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Abstract. In this paper, the global asymptotic stability problem is dealt with for a class
of recurrent neural networks (RNNs) with time-varying delays. The time delays are
not necessarily differentiable and the uncertainties are assumed to be time-varying but
norm-bounded. The activation functions are assumed to be neither monotonic, nor differ-
entiable, nor bounded. By constructing the Lyapunov-Krasovskii functional and integral
inequality approach, an improved delay-dependent stability criterion for delay RNNs is
established in terms of linear matrix inequalities (LMIs). It is shown that the obtained
criterion can provide less conservative results than some existing ones. Numerical exam-
ples are given to demonstrate the applicability of the proposed approach.
Keywords: Recurrent neural networks (RNNs), Time-varying delay systems, Linear
matrix inequality (LMI), Integral inequality approach (IIA)

1. Introduction. In recent years, neural networks (NNs) have attracted much attention
in research and have found successful applications in many areas such as pattern recogni-
tion, image processing, association, optimization problems [7,18]. One of the important
research topics is the globally asymptotic stability of the neural network models. How-
ever, in the implementation of artificial NNs, time delays are unavoidable due to the finite
switching speed of amplifiers. It has been shown that the existence of time delays in NNs
may lead to oscillation, divergence or instability. Recently, the stability issue of NNs with
time delays has been extensively studied [1,3-23,25,27-51].

Recently, there has been increasing interest in the study of recurrent neural networks
(RNNs) since RNNs have found extensive applications in solving some optimization prob-
lems, associative memory, and classification of patterns, reconstruction of moving images,
and other areas [7]. In the implementation of artificial NNs, time delays are unavoidable
due to the finite switching speed of amplifiers. It has been shown that the existence of
time delays in RNNs and NNs may lead to oscillation, divergence or instability. There-
fore, the stability issue of neural networks with time delays has recently drawn particular
research interests [3,5,15,19,27,28,31,38,43,45,47]. Depending on whether the stability
criterion itself contains the size of delay, criteria for RNNs can be classified into two cat-
egories, namely delay-independent criteria [33,38,39,48,51] and delay-dependent criteria
[6,8,9,11,20,22,29,44,46,49]. Usually the latter is less conservative when the value of delay
is small. In the Lyapunov-based delay-dependent results, the slow-varying constraints
ḣ(t) < 1 are usually imposed on the time-varying delays [1,7,31,41,48]. These constraints
will be relaxed and delay-dependent results will be proposed in this paper.
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It is well known that a suitable form of Lyapunov-Krasovskii functional may lead to
less conservative delay-dependent stability criterion for recurrent neural networks with
time delays. Among various stability methods, a notable one is the free-weighting matrix
method in [9-12], which is very effective to tackle the delay-dependent stability problem
for time delay NNs since neither bounding techniques on some cross-product terms nor
model transformations are involved. However, free-weighting matrix method is too com-
plicated and it needs heavy computational burden. In order to overcome this limitation,
recently, new convex combination conditions for the stability of the systems with time-
varying delays are established without free-weighting matrices [25]. One natural question
is how to simplify existing stability results using matrix variables as less as possible while
maintaining the effectiveness of the stability conditions. Very recently, an integral in-
equality matrix approach (IIA) derived in [24,25] has been employed to derive some less
conservative stability criteria. As a matter of fact, there exists conservativeness inevitably.
This motivates us to establish a new delay-dependent condition and further reduce the
conservatism.
However, as far as we know, in most existing literature, the above analyses have been

treated separately. Up to now, the robust stability analysis for uncertain recurrent neural
networks with time-varying delays has not been fully studied, which is still open. In
this paper, we construct a new differential equation model for the uncertain recurrent
neural networks with time-varying delays. By employing Lyapunov-Krasovskii functional
and integral inequality approach, some less conservative delay-dependent stability criteria
have been derived. Because we have carefully considered the ranges for the time-varying
delays, our criteria are applicable to both fast and slow time-varying delays. The stability
criteria derived turn out to be less conservative with fewer matrix variables than some
recently reported ones. Our stability criteria are in LMI forms and can be easily checked
in practice. Finally, numerical examples are also given to demonstrate the effectiveness
and advantages of our analysis.

