vector.
The implementation of this approach by writing the inference engine using the Prolog
formalism, and testing web services applications are the perspectives of our approach.

REFERENCES

[1] A. Gill, Introduction to the Theory of Finite-State Machines, Mc Graw-Hill, New York, USA, 1962.
[2] A. Petrenko, G. V. Bochmann and M. Yao, On fault coverage of tests for finite state specifications,

Computer Networks and ISDN System, vol.29, pp.81-106, 1996.
[3] O. Rafiq and L. Cacciari, Coordination algorithm for distributed testing, The Journal of Supercom-

puting, vol.24, no.2, pp.203-211, 2003.
[4] A. Khoumsi, A temporal approach for testing distributed systems, IEEE Transactions on Software

Engineering, vol.28, no.11, pp.1085-1103, 2002.
[5] M. Benattou, L. Cacciari, R. Pasini and O. Rafiq, Principles and tools for testing open distributed

Proc. of the IFIP TC6 the 12th International Workshop on Testing Communicating Systems, Method
and Applications, pp.77-92, 1999.

[6] W. Liu, H. Zeng and H. Miao, Multiple UIO-based test sequence generation for distributed systems
Journal of Shanghai University (English Edition), vol.12, no.5, pp.438-443, 2007.

[7] J. Chen, R. M. Hierons and H. Ural, Testing in the distributed test architecture formal methods and
testing, Lecture Notes in Computer Science, vol.4949, pp.157-183, 2008.

[8] R. M. Hierons and H. Ural, Checking sequences for distributed test architectures, Distributed Com-
puting, vol.21, no.3, pp.223-238, 2008.

EXPERT SYSTEM BASED ARCHITECTURE FOR TESTING DISTRIBUTED SYSTEMS 3797

[9] K. C. Tai and Y. C. Young, Synchronizable test sequences of finite state machines, Computer Net-
works, vol.13, pp.1111-1134, 1998.

[10] G. Luo, R. Dssouli and G. v. Bochmann, Generating synchronizable test sequences based on finite
state machine with distributed ports, The 6th IFIP Workshop on Protocol Test Systems, pp.139-153,
1993.

[11] R. M. Hierons, Testing a distributed system: Generating minimal synchronized test sequences that
detect output-shifting faults, Information and Software technology, vol.43, no.9, pp.551-560, 2001.

[12] G. Luo, R. Dssouli, G. v. Bochmann, P. Venkatram and A. Ghedamsi, Test generation with respect
to distributed interfaces, Computer Standards & Interfaces, vol.16, no.2, pp.119-132, 1994.

[13] J. Chen, R. M. Hierons and H. Ural, Conditions for resolving observability problems in distributed
testing, The 24th IFIP International Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE 2004), LNCS, vol.3731, pp.229-242, 2004.

[14] L. Cacciari and O. Rafiq, Controllability and observability in distributed testing, Information and
Software Technology, vol.41, pp.767-780, 1999.

[15] J. Chen, R. M. Hierons and H. Ural, Resolving observability problems in distributed test architec-
ture, The 25th IFIP International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE 2005), LNCS, vol.3731, pp.219-232, 2005.

[16] O. Rafiq, L. Cacciari and M. Benattou, Coordination issues in distributed testing, Proc. of the 5th
International Conference on Parallel and Distributed Processing Techniques and Applications, PD
PTA’99, USA, pp.793-799, 1999.

[17] M. E. H. Charaf, M. Benattou, S. Azzouzi and J. Abouchabaka, Using an ontology for modeling the
communication in the distributed test, IEEE Proc. of the 3rd International Conference on Web and
Information Technologies ICWIT’10, Marrakech, Morocco, pp.321-334, 2010.

[18] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, Inc, Englewood Cliffs,
1981.

[19] M. E. H. Charaf, M. Benattou and S. Azzouzi, A rule-based multi-agent system for testing distributed
applications, IEEE Proc. of the 3rd International Conference on Multimedia Computing and Systems
(ICMCS’12), pp.967-972, 2012.

[20] M. E. H. Charaf, M. Benattou and S. Azzouzi, An expert system approach for distributed test-
ing, Proc. of the 7th International Conference on Intelligent Systems: Theories and Applications
(SITA’12), pp.16-17, 2012.

[21] S. Azzouzi, M. Benattou and M. E. H. Charaf, Real time agent based approach for distributed
testing, IEEE Proc. of the 3rd International Conference on Multimedia Computing and Systems
(ICMCS’12), pp.10-12, 2012.

