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ABSTRACT. Vision-based lip contour detection is a challenging problem because lip and
skin colors are similar, and the boundary between the lip and skin is usually ambiguous.
We propose a real-time lip contour extraction algorithm by integrating several simple
classifiers. Because the visual properties (concave-convezx, shadow, illumination, and
surface normal) of various parts of the lip contour vary considerably, we divided the whole
lip contour into four parts (outer-upper, outer-lower, inner-upper, and inner-lower) to
capture the specific characteristics of each part. The color/edge features and spatial-
temporal consistency were exploited to make several simple hypotheses of lip contour
pizels. For each lip contour part, a strong classifier was built by combining a set of
hypotheses based on the AdaBoost algorithm to distinguish the lip contour from non-
contour pizels. A deformable lip shape model was applied for fitting the lip contour by
searching model parameters that mazimize the classification scores along the contour. We
compared the proposed algorithm with the Active Contour Model and Active Shape Model.
The experiments show that both inner and outer lip contours can be detected and traced
efficiently and reliably. The proposed lip contour extraction algorithm has potential for
use in several fields, such as speech recognition and language learning.

Keywords: Lip contour extraction, Lip image segmentation, Lip tracking, AdaBoost

1. Introduction. Lip shapes and motions convey valuable information during conversa-
tions. Summerfield [22] showed that the presence of lips increases word intelligibility con-
siderably, especially in noisy conditions. In addition to communications between humans,
extracting lip contours from a video stream has excellent potential in several human-
machine interface applications, such as speaker authentication, facial expression analysis,
lip reading, and audio-visual speech recognition. The extracted lip parameters can also be
used to drive talking heads in avatar animation, video conferencing, and online language
learning. Moreover, lip features and contours provide vital cues in video compression and
audio to video synchronization.

There are two types of lip contours to be considered: the inner lip contour and the outer
lip contour. It is difficult to extract the outer lip contour because the lip and skin colors
are similar. Consequently, the boundary between the lip and skin is usually ambiguous.
Extracting the inner lip contour is even more challenging because the inner lip region is
not always visible, and the color inside the inner lip region varies because of the motion of
the teeth and tongue. We propose an algorithm to extract both types of lip contours from
an image sequence based on hypothesis integration using AdaBoost. A lip shape model
composed of five quadratic polynomials was used to describe the actual lip contour to find
the optimal lip shape parameters that approximate the real lip contours by training and
integrating a set of simple rules (or classifiers). In the training stage (as shown in Figure
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1(a)), the color/edge information and the spatial-temporal consistency are extracted to
make several simple hypotheses. The AdaBoost algorithm is subsequently used to train
the weak hypothesis weights and combine them into a strong classifier. In the extraction
stage (as shown in Figure 1(b)), a score map is calculated based on the trained strong
classifier. The optimal set of lip shape parameters with the highest classification score is
subsequently found using a maximization search. Because each part of a lip contour has
different visual properties (concave-convex, shadow, illumination, and surface normal),
a complete lip contour is divided into four parts (outer-upper, outer-lower, inner-upper,
and inner-lower), and a strong classifier is trained individually for each of these lip parts.

Color foams Edee foamr o Color feature Edge feature Mouth cormers
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(a) (b)

FIGURE 1. The flowchart of the proposed lip contour extraction system:
(a) the training stage and (b) the extraction stage

The proposed approaches are significant in several aspects. First, we propose a novel
approach to extract lip contours using AdaBoost by combining a set of simple hypotheses
to build a strong classifier. The experimental results show that the proposed approach
achieves slightly superior performance to ACM and ASM; moreover, it runs at least two
times faster than ACM and ASM. Second, multiple heterogeneous features, including
color, edge, and spatial-temporal consistency, were exploited to make simple hypothe-
ses. The use and fusion of these hypotheses resulted in a robust system under diverse
circumstances. Third, we propose a symmetric inner and outer lip contour model that
can be determined using only nine parameters. Each lip contour is further divided into
four parts to exploit the specific characteristics of each part. Fourth, the proposed lip
contour extraction was successfully implemented in a language learning application called
VEC3D, in which remote learners can communicate through avatars with live voice and
synchronized lip animations.