2. Stability Analysis. Consider the following recurrent neural network with time-vary-
ing delays and parameter uncertainties:

u̇(t) = −(C +∆C(t))u(t) + (A+∆A(t))f(u(t)) + (B +∆B(t))f(u(t− h(t))) + J (1)

where u(t) = [u1(t), · · · , un(t)]
T ∈ Rn is the state vector with the n neurons; f(u(t)) =

[f1(u1(t)), · · · , fn(un(t))]
T ∈ Rn is called an activation function indicating how the j-

th neuron responses to its input; C = diag(c1, . . . , cn) is a diagonal matrix with each
ci > 0 controlling the rate with which the i-th unit will reset its potential to the rest-
ing state in isolation when disconnected from the network and external inputs; C =
diag(c1, c2, . . . , cn), A = (aij)n×n, and B = (bij)n×n are the feedback and the delayed
feedback matrix, respectively; J = [J1, · · · , Jn]T ∈ Rn is a constant input vector, ∆A(t),
∆B(t), and ∆C(t) are unknown matrices that represent the time-varying parameter un-
certainties and h(t) is the time delay of the system satisfies

0 ≤ h(t) ≤ h, ḣ(t) ≤ hd, (2)

where h and hd are some positive constants.
In this paper, the neuron activation functions are assumed to be bounded and satisfy

the following assumption.
Assumption 2.1. It is assumed that each of the activation functions fj (j = 1, 2, . . . , n)
possesses the following condition

γi ≤
fi(ς1)− fi(ς2)

ς1 − ς2
≤ ki, ς1 6= ς2 ∈ R, i = 1, 2, . . . , n, (3)
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where γi and ki are known constant scalars.

Remark 2.1. If the neuron activation functions satisfy Assumption 2.1, then they satisfy

|fi(ς1)− fi(ς2)| ≤ max{|γi| , |ki|} |ς1− ς2| = ρi |ς1 − ς2| , i = 1, 2, . . . , n. (4)

It is noted that the assumption condition (4) has been investigated in many research
papers [20,44]. However, we shall point out that this assumption is much strong and may
lead to conservative conditions for the delay-dependent stability analysis of delayed neural
networks. For example, if γi < ki < 0, then the delay-dependent stability result obtained
by using (3) is generally less conservative than the one obtained by using (4). This will
be shown via numerical examples in Section 4 in this paper.

Next, the equilibrium point u∗ = [u∗
1, · · · , u∗

n]
T of system (1) is shifted to the origin

through the transformation x(t) = u(t)− u∗, then system (1) can be equivalently written
as the following system

ẋ(t) = −(C +∆C(t))x(t) + (A+∆A(t))g(x(t)) + (B +∆B(t))g(x(t− h(t))) (5)

where x(·) = [x1(·), · · · , xn(·)]T , g(x(·)) = [g1(x1(·)), · · · , gn(xn(·))]T , and gi(xi(·)) =
fi(xi(·) + u∗

i )− fi(u
∗
i ), i = 1, 2, . . . , n.

The matrices ∆C(t), ∆A(t) and ∆B(t) are the uncertainties of the system and have
the form [

∆C(t) ∆A(t) ∆B(t)
]
= DF (t)

[
Ec Ea Eb

]
(6)

where D, Ec, Ea, and Eb are known constant real matrices with appropriate dimensions
and F (t) is an unknown matrix function with Lebesgue-measurable elements bounded by

F
T (t)F (t) ≤ I, ∀t, (7)

where I is an appropriately dimensioned identity matrix.
In the following, we will develop some practically computable stability criteria for the

system described (5). The following lemmas are useful in deriving the criteria.
First, we introduce the following integral inequality approach (IIA), which be used in

the proof of ours.

Lemma 2.1. [24]. For any positive semi-definite matrices

X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0 (8a)

the following integral inequality holds

−
∫ t

t−h(t)
ẋT (s)X33 ẋ(s)ds ≤∫ t

t−h(t)

[
xT (t) xT (t− h(t)) ẋT (s)

]  X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

 x(t)
x(t− h(t))

ẋ(s)

 ds
(8b)

Secondary, the following Schur complement result, which is essential in the proofs of
Theorem 3.1, is introduced.

Lemma 2.2. [2]. The following matrix inequality[
Q(x) S(x)

ST (x) R(x)

]
< 0 (9a)

where Q(x) = QT (x), R(x) = RT (x) and S(x) depend affine on x, is equivalent to

R(x) < 0 (9b)
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Q(x) < 0 (9c)

and

Q(x)− S(x)R
−1(x)S

T (x) < 0 (9d)

Finally, the following Lemma 2.3 will be used to handle the parametrical perturbation.

Lemma 2.3. [2]. Given matrices Ω, D, and E of appropriate dimensions

Ω +DF (t)E + E
T
F

T (t)D
T < 0 (10a)

for all F (t) satisfying F T (t)F (t) ≤ I, if and only if there exists some ε > 0 such that

Ω + εDD
T + ε−1

E
T E < 0 (10b)

3. Main Results. In this section, we use the integral inequality approach (IIA) to obtain
stability criterion for recurrent neural network with time-varying delays. First, we take
up the case where ∆C(t) = 0, ∆A(t) = 0 and ∆B(t) = 0 in system (5) as follows:

ẋ(t) = −Cx(t) + Ag(x(t)) +Bg(x(t− h(t))) (11a)

x(t) = φ(t), t ∈ [−h, 0] (11b)

Based on the Lyapunov-Krasovskii stability theorem and integral inequality approach
(IIA), the following result is obtained.

