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Abstract. This paper presents a new technique of fault detection and isolation (FDI).
This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNF
Ms). NNFMs are used for residual generation, while decision trees are introduced for
residual selection and evaluation. Each part of the tree corresponds to specific residuals
and with the decision tree it becomes possible to take the appropriate decision regarding
the actual process behavior by evaluating few residuals. In comparison to the system-
atic evaluation of all residuals, the proposed technique requires less computational effort
and is suitable for on line diagnosis implementation. An application to DAMADICS
(Development and Application of Methods for Actuator Diagnosis in Industrial Control
Systems) Actuator system is presented to illustrate and confirm the effectiveness and the
accuracy of the proposed approach.
Keywords: Fault detection, Fault diagnosis, Model of fault-free behaviors, Faulty be-
haviors model, Neural networks, Residual evaluation, Decision trees

1. Introduction. Fault diagnosis is an important issue because of the increased use of
automation in industry. In particular, early fault detection and diagnosis methods are
suitable to perform prevention actions. These methods should respect the following re-
quirements: (1) improvement of standards and quality; (2) understanding of the causality
between failures and diagnosis; (3) development of new services and technologies with
economic benefit.

Major fault diagnosis methods found in the literature are based on linear methodology
or exact models. The basic idea of this scheme is to generate signals that reflect inconsis-
tencies between the measured operating system conditions and the expected ones [2-5].
Such signals, called residuals, are usually calculated by using analytical methods such
as parity equations [4], observers [5] and parameter estimators [6]. Unfortunately, the
common drawback of these approaches is the requirement of an accurate mathematical
model of the diagnosed plant. For complex and non linear systems, the task of modeling
is often tedious and analytical models cannot be computed or give unsatisfactory results.
In these cases, data-based models can be considered. In particular, many researchers have
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perceived artificial neural networks as an alternative way to represent knowledge about
faults [1-3]. Neural networks can filter out noise, disturbances and provide stable, highly
sensitive and economic faults diagnosis without the use of mathematical models.
This paper presents an FDI method that generates residuals according to fault-free

reference models and also to models of faulty behaviors. A large number of residuals are
obtained as a consequence. In order to prevent any combinatory explosion and to provide
an FDI method suitable for practical implementation with real time requirements, the
residuals are filtered and selected with decision trees. Such trees decide on line which
residuals must be evaluated or not. This technique is validated with the DAMADICS
benchmark process, an European project under which several FDI methods have been
developed and compared [25].
The paper is organized as follows. Section 2 introduces artificial neural networks to

compute models of fault-free and faulty behaviors. In Section 3, residuals and decision
trees are designed. In Section 4, the method is applied to the DAMADICS actuator bench-
mark. Finally, in the last section a conclusion about the effectiveness of this approach
and future research directions are presented.

2. Neural Networks Models of Faulty and Fault-Free Behaviors.

2.1. Related literature. Last two decades, a great deal of attention has been paid to
the application of artificial neural networks (ANNs) for fault diagnosis issues [1,3,4] be-
cause artificial neural networks provide an excellent mathematical tool for dealing with
non-linear problems. ANNs have an important property according to which any continu-
ous non-linear relationship can be approximated with arbitrary accuracy using a neural
network with a suitable architecture and weight parameters [10]. Fault diagnosis can be
performed by means of ANNs and decision trees were also presented in numerous works
[11-15]. The main motivation for this research is to explore the potential of soft comput-
ing (SC) approaches to design models of faulty behaviors and to generate residuals for
nonlinear systems [2,16-18]. Some methods based on neural networks have been devel-
oped [19,33-35]. For example, energy-efficient reprogramming in wireless sensor networks
using constructive neural networks; design of clinical decision support with support vec-
tor machine; evaluation of intelligent system for diabetes monitoring; multi component
fault diagnosis of rotational mechanical system based on decision tree and support vector
machine; vibration based fault diagnosis of mono-block centrifugal pump using decision
tree. ANNs approaches have many advantages including learning, noise prevention, and
parallel data processing. They are considered as multivariable nonlinear analytical tools
capable of recognizing patterns from noisy complex data [20]. Neural networks and de-
cision tree have been widely applied in designing decision support systems; some studies
find that neural networks are better than decision tree [33], while others have opposite
outcomes. The proposed approach aims to combine the advantages of both methods.

2.2. Model of fault-free behaviors. In this paper, unknown nonlinear systems are
considered with input vector U(t) = (ui(t)), i = 1, . . . , q and output vector Y (t) = (yk(t)),
k = 1, . . . , n. The state variables are not measurable. ANNs are introduced to generate
accurate models of the system in normal operating conditions [28-30]. The comparison
between the output of the system and the output Y ′

0(t) = (y′k0(t)), k = 1, . . . , n, of the
NN model gives the error vector E(t) = (ek(t)), k = 1, . . . , n, with:

ek(t) = yk(t)− y′k0(t) (1)

The ANN model is trained with data collected from the fault-free system utilizing
Levenberg-Marquardt algorithm with early stopping that uses three data sets (training,
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testing and validation) to avoid overfitting. Moreover, this algorithm is known in its fast
convergence. The obtained model is then tested and validated again with other sets of
data. In order to get the best model, several configurations are tested according to a trial
error processing that uses pruning methods to eliminate the useless nodes.

2.3. Models of faulty behaviors. When multiple faults are considered, the isolation of
the faults is no longer trivial and early diagnosis becomes a difficult task. One can multiply
the measurements and use some analysis tools (residuals analysis) in order to isolate
them. In particular, a history of collected data can be used to improve the knowledge
about the faulty behaviors. This knowledge is then used to design models of faulty
behaviors. Such models will be used to provide estimations for each fault candidate. The
decision results from the comparison between estimations and measurements collected
during system operations. The design of models for faulty behaviors is similar to the
method described in Section 2.2. Each model is built for a specific fault candidate fj
considered as an additional input [30].

3. Residual Evaluation Based on Decision Trees.

3.1. Fault detection method. During monitoring, the direct comparison of the system
outputs Y (t) with the outputs Y ′

0(t) of the fault-free model leads to residuals R0(t) =
(rk0(t)) and k = 1, . . ., n with:

rk0(t) = yk(t)− y′k(t), k = 1, . . ., n. (2)

The residual R0(t) provides information about faults for further processing. Fault
detection is based on the evaluation of residuals magnitude. It is assumed that each
residual rk0(t), k = 1, . . ., n should normally be close to zero in the fault-free case, and it
should be far from zero in the case of a fault. Thus, faults are detected