The remainder of this paper is organized as follows: Section 2 provides reviews of
related works; Section 3 introduces a lip shape model used to approximate the actual
lip contours; Section 4 presents the proposed lip contour extraction algorithm; Section
5 presents the training of strong classifiers based on the AdaBoost algorithm; Section 6
provides the experimental results; Section 7 presents a potential application of language
learning; and finally, Section 8 offers a conclusion.

2. Related Works. Several lip segmentation algorithms based only on color information
have been proposed. Zhang et al. [14] used hue and edge cues to segment lips. Eveno et
al. [5] transformed the RGB color space into a chromatic curve map to efficiently discrim-
inate lips from skin. These methods performed segmentation pixel-wise without shape
constraints, which resulted in unstable segmentations. To consider the shape constraint,
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a number of methods [1,4,12,17] extracted lip contours based on Snakes. Snakes [7] are
Active Contour Models (ACM) that dynamically alter the shape to fit edges in an image.
A problem with Snakes is that the edges between the lip and skin are usually unclear.
To address this problem, Wakasugi et al. [13] defined a term called separability, which
considers multidimensional distributions. The separability can yield superior edges in
ambiguous regions between the lip and skin pixels. Another problem with Snakes is error
accumulations. To address this problem, a number of methods used the Active Shape
Model (ASM) [9], which uses prior shape information as a constraint to limit model de-
formation. ASM can yield accurate results with the known shape information of a target
object; however, a large amount of training data is required. Cootes et al. proposed the
Active Appearance Model (AAM) [2], which uses the appearance and the shape informa-
tion in the target object. Instead of modeling the whole object region, Cristinacce and
Cootes [23] modeled a set of local feature templates, called the Constrained Local Model
(CLM), to locate a set of feature points.

A few hybrid approaches combining different cues have been developed for lip contour
extraction. Leung et al. [8,18] proposed a fuzzy c-means with shape function (FCMS) that
considered distances in color and spatial space, and an ellipse model was used to provide
a rough lip shape hint for clustering. Dansereau et al. [3] used the Markov Random Field
(MRF) to segment lips. They proposed an energy function based on edge information
and spatial consistency. Segmentation was performed by minimizing the energy function.
Yang et al. [16] analyzed three dynamic probability maps based on color, shape, and
edge features, respectively. These probability maps were used to extract both inner and
outer lip contours using a grid-based gradient-ascent approach. Saeed and Dugelay [19]
combined edge-based and region-based ACM detection using simple AND/OR, logical
operators to compensate for the weakness of a standalone approach.

A number of studies explored possibilities to estimate the 3D shape of human lips from
a 2D video stream. Basu et al. [20] proposed a mesh-based method, whereas Gastelum
et al. [21] proposed a particle-based approach to model 3D lips. Three-dimensional lip
modeling captures and reflects realistic lip motions in space. However, 3D reconstruction
is computationally costly and frequently requires human interaction. Therefore, they are
unsuitable for real-time applications.

Current lip contour extraction methods based on color segmentation usually label pixels
as either lip or skin according to their distance or similarity in color space. However,
labeling is a difficult task because of dynamic illumination, the changing appearance
of the inner lip region, and the presence of shadows or specular reflection. To address
these problems, we extracted lip contour pixels, instead of pixels inside or outside lips,
by combining several simple hypotheses. AdaBoost [6] is an algorithm that is used for
constructing a strong classifier as a linear combination of weak hypotheses. We used the
AdaBoost algorithm to train and integrate the pixel classifiers for the extraction of lip
contour pixels.