Theorem 3.1. For given positive scalars h and hd, the nominal neural network system
with time-varying delay (11) is asymptotically stable if there exist symmetry positive-
definite matrices P = P T > 0, Q = QT > 0, R = RT > 0, Z = ZT > 0, diagonal matrices

S ≥ 0, U ≥ 0, V ≥ 0, and X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0, Y =

 Y11 Y12 Y13

Y T
12 Y22 Y23

Y T
13 Y T

23 Y33

 ≥ 0,

such that the following LMIs hold for

Ω =


Ω11 Ω12 Ω13 Ω14 0 Ω16

ΩT
12 Ω22 Ω23 0 0 Ω26

ΩT
13 ΩT

23 Ω33 Ω34 0 Ω36

ΩT
14 0 ΩT

34 Ω44 Ω45 0
0 0 0 ΩT

45 Ω55 0

ΩT
16 ΩT

26 ΩT
36 0 0 Ω66

 < 0 (12a)

and

Z −X33 ≥ 0 (12b)

Z − Y33 ≥ 0 (12c)

where

K = diag{k1, k2, . . . , kn}, Γ = diag{γ1, γ2, . . . , γn},
Ω11 = −CT P + PC +Q+R + ΓSC + CTSTΓ− ΓUK + hY11 +Y13 +Y T

13,

Ω12 = PA− ΓSA− CT S + U
2
(Γ +K), Ω13 = PB − ΓSB, Ω14 = hY12 −Y13 +Y T

23,

Ω16 = −hCT Z, Ω22 = AT S + SA− U, Ω23 = SB,

Ω26 = hAT Z, Ω33 = −V, Ω34 =
V
2
(Γ +K), Ω36 = hBT Z,

Ω44 = −(1− hd)Q− ΓV K + hX11 +X13 +XT
13 +hY22 −Y23 −Y T

23,

Ω45 = hX12 −X13+XT
23, Ω55 = −R + hX22 −X23 −XT

23, Ω66 = −hZ.
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Proof: Choose the following Lyapunov-Kravoskii functional candidate to be

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (13)

where
V1(t)) = xT (t)Px(t)

V2(t) = 2
n∑

i=1

si
∫ xi(t)

0
(gi(s)− γi s)ds

V3(t) =
∫ t

t−h(t)
xT (s)Qx(s)ds+

∫ t

t−h
xT (s)Rx(s)ds

V4(t) =
∫ 0

−h

∫ t

t+θ
ẋT (s)Zẋ(s)dsdθ

Then, taking the time derivative of V (t) with respect to t along the system (11) yield

V̇ (t) = V̇ 1(t) + V̇ 2(t) + V̇ 3(t) + V̇ 4(t) (14)

where

V̇ 1(xt) = ẋT (t)Px(t) + xT (t)Pẋ(t)

= xT (t)(−CT P − PC)x(t) + 2 xT (t)P [Ag(x(t)) +Bg(x(t− h(t)))]
(15)

V̇ 2(t) = 2[gT (x(t))− xT (t)Γ]Sẋ(t)

= 2[gT (x(t))− xT (t)Γ]S[−Cx(t) + Ag(x(t)) + Bg(x(t− h(t)))]

= − gT (x(t))SCx(t) + gT (x(t))SAg(x(t)) + gT (x(t))SBg(x(t− h(t)))

+ xT (t)ΓSCx(t)− xT (t)ΓSAg(x(t))− xT (t)ΓSBg(x(t− h(t)))

− xT (t)C
T Sg(x(t)) + xT (t)C

T
S
T Γx(t)

+ gT (x(t))A
T Sg(x(t))− gT (x(t))A

T SΓx(t)

+ gT (x(t− h(t)))B
T Sg(x(t))− gT (x(t− h(t)))B

T SΓx(t)

(16)

V̇ 3(t) = xT (t)Qx(t)− (1− ḣ(t))xT (t− h(t))Qx(t− h(t))

+ xT (t)Rx(t)− xT (t− h)Rx(t− h)

≤ xT (t)Qx(t)− (1− hd)x
T (t− h(t))Qx(t− h(t))

+ xT (t)Rx(t)− xT (t− h)Rx(t− h)

(17)

and

V̇ 4(t) = ẋT (t)hZẋ(t)−
∫ t

t−h

ẋT (s)Zẋ(s)ds (18)

Alternatively, the following equations are true:

−
∫ t

t−h

ẋT (s)Zẋ(s)ds = −
∫ t−h(t)

t−h

ẋT (s)Zẋ(s)ds−
∫ t

t−h(t)

ẋT (s)Zẋ(s)ds

= −
∫ t−h(t)

t−h

ẋT (s)(Z −X33)ẋ(s)ds−
∫ t−h(t)

t−h

ẋT (s)X33 ẋ(s)ds

−
∫ t

t−h(t)

ẋT (s)(Z − Y33)ẋ(s)ds−
∫ t

t−h(t)

ẋT (s)Y33 ẋ(s)ds

(19)

Using Lemma 2.1, the term −
∫ t

t−h(t)
ẋT (s)X33 ẋ(s)ds can be written that

−
∫ t−h(t)

t−h

ẋT (s)X33 ẋ(s)ds
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≤
∫ t−h(t)

t−h

[
xT (t− h(t)) xT (t− h)) ẋT (s)

]  X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

 x(t− h(t))
x(t− h)
ẋ(s)

 ds

≤ xT (t− h(t))hX11 x(t− h(t)) + xT (t− h(t))hX12 x(t− h) + xT (t)X13

∫ t−h(t)

t−h

ẋ(s)ds

+ xT (t− h)hXT
12 x(t− h(t)) + xT (t− h)hX22 x(t− h) + xT (t− h)X23

∫ t−h(t)

t−h

ẋ(s)ds

+

∫ t−h(t)

t−h)

ẋT (s)dsX
T
13 x(t− h(t)) +

∫ t−h(t)

t−h

ẋT (s)dsX
T
23 x(t− h)

= xT (t− h(t))[hX11 +X
T
13 +X13]x(t− h(t)) + xT (t− h(t))[hX12−X13 +X

T
23]x(t− h)

+ xT (t− h)[hXT
12 −X

T
13 +X23]x(t− h(t)) + xT (t− h)[hX22 −X23 −X

T
23]x(t− h)

(20)

Similarly, we have

−
∫ t

t−h(t)

ẋT (s)Y33 ẋ(s)ds

≤ xT (t)[hY11 +Y
T
13 +Y13]x(t) + xT (t)[hY12 −Y13 +Y

T
23]x(t− h(t))

+ xT (t− h(t))[hY T
12 −Y

T
13 +Y23]x(t) + xT (t− h(t))[hY22 −Y23 −Y

T
23]x(t− h(t))

(21)

Evaluating ẋT (t)hZẋ(t) along solution to (11), gives as follows:

ẋT (t)hZẋ(t)

= [−Cx(t) + Ag(x(t)) +Bg(x(t− h(t)))]T (hZ)

[−Cx(t) + Ag(x(t)) +Bg(x(t− h(t)))]

= xT (t)hC
T ZCx(t)−xT (t)hCT ZAg(x(t))

− xT (t)hCT ZBg(x(t− h(t)))− gT (x(t))hA
T ZCx(t)

+ gT (x(t))hA
T ZAg(x(t)) + gT (x(t))hA

T ZBg(x(t− h(t)))

− gT (x(t− h(t)))hA
T ZCx(t) + gT (x(t− h(t)))hA

T ZAg(x(t))

+ gT (x(t− h(t)))hA
T ZBg(x(t− h(t)))

(22)

Applying (3), it can be verified that

0 = gT (x(t))Ug(x(t))− gT (x(t))Ug(x(t))

= − xT (t)ΓUKx(t) + xT (t)U(Γ +K)g(x(t))− gT (x(t))Ug(x(t))
(23)

Similarly, there holds

0 = gT (x(t− h(t)))V g(x(t− h(t)))− gT (x(t− h(t)))V g(x(t− h(t)))

= − xT (t− h(t))ΓV Kx(t− h(t)) + xT (t− h(t))V (Γ +K)g(x(t− h(t)))

− gT (x(t− h(t)))V g(x(t− h(t)))

(24)

Substituting the above Equations (15)-(24) into (14), we obtain

V̇ (t) ≤ ξT (t)Ξξ(t)−
∫ t−h(t)

t−h

ẋT (s)(Z −X33)ẋ(s)ds−
∫ t

t−h(t)

ẋT (s)(Z − Y33)ẋ(s)ds (25)
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where ξT (t) =
[
xT (t) gT (x(t)) gT (x(t− h(t))) xT (t− h(t) xT (t− h)

]
and

Ξ =


Ξ11 Ξ12 Ξ13 Ξ14 0

ΞT
12 Ξ22 Ξ23 0 0

ΞT
13 ΞT

23 Ξ33 Ξ34 0

ΞT
14 0 ΞT

34 Ξ44 Ξ45

0 0 0 ΞT
45 Ξ55

 < 0, with

K = diag{k1, k2, . . . , kn},Γ = diag{γ1, γ2, . . . , γn},
Ξ11 = −CT P + PC +Q+R + ΓSC + CTSTΓ− ΓUK + hY11 +Y13 +Y T

13 +hCT ZC,

Ξ12 = PA− ΓSA− CT S + U
2
(Γ +K)− hCT ZA,

Ξ13 = PB − ΓSB, Ξ14 = hY12 −Y13+Y T
23,

Ξ22 = AT S + SA− U + hAT ZA, Ξ23 = SB + hAT ZB, Ξ33 = −V,

Ξ34 =
V
2
(Γ +K), Ξ44 = −(1− hd)Q− ΓV K + hX11 +X13 +XT

13 +hY22 −Y23 −Y T
23,

Ξ45 = hX12 −X13+XT
23, Ξ55 = −R + hX22 −X23 −XT

23 .