3. Lip Shape Model. To simulate the movement of natural lips, five quadratic poly-
nomials were used to model the lip contour (three for the outer lip contour and two for
the inner lip contour) [16]. Suppose that both the inner and outer lip contours share the
same centroid p. located at (x.,y.). The upper lip contour y,, of the outer lip model is
described by two horizontally symmetrical curves y; and ys:

_ 2

y1(x) = cu, [1 — %] + Ye
T—2c—b)>

Y2(T) = cu, [1 - ((5ofb)b2)_] + Ye

(1)
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where b is an offset that controls the horizontal displacement of two curves, y; and ys.
J, is the distance between the centroid p, and the outer mouth corners (the intersection
of You and y,). cu, is the maximal distance from the centroid p. to the curve y,,. The
complete upper lip contour ¥, of the outer lip model was set to the maxima of y; and ys.
Similarly, suppose that cl, is the maximal distance from the centroid p. to the curve y,;,
the lower lip contour y,; of the outer lip model is modeled as

you(x) — max(yl (ZC), y2($))

(x — :r:c)2

0

(2)

yol(m) = _Clo 1+ + Ye

Furthermore, the inner lip model with the upper lip contour y;, and the lower lip
contour y;; is represented as

2

T — T,
Yiu(T) = cu; [1 _ o) 5 ) + Y.
Z (3)
2
T — T,
yzl(x) = —Cli 14 % + Y.

where 0; is the distance between the centroid p. and the inner mouth corners (the in-
tersection of y;, and y;). cu; and cl; are the maximal distances from the centroid p. to
curves y;, and y;, respectively. In summary, a vector A = {x., Y, c,, cly, 04, b, cuy;, cl;, 0; }
represents the complete lip shape model.

4. Lip Contour Extraction. Lip contour is extracted by combining several simple hy-
potheses. Each hypothesis h compares features k£ in the feature vector K, which consists
of the color, edge, and spatial-temporal information in the neighboring pixels. A strong
classifier H is constructed by combining these weak classifiers A to estimate the probability
of a pixel belonging to the lip contour.

4.1. Color features/hypotheses. Several feature images are extracted from an input
lip image I. First, the normalized red image r, normalized green image g, and gray level
image u are computed. The color difference between r and g is subsequently calculated
to obtain the feature image 7. For a lip pixel, the normalized red intensity is usually
larger than the green intensity. Thus, the feature m emphasizes the lip region. The Sobel
edge detector is applied to images r, u, and 7 to obtain feature images E,., F,, and F,,
respectively. Teeth usually cause difficulty in the lip detection process. To address the
teeth problem, an edge difference image E, is calculated by subtracting E, from E, to
suppress the teeth edges inside the inner lip region. Figure 2 shows a number of these
feature images.

(a)

FIGURE 2. Some images obtained from preprocessing: (a) input lip image
I; (b) color difference image m = r — g; (c) E,, the edge image of u; (d) E,,
the edge image of r and (e) edge difference image E, = E, — E,
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The colors of lip contour pixels are generally unstable. Thus, the relationship between
neighboring pixels is used to determine the possibility for a pixel to be on the lip contour.
For each pixel p(x,y), several features k; are retrieved from neighboring pixels to form a
¢-dimensional feature vector K (p) = {ki, k2, . .., k,}. Because the primary lip axis usually
lies horizontally, we focus mainly on analyzing neighboring pixels in the vertical direction.
For example, k; = r, = r(z,y —1) is the normalized red intensity of the neighboring pixel
above p, and ky = r; = r(x,y+ 1) is the normalized red intensity of the neighboring pixel
below p. Table 1 shows a number of other features in vector K.

TABLE 1. List of some features of a pixel p(z,y)

Index ID Description

kq ry | 7(z,y+ 1), r: normalized red channel
k2 Ty T(l‘, Yy — 1)
ks gu | g(x,y + 1), g: normalized green channel
ks g |9(z,y—1)
ks T, |m(r,y+1), m=r—g
kG T 71'(1', Yy — 1)
k, u, | u(x,y+1), uis a gray level image
ks w o |u(z,y—1)
ko Eu, | E (x,y+1), E'=F — E,
klO EUE E;(l‘, Yy — 1)
k11 Er, | E.(z,y + 1), E, is the sobel edge image of r
k1o Er | E.(z,y—1)
ki3 En, | Ex(z,y + 1), E; is the sobel edge image of ™
k14 Em | Ex(z,y — 1)

kis — koo | ec; | Edge direction feature
kos dyre | Spatial-temporal consistency feature

With the feature vector K, several simple hypotheses (or weak classifiers) are made for
lip contour pixels. The feature vector K (p) is sent to each weak classifier h; to acquire
a classification score. A pixel with a higher score is more likely to be on the lip contour.
Each weak classifier h; can be defined using the following general equation:

if B.f: 0. B — —
= { 1 LB < Bt

where f3; controls the direction of the comparison, ; is the threshold, and f;(K) retrieves
the participating features for the weak classifier. If the input feature vector K satisfies
the hypothesis, h; returns +1; otherwise, it returns —1.

Each weak hypothesis is made by comparing feature elements in K. For example, the
first hypothesis based on a comparison between the color features is proposed as r; < r,,
ie., ki < ko, or

fIK) =k —ky <0 (5)
where the threshold 6 is equal to 0 in this case. Most of our weak hypotheses were designed
with § = 0 to improve the robustness under changing illumination. A number of other
weak hypotheses are shown in Table 2.

4.2. Edge and spatial-temporal features/hypotheses. In addition to the color in-
formation comparison, several other hypotheses are made to exploit the edge information
and the spatial-temporal consistency. To exploit the edge information, the consistency of
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TABLE 2. List of some hypotheses

Index | Description
hy | Birg < Biry
hy | Bagi < Bagu
hsy | Bsm < Bamy
hy | Baug > Bauy,
h5 Bg,EUE < B5EU,2L
he | BsEr; < BsEry,
hy | BrEm < BiEm,
hs | Bs(eco x ecr) <0
ho Bg(ecl * 608) <0
h10 610 (603 * 666) <0
hii | dpre < 011

vi |l va | v ec; | ec, | ec;

Vy Ve Vs ecy ecs

Ve V7 | Vg ecs; | ecs ecg
(a) (b)

FIGURE 3. Edge features of a pixel p located at the center of the mask: (a)
edge directions v; and (b) edge consistency ec;

the edge direction is used to design a set of edge hypotheses. As shown in Figure 3, vector

v, represents the Sobel edge direction of a pixel p, and {v1,vs, ..., 13} represents the edge

directions of the neighboring pixels. Let {ec;, ecs, ..., ecs} represent the edge consistency

of the neighboring pixels that are defined as the inner product of the neighboring edge
directions:

ec;=v; v, 1<1<8 (6)

Three hypotheses based on the edge consistencies across the pixel p were designed as
eci X ecg <0, ecy Xecy <0, ecsxecg<0 (7)

The edge consistencies across the lip contour have different signs to ensure that the
pixels on the lip contour generally satisfy these hypotheses. Conversely, these hypotheses
are likely to fail for pixels that originate from noise or homogeneous regions.

Because the lip contours move smoothly in an image sequence captured at a real-time
frame rate, the displacement of corresponding lip contour pixels between consecutive
frames is limited to a certain range. To exploit this spatial-temporal consistency, a new
feature d,.. is defined as the distance between p and the nearest contour pixel in the
last frame. A new hypothesis based on the spatial-temporal consistency was designed as
dp,ne < 9]'.

4.3. Strong classifiers and score maps. If a pixel p satisfies most of the weak hy-
potheses, the pixel is possibly a lip contour pixel. The final pixel classifier H linearly
combines a set of weak classifiers h® with respective weight a®:

H(K) = XT: oW p® (K) (8)
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The hypothesis weight o) determines the importance of the ¢-th hypothesis and is
trained by the AdaBoost algorithm, which is introduced in Section 5. Because the char-
acteristics of each part of the lip contour differ, we divided the whole lip contour into
four parts (outer-upper y,,, outer-lower y,,, inner-upper y;,, and inner-lower y;). Four
classifiers (Hyy,, Hy,, H;y, and H;;) were established, and four score maps (Sou, Sor, Siu,
and S;) were computed for these lip contour parts, respectively: S;(p) = H;(K(p)) i €
{ou, ol, iu, il}.