Finally, using the Schur complements of Lemma 2.2, with some effort we can show
that (25) guarantees of V̇ (t) < −δ ‖x(t)‖2 for a sufficiently small δ > 0. It is clear that
if Ξ < 0, Z − X33 ≥ 0, and Z − Y33 ≥ 0. Furthermore, (12) implies Ω < 0, which is
equivalent to (25). Therefore, if LMIs (12) are feasible, the system (11) is asymptotically
stable. This completes the proof.

Based on Theorem 3.1, we have the following result for uncertain recurrent neural
networks with time-varying delay (5).

Theorem 3.2. For given positive scalars h and hd, the uncertain recurrent neural net-
works with time-varying delay (5) is asymptotically stable if there exist symmetric positive-
definite matrices P = P T > 0, Q = QT > 0, R = RT > 0, Z = ZT > 0, diagonal
matrices S ≥ 0, U ≥ 0, V ≥ 0, a scalar ε > 0 and positive semi-definite matrices

X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0, Y =

 Y11 Y12 Y13

Y T
12 Y22 Y23

Y T
13 Y T

23 Y33

 ≥ 0, such that the following

LMIs are true

Ω =



Ω11 +εET
c Ec Ω12 −εET

c Ea Ω13−εET
c Eb Ω14 0 Ω16 PD

ΩT
12 −εET

a Ea Ω22 +εET
a Ea Ω23 +εET

a Eb 0 0 Ω26 0

ΩT
13 −εET

b Ea ΩT
23 +εET

b Ea Ω33 +εET
b Eb Ω34 0 Ω36 0

ΩT
14 0 ΩT

34 Ω44 Ω45 0 0
0 0 0 ΩT

45 Ω55 0 0

ΩT
16 ΩT

26 ΩT
36 0 0 Ω66 hZD

DT P 0 0 0 0 hDT Z −εI


< 0

(26a)
and

Z −X33 ≥ 0 (26b)

Z − Y33 ≥ 0 (26c)

where Ωij, (i, j = 1, . . . , 6; i < j ≤ 6) are defined in (12).
It is, incidentally, worth noting that the uncertain recurrent neural networks with time-

varying delay (5) is asymptotically stable, that is, the uncertain parts of the nominal
system can be tolerated within allowable time delay h.

Proof: Replacing A, B, and C in (12) with A + DF (t)Ea, B + DF (t)Eb, and C +
DF (t)Ec, respectively, we apply Lemma 2.2 for system (12) is equivalent to the following
condition:

Ω + Γd F (t) Γe +Γ
T
e F (t) Γ

T
d < 0 (27)
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where Γd =
[
PD 0 0 0 0 hZD

]T
and Γe =

[
Ec Ea Eb 0 0 0

]
.

According to Lemma 2.3, (27) is true if there exist a scalar ε > 0 such that the following
inequality holds

Ω + ε−1
Γ
T
d Γd +εΓ

T
e Γe < 0 (28)

Applying the Schur complement shows that (28) is equivalent to (26a). This completes
the proof.
If the upper bound of the derivative of time-varying delay hd is unknown, Theorem 3.2

can be reduced to the result with Q = 0 and X = 0, we have the following Corollary 3.1.

Corollary 3.1. Consider system (5) with constant delay. For given a positive scalar
h, the system is asymptotically stable if there exist symmetric positive-definite matrices
P = P T > 0, R = RT > 0, Z = ZT > 0, diagonal matrices S ≥ 0, U ≥ 0, V ≥ 0, ε > 0

and Y =

 Y11 Y12 Y13

Y T
12 Y22 Y23

Y T
13 Y T

23 Y33

 ≥ 0 such that the following LMIs are true

Ψ =


Ψ11 Ψ12 Ψ13 Ψ14 −hCT Z PD

ΨT
12 Ψ22 Ψ23 0 hAT Z 0

ΨT
13 ΨT

23 Ψ33 Ψ34 hBT Z 0

ΨT
14 0 ΨT

34 Ψ44 0 0
−hZC hZA hZB 0 −hZ hZD

DT P 0 0 0 hDT Z −εI

 < 0 (29a)

and

Z −X33 ≥ 0 (29b)

where

K = diag{k1, k2, . . . , kn}, Γ = diag{γ1, γ2, . . . , γn},
Ψ11 = −CT P + PC +R + ΓSC + CT STΓ− ΓUK + hY11 +Y13 +Y T

13 +εET
c Ec,

Ψ12 = PA− ΓSA− CT S + U
2
(Γ +K)− εET

c Ea, Ψ13 = PB − ΓSB + εET
c Eb,

Ψ14 = hY12 −Y13 +Y T
23, Ψ22 = AT S + SA− U + εET

a Ea, Ψ23 = SB + εET
a Eb,

Ψ33 = −V + εET
b Eb, Ψ34 =

V
2
(Γ +K), Ψ44 = −R− ΓV K + hY22 −Y23 −Y T

23 .