(b) (d

FIGURE 4. Score maps for different lip contour parts: (a) input lip image
I; (b) outer upper lip score map Sy,; (¢) outer lower lip score map Sy;; (d)
inner upper lip score map S;, and (e) inner lower lip score map Sy

Examples of score maps for these lip contour parts are shown in Figure 4. These score
maps provide valuable hints for the extraction of lip contour pixels. To find the optimal-fit
lip contour parameters, four goal functions were defined by

Te+0o

F(N) = > Sipleui(x) i€ {ou,ol,iu,il} (9)

T=Tc—0o

To increase the speed of the optimal-fit lip contour parameter search for a set A that
maximizes the goal functions, we reduced the search dimension by sequentially finding
the lip contour parts in a fixed order. First, z., y., and 0, were anchored by detecting
lip corners using a simple process, as described in the following paragraph. Second, cu,
and b were fixed by approximating the outer upper lip contour based on the goal function
F,,. Third, cl, was determined by extracting the outer lower lip contour based on the
goal function F,;. Fourth, cu; and J; were determined by detecting the inner upper lip
contour based on the goal function Fj,. Finally, we found c¢l; that optimally fits the inner
lower lip contour based on the goal function Fj:

( Aow = max arg Fp, (\) cu, € [1,y10p] b E [0, %"]
Clo,b

Aot = maxarg Fy (A)  ¢cly € [1, Ypottom)

clo
1 Mo = max arg Fu(\) cu; € [0,cu,) 6 € [1,4,) (10)
Cu;,0;
Aii = maxarg Fy;(\)  ¢l; € [1,¢l,)
\ cl;

Two lip corners were detected by horizontally scanning the normalized red edge image
E.. The scan was applied twice: from left to center and from right to center. In each
scan, the first touched clear end point is used as the lip corner. The extracted lip corners,
pr(2r, yr) and py(zy, 1), can be used to update the lip center (x.,y.) and the width of the
outer lips (d,):

(xr + xl) (yr + yl)

C:77 0277 50:
v 2 Y 2

(@ — ) ; ) (11)
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5. Classifiers Training Using the AdaBoost Algorithm. We used an iterative Ad-
aBoost algorithm with T iterations to obtain the weights for the hypotheses. In iteration
t, the hypothesis 2" that optimally discriminates the lip contour from non-contour pixels
was chosen and assigned a high hypothesis weight o). At the end, T most important
hypotheses were selected, and the remaining hypotheses were discarded. To train a strong
classifier using AdaBoost, a set of training samples was derived by

(K1, G1), .o (K, Gi) - Gi € {+1,—1} (12)

where m is the total number of the training samples, GG is the manually produced ground
truth in that +1 represents a lip contour pixel, and —1 represents a non-contour pixel.
The sample weight D; representing the importance of the i-th sample is initiated as a
constant and updated over time. Because the numbers of positive and negative samples
in our sample set differed, the sample weights D, were initialized as

= if G =+1
L ifG@, = -1

2N

pW —

i (13)
where P is the number of positive samples, and N is the number of negative samples. A
set of hypotheses (as shown in Table 2) was subsequently trained iteratively. In iteration
t, the optimal hypothesis h(®) with minimal classification error £ was chosen:

h®) = arg min i DZ@ [Gi # h;(K)]

m hi i=1 (14)
20 — S5 D [, £ WO (K]

i=1

The overall error e for each hypothesis A is weighted according to the sample weights D.
If the minimal error () is greater than 0.5, none of the hypotheses can make an optimal
decision. Consequently, the training must be terminated and the hypotheses must be
redesigned. Otherwise, the weight ) of the hypothesis A®) is updated as

sy 1 1-¢0

Generally, hypotheses that yield lower classification errors must obtain higher weights.

Therefore, the sample weights for the next iteration are updated as

(t+1) Dy e G ()

Dt = = — (16)
where Z; is a normalization factor that is chosen to ensure that the sum of D, is equal
to one. This update rule reduces the weights of samples that have already been correctly
classified, and increases the weights of samples that cannot be correctly classified in this
round. Consequently, the forthcoming iterations focus more on the hard classified samples
instead of the easy classified samples.

6. Experimental Results. The proposed lip extraction system was tested on five video
sequences with various speakers from the CUAVE (Clemson University Audio Visual
Experiments) database [11]. These videos contain 24-bit color images with 720 x 480
resolution in MPEG-2 compression format. The length of each video sequence is approx-
imately 10s (300 frames). Fifty lip images (approximately 300,000 pixels) with ground
truth lip contour were trained using the AdaBoost algorithm. Sample pixels retrieved
from various sub-regions were used to train classifiers for various lip contour parts. Table
3 shows the top 10 hypotheses for each strong classifier after the training. For the lip
contour extraction, an initial bounding box of 100 x 60 in size was provided manually at
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TABLE 3. Top 10 weak classifiers by AdaBoost for each lip contour part

Outer upper Outer lower Inner upper Inner lower
lip contour. lip contour lip contour lip contour
Hypothesis | Weight | Hypothesis | Weight | Hypothesis | Weight | Hypothesis | Weight
> Ty 0.37 Uy < Uy 0.27 g > Gu 0.52 m > Ty 0.55
9 < Gu 0.32 m < Ty 022 | Eu; < Eu,, | 030 | Eu;> FEu;, | 0.35
dpre < 5 0.21 gr > gy 0.17 T < my 0.28 dpre < 5 0.35
eci xecg < 0| 0.19 dpre <5 0.16 |eci xecg <0 0.17 r < Ty 0.27
ecokecy <0| 017 | Euy < Eu), | 0.14 |ecgxecg <0| 0.16 | Em < Em, | 0.19
Em < Em, 0.17 m < Ty 0.07 r < Ty 0.15 |ecg*xecg <0] 0.18
FEu; > FEu, | 0.16 Ty > Ty 007 | Em< Em, | 012 |ecy*xec; <0 0.17
m > Ty 0.15 |ecg*xecg >0 0.07 |ecoxecy <0] 0.07 gr > gy 0.16
Er; > Ery, 0.14 |eci xecg < 0| 0.06 Er; < Er, 0.07 Uy > Uy 0.13
U < Uy 0.14 |eco xec; >0 0.05 dpre < 5 0.07 |eci xecg <0| 0.12

FI1GURE 5. The extracted lip contours on five different speakers in CUAVE
database. Three images in a column come from the same speaker at different
time instants. (a) Speaker 1; (b) Speaker 2; (c) Speaker 3; (d) Speaker 4
and (e) Speaker 5.

the first frame. Figure 5 shows examples of the extracted lip contours from five videos
with various speakers.

According to the MPEG-4 facial animation standard [10], mouth motion is described
using 20 facial animation parameters (FAP). Each FAP indicates the movement of a
feature point on a human face, and is defined as the relative distance between a feature
point and the corresponding point on a neutral face that refers to an expressionless face.
Sixty-eight FAPs were divided into 10 groups. Group 8 consists of 10 FAPs that control
the motion of 10 outer lip feature points, and Group 2 consists of another 10 FAPs that
control the motion of eight inner lip feature points. Generally, each FAP is related to the
movement of a feature point, except that two FAPs are defined for each inner lip corner to
model both horizontal and vertical motion. To map the extracted lip contour parameters
to the FAP, a number of feature points are located at extreme points and intersection
points of the extracted lip contours. Other feature points are evenly placed between
these extreme points and intersection points along the extracted lip contours. Each FAP
is determined by measuring the horizontal or vertical displacement of the feature point
regarding either mouth width (MW) or mouth-nose separation (MNS). The FAP detection
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errors are calculated based on the mean squared error between the extracted lip FAPs
and the real lip FAPs:

R ()

o i=1 j=1
AEO - framenum Xapo 17
framenyum aPT (1) (3) 2 ( )
S5 (i)
AE[ == - =

framepum Xapr

where AEp and AFE; are the FAP detection errors for the outer and inner lip contours,
respectively. Similarly, apo and ap; are the number of FAPs in the outer and inner lip
contours, respectively. In the i-th frame, gbg-l) and 1/)](-1) are the j-th FAPs for the extracted
and real lip contours, respectively. The detection errors are further normalized by