Proof: If the matrix Q = 0 is selected in (13). This proof can be completed in a similar
formulation to Theorems 3.1 and 3.2.

Remark 3.1. Theorem 3.2 provides delay-dependent robust asymptotic stability criterion
for the uncertain recurrent neural networks with time-varying delay (5) in terms of solv-
ability of LMIs [2]. Based on them, we can obtain the maximum allowable delay bound
(MADB) h such that (5) is stable by solving the following convex optimization problem{

Maximize h
Subject to (26)

(30)

Inequality (30) is a convex optimization problem and can be obtained efficiently using
the MATLAB LMI Toolbox.

4. Numerical Examples. In this section, we provide four numerical examples to demon-
strate the effectiveness and less conservatism of our delay-dependent stability criteria.

Example 4.1. Consider an uncertain delayed recurrent neural network with parameters
as follows:

ẋ(t) = −(C +∆C(t))x(t) + (A+∆A(t))g(x(t)) + (B +∆B(t))g(x(t− h(t))) (31)
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where

C =

 6.5618 0 0
0 5.5784 0
0 0 7.3269

 , A =

 0.3526 −0.1904 0.3322
−0.1564 0.2446 0.3674
−0.1753 0.2956 −0.3115

 ,

B =

 0.1981 −0.1313 0.1185
0.1645 0.0901 0.1013
0.0274 −0.1518 0.0742

 , D = α

 1 0 0
0 1 0
0 0 1

 ,

Ea = Eb = Ec =

 1 0 0
0 1 0
0 0 1

 .

Solution: To calculate the maximum allowable delay bound (MADB) h by Theorem 3.2
in this paper, we consider the following four cases. The neuron activation functions satisfy
Assumption 2.1 with

Case (I): K = diag(1.2051, 0.2562, 1.3593) and Γ = diag(0.7051, 0.0342, 0.5593).
Case (II): K = diag(−1.1147,−0.3251,−1.4962).

and Γ = diag(−2.5720,−1.0134,−2.5271).
Case (III): K = diag(0.8053, 0.7956, 0.9332) and Γ = diag(−0.8053,−0.7956,−0.9332).
Case (IV): K = diag(−0.6324, 1.4257, 1.7671) and Γ = diag(−1.5553, 0.5000,−1.4020).
For these cases, the maximum allowable bounds on time delays for different value of α

are given in Table 1, respectively.
For Case I, by taking the parameter α = 0.1 and hd = 0.5, we get Theorem 3.2 remains

feasible for any delay time h ≤ 4.0082. In case of h = 4.0082, solving Theorem 3.2 yields
the following set of feasible solutions