NAEo = Y522 x 100%
NAE; = x 100%

VAE;

1024
NAEo+NAE;)/2

1024

(18)

NAE = Y

x 100%

Table 4 shows a comparison of the FAP detection errors of three strong classifiers that
consider the top 10, 7, and 3 hypotheses, respectively. The detection errors decreased
as the number of integrated hypotheses increased. However, integrating more than 10
hypotheses does not help because the top 10 hypotheses dominate the integration, and
the weightings of the remaining hypotheses are weak. Therefore, the following experiments
using the proposed method were conducted with the top 10 hypotheses. Table 5 shows
a comparison of the detection errors for outer and inner lip contours. Generally, the
detection errors for inner lip contours are more significant because of the complexity of
the region inside the inner lip contours. In the sequence of Speaker 2, the detected inner lip
contour was unstable because the teeth and tongue appeared and disappeared frequently
in the sequence.

TABLE 4. FAP detection errors (N AFE) of three strong classifiers that com-
bine the top 10, 7, or 3 weak hypotheses respectively

Speaker 1 | Speaker 2 | Speaker 3 | Speaker 4 | Speaker 5 | Avg.
Top 10 6.75 9.56 5.89 5.38 6.45 6.81
Top 7 7.34 9.93 5.97 5.73 7.71 7.34
Top 3 9.14 9.80 8.42 8.88 7.67 8.78

TABLE 5. FAP detection errors (NAE) for outer and inner lip contours

Speaker 1 | Speaker 2 | Speaker 3 | Speaker 4 | Speaker 5 | Avg.
Outer lip (NAEy) 7.88 7.12 4.47 5.35 5.87 6.14
Inner lip (NAE)) 5.38 11.48 7.03 5.42 6.98 7.26

For comparison, the two main approaches, ACM and ASM, were implemented and ap-
plied on the same five video sequences in the CUAVE database. Generally, the traditional
edge-based ACM is sensitive to uneven illuminations and teeth appearances; therefore, we
used the up-to-date ACM fusion approach [19], which uses and combines edge and region
features. An active contour consists of 10 control points on the outer lip contour and eight
control points on the inner lip contour. These control points actively move over time to
reduce internal and external energy, and the lip contours are deformed dynamically.
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We also compared the performance of the proposed method with a standard ASM.
In the implementation of ASM, 50 lip images were trained using Principle Component
Analysis (PCA) and tracked by an iterative scheme [9]. The 50 trained lip images were
the same as those used in the training of the proposed method, and each trained lip image
was manually marked with 10 feature points on the outer lip contour and eight feature
points on the inner lip contour.

Because ACM and ASM tracking is performed on feature points instead of FAPs, we
defined another detection error based on feature points for comparison:

( framenum .%) ‘(I)(Z) B \:[](,i) ‘
La La || j
FEO _ =1 7=1

framenum X pr

framenum fpr

(4) (%)

=1 j=1
f’ramenum X fpl

where F'Eo and F'E; are the feature point detection errors for the outer and inner lip

contours, respectively. Similarly, fpo and fp; are the number of feature points in the outer

and inner lip contours, respectively. In the i-th frame, <I>§-Z) and \Ifg-l) are the coordinates

of j-th feature points for the extracted and real lip contours, respectively. The operator

|| - || represents Euclidean distance.

Table 6 shows a comparison of the performance of ACM fusion [19], ASM, and the
proposed method. As shown in the table, ACM fusion and ASM can achieve similar
performance. The video of Speaker 4 is an exception, in that ASM outperforms ACM
fusion by the guidance of the constrained mouth shapes, whereas ACM is trapped in a
local minimum in the latter part of the video. The table also shows that the proposed
method can yield slightly superior detection compared with ASM, except for the sequence
of Speaker 2. Further investigation of the sequence of Speaker 2 revealed that ACM
and ASM outperformed the proposed method when the captured lip contours were not
horizontally symmetric. Although asymmetric lips are uncommon, this is the limitation
of the proposed method because our search was based on a symmetric lip contour model.