P =

 44.0466 1.3716 0.7087
1.3716 37.8747 1.6734
0.7087 1.6734 46.3251

 , Q =

 34.5449 −0.1520 2.1352
−0.1520 22.0457 −0.4715
2.1352 −0.4715 33.4641

 ,

R =

 9.9987 0.1010 −0.0064
0.1010 9.9888 0.0610
−0.0064 0.0610 9.9537

 , Z =

 2.1499 −0.0297 0.0020
−0.0297 2.1906 −0.0184
0.0020 −0.0184 2.1442

 ,

X11 =

 1.1029 0.0005 −0.0027
0.0005 1.1512 0.0010
0.0027 0.0010 1.1048

 , X12 =

 −0.0065 0.0014 −0.0001
0.0014 −0.0083 0.0009
−0.0001 0.0009 −0.0062

 ,

X13 =

 −0.0180 0.0039 −0.0003
0.0039 −0.0230 0.0024
−0.0003 0.0024 −0.0172

 , X22 =

 1.6180 0.0107 −0.0007
0.0107 1.6186 0.0064
−0.0007 0.0064 1.6124

 ,

X23 =

 0.0173 −0.0037 0.0003
−0.0037 0.0222 −0.0023
0.0003 −0.0023 0.0166

 , X33 =

 1.0768 −0.0156 0.0012
−0.0156 1.0974 −0.0097
0.0012 −0.0097 1.0737

 ,

Y11 =

 4.0052 0.9246 0.3912
0.9246 3.7491 0.2378
0.3912 0.2378 3.9254

 , Y12 =

 0.4075 −0.0460 0.1188
0.3571 0.0640 0.0355
0.0820 −0.1030 0.3842

 ,

Y13 =

 −0.0099 0.0067 0.0007
0.0052 −0.0132 0.0022
0.0011 0.0026 −0.0094

 , Y22 =

 1.1805 0.0011 0.0161
0.0011 1.1580 −0.0137
0.0161 −0.0137 1.1569

 ,

Y23 =

 0.0190 −0.0026 0.0004
−0.0040 0.0233 −0.0027
0.0007 −0.0024 0.0184

 , Y33 =

 1.0769 −0.0154 0.0012
−0.0154 1.0972 −0.0098
0.0012 −0.0098 1.0740

 ,
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S =

 1.4701 0 0
0 1.4132 0
0 0 3.2164

 , U =

 13.7953 0 0
0 16.0365 0
0 0 13.3682

 ,

V =

 14.6677 0 0
0 10.2710 0
0 0 10.8685

 , ε = 1.6995.

Moreover, for various α, the computed maximum allowable delay bound (MADB), h,
which guarantee the stability of system (31), are listed in Table 1, which also illustrates
the merits of the method proposed in this paper. It clearly shows the superiority of our
results to those from [44].

Table 1. MADB h for various hd = 0.5 in Example 4.1

Case α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Case (I)
[44] 2.3015 1.5484 1.1078 0.8197 0.6393 0.5190 0.4330 0.3686

Theorem 3.2 4.0082 3.9871 3.9510 3.8995 3.8420 3.7782 3.7117 3.6450

Case (II)
[44] 1.1197 0.7362 0.4960 0.3254 0.2224 0.1536 0.1044 0.0675

Theorem 3.2 2.8982 2.1560 1.6510 1.1250 0.8366 0.7782 0.7091 0.5046

Case (III)
[44] 2.6785 1.9373 1.4481 1.1120 0.8696 0.6904 0.5601 0.4621

Theorem 3.2 3.7865 3.1566 2.6790 2.5250 2.4659 2.1782 2.0991 1.9846

Case (IV)
[44] 1.4744 1.0581 0.7778 0.5823 0.4494 0.3546 0.2842 0.2291

Theorem 3.2 3.4955 3.0966 2.5788 2.3250 2.2659 2.1622 1.9998 1.8835

It is noted that all the elements of K and Γ in Case (I) are positive, while in Case (II)
they are negative. In Case (III), it is easy to see that K = −Γ, which just the case is
where the activation functions satisfying (4). In Case (IV), neither K nor Γ is required to
be positive definite or negative definite, and the two matrices are only required to satisfy
K ≥ Γ. We say that the elements of the two matrices in Case (IV) are very free. The
numerical results in such tables illustrate the effectiveness of the delay-dependent stability
criteria proposed in Theorem 3.2. It also can be seen from Table 1 that maximum allowable
delay bound (MADB) h decreases as α increases. This shows that the uncertainty affects
the maximum time delay for stability.

Example 4.2. Consider a delayed recurrent neural network with parameters as follows:

ẋ(t) = −Cx(t) + Ag(x(t)) +Bg(x(t− h(t))) (32)

where

C =

 1.3 0 0
0 1.1 0
0 0 1.5

 , A =

 1.2 0.6 1.1
0.4 0.8 1.2
0.5 0.9 1.0

 , B =

 1.7 1.2 1.3
1.4 0.9 1.1
0.2 1.5 0.7

 .

Solution: The neuron activation functions are assumed to satisfy Assumption 2.1 with

k1 = k2 = k3 = k, γ1 = γ2 = γ3 = γ, where k and γ are some scalars satisfying k ≥ γ.
For different choices of k and γ. Table 2 gives the maximum allowable bounds on time

delays based on Theorem 3.1. For this case, it can be verified that the stability conditions
in [34] are not applicable when hd ≥ 0.4 and the stability conditions in [1,7,31,41,48] are
not applicable when hd > 1. This implies that for this example the stability condition
in Theorem 3.1 in this paper is less conservative than those in [6,8,20,22,34,35,46]. If
the upper bound of the derivative of time-varying delay hd is unknown and k1 = k2 =

k3 = 0.3, γ1 = γ2 = γ3 = −0.3, by Corollary 3.1 in this paper, we have that the delayed
recurrent neural network under consideration is asymptotically stable for any time varying
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delay h(t) satisfying 0 < h(t) ≤ 1.1132. By using the Matlab LMI toolbox, we solve LMIs
(29) for the case h = 1.1132, and obtain:

P =

 0.5289 −0.4131 −0.5876
−0.4131 0.4795 0.4913
−0.5876 0.4913 0.9563

 , R =

 0.4817 −0.2705 −0.3968
−0.2705 0.3872 0.1917
−0.3968 0.1917 0.6262

 ,

Z =

 0.2857 −0.2237 −0.3081
−0.2237 0.2756 0.2625
−0.3081 0.2625 0.5001

 , Y11 =

 0.5763 −0.1598 −0.2481
−0.1598 0.4577 0.2557
−0.2481 0.2557 0.7376

 ,

Y12 =

 −0.1053 0.0591 0.0701
0.0631 −0.1266 −0.0528
0.0673 −0.0465 −0.1722

 , Y13 =

 −0.0465 0.0176 0.0131
0.0228 −0.0683 −0.0058
0.0105 0.0018 −0.0668

 ,

Y22 =

 0.1619 −0.1174 −0.1557
−0.1174 0.1641 0.1268
−0.1557 0.1268 0.2765

 , Y23 =

 0.1411 −0.0955 −0.1274
−0.0960 0.1460 0.1050
−0.1294 0.1062 0.2484

 ,

Y33 =

 0.2075 −0.1527 −0.2100
−0.1527 0.2066 0.1783
−0.2100 0.1783 0.3698

 , S =

 0.0302 0 0
0 0.0362 0
0 0 0.0366

 ,

U =

 9.7400 0 0
0 7.1528 0
0 0 6.2620

 , V =

 0.3779 0 0
0 0.5283 0
0 0 0.8284

 .

Table 2. MADB h for various hd = 0.5 in Example 4.2

Case
k = 0.3 k = 0.3 k = 0.3 k = 0.3 k = 0 k = −0.1
γ = −0.3 γ = −0.1 γ = 0 γ = 0.2 γ = −0.3 γ = −0.3

[44] 0.5952 0.8636 0.9348 1.0665 1.2455 1.2896
Theorem 3.1 0.8337 2.5223 3.6734 4.4561 6.4379 6.5265

Figure 1 shows the state response of Example 4.2 with constant delay h = 1.1132, when

the initial value is
[
−1 1 −1

]T
.

Example 4.3. Consider a delayed recurrent neural network with parameters as follows:

ẋ(t) = −Cx(t) + Ag(x(t)) +Bg(x(t− h(t))) (33)

where

C =


1.2769 0 0 0

0 0.6321 0 0
0 0 0.9230 0
0 0 0 0.4480

 ,

A =


−0.0370 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

 ,

B =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

 ,

K = diag(0.1137, 0.1279, 0.7994, 0.2368),
Γ = diag(γ1, γ2, γ3, γ4).
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Figure 1. The simulation of Example 4.2 for h = 1.1132 sec

Solution: For γ1 = γ2 = γ3 = γ4 = 0, Table 3 provides some comparisons of the maxi-
mum allowable delay bounds in the results of this paper and [6,8,20,22,35,46]. From Table
3, the RNN with time-varying delay in this example is asymptotically stable, which shows
that the delay-dependent stability condition in this paper is satisfied. This implies that for
this example the delay dependent stability condition in Theorem 3.1 is less conservative
than those in [6,8,20,22,35,46].

Table 3. Comparisons of the MADB h for Example 4.3

Method [35] [6,29] [8] [22] [46] [20] Theorem 3.1

h 1.4224 1.9321 3.5841 3.5891 3.6156 4.0120 7.2154

For γ1 = 0.1, γ2 = γ3 = 0, γ4 = −0.2, the MADB h that guarantees the delayed NNs
to be asymptotically stable is calculated to be 7.1056. If we use Theorem 1 in [20], we
can calculate the maximum allowable delay bound (MADB) h = 3.3668, which is smaller
than the result obtained by our methods. Therefore, our method is less conservative in
some degree than that in [20].

Example 4.4. Consider a delayed recurrent neural network with parameters as follows:

ẋ(t) = −Cx(t) + Ag(x(t)) +Bg(x(t− h(t))) (34)

where C =

[
2 0
0 2

]
, A =

[
1 1
−1 −1

]
, B =

[
0.88 1
1 1

]
.

The neuron activation functions are assumed to satisfy Assumption 2.1 with

K = diag{0.4, 0.8}, Γ = diag{γ1, γ2}.
Solution: For γ1 = γ2 = 0, and hd = 0, by applying the results in [9,11,14,20,22] to this
example, the MADB h are listed in Table 4. For γ1 = 0.2, γ2 = −0.1, the MADB h that
guarantees the system (34) to be asymptotically stable is calculated to be h = 1.1380 in
[20], which is h = 9.6185 by using Theorem 3.1 in this paper. It is seen that our results
improve the existing results [9,11,14,20,22].
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Table 4. Comparisons of the MADB h for Example 4.4

Method [9,14] [11,22] [20] Theorem 3.1

h 0.8298 1.0880 1.1345 12.9895

5. Conclusions. In this paper, we present an improved robust delay-dependent stability
criterion for RNNs with time-varying delays. A modified Lyapunov-Krasovskii functional
which is represented by a convex combination is provided for the stability analysis. Then,
a novel criterion for the stability of the RNNs is derived in terms of LMIs. The criterion
without free-weighting matrices is less conservative than ones in the literature. Finally,
several examples are given to show the superiority of our proposed stability conditions.
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