FE]:

TABLE 6. Feature point detection errors (F'E) for ACM fusion, ASM, and
the proposed method

Speaker 1 | Speaker 2 | Speaker 3 | Speaker 4 | Speaker 5 | Avg.

ACM fusion [19] 5.25 4.83 4.78 5.51 4.98 5.07
ASM 5.42 4.69 4.73 4.37 5.45 4.93
Proposed method 4.73 6.69 4.12 3.77 4.52 4.77

ASM and the proposed method require training with ground truth in advance. After
the training, the three methods were initialized by specifying mouth shapes manually at
the first frame. In the extraction stage, the processing speed occasionally varied slightly
because of the differences of dynamic image contents. Generally, the frame rate of ACM
fusion is approximately 21 frames per second (fps), whereas the frame rate of ASM track-
ing is approximately 25fps. The processing speed of our system is at least two times faster
than that of ACM and ASM, and is sufficient for most real-time applications.

As an alternative to a video stream in a database, the proposed lip detection algorithm
can use live images captured by a webcam as the input. The proposed lip extraction
system was tested on six video sequences with various members from our laboratory.
These videos contain 24-bit color images with 640 x 480 resolution at 25fps. The length
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FIGURE 6. The extracted lip contours on six different members in our lab.
The videos are captured using an off-the-shelf webcam. Three images in a
column come from the same member at different time instants. (a) Member
1; (b) Member 2; (c¢) Member 3; (d) Member 4; (e) Member 5 and (f)
Member 6.

of each video sequence is approximately 20s. Figure 6 shows the extracted lip contours
from examples that are not included in the CUAVE database. Because the classifier
training by Adaboost was performed in advance, only the score map calculation and lip
parameter search were performed online, and the proposed lip contour extraction was
applied to live video without a noticeable delay. The proposed lip extraction can run at
60fps on a standard personal computer (PC) with an Intel Core i7-3770 3.4 GHz CPU
and pre-captured video stored on the hard disk. The experimental results show that the
proposed method can extract inner and outer lip contours accurately and efficiently.

7. Applications. The proposed vision-based lip extraction is useful in several human-
machine interface applications, such as speaker authentication, facial expression analy-
sis, lip reading, and audio-visual speech recognition. As a case study, the proposed lip
contour extraction algorithm was successfully applied in a language-learning application
called VEC3D (3D Virtual English Classroom [15]). VEC3D is a virtual campus-like en-
vironment in which students and teachers can log in to learn or teach English online. Live
voice communication and virtual mouth rendering were implemented in VEC3D. First,
the input lip images were captured using an off-the-shelf web-camera with a resolution of
320 x 240 at 30fps. The inner and outer lip contour parameters were subsequently ex-
tracted using the proposed algorithm. As shown in Figure 7, the extracted lip parameters
were sent to remote clients to render the mouth of a virtual avatar in VEC3D realistically
and dynamically.

In language learning, the lip shape and motion are vital clues for the training of both
oral expression and listening comprehension. With the ability of real-time lip contour
extraction and animation, VEC3D empowers online language learners to listen to the live
voice of a speaker and view the synchronized lip shape and motion. Moreover, online
learners can remain anonymous without revealing their faces through live video.

8. Conclusion. We propose a real-time lip extraction algorithm that can reliably and
efficiently extract both outer and inner lip contours. The color/edge information and
spatial-temporal consistency were extracted and used to make weak hypotheses to dis-
criminate lip contour from non-contour pixels. We divided the whole lip contour into four
parts (outer-upper, outer-lower, inner-upper, and inner-lower) to capture the characteris-
tics of each part of the lip contour. The AdaBoost algorithm was used to linearly integrate
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the weak hypotheses into a strong classifier for each lip contour part. A deformable lip
shape model was subsequently used to approximate the outer and inner lip contours based
on the classification scores.

The limitations of the proposed system are non-symmetric mouths and teeth confusion,
especially on the inner lower lip contour. A more complex lip shape model should be
designed to manage a non-symmetrical mouth. The ambiguity caused by teeth could be
mitigated by adding more hypotheses or removing the teeth in preprocessing.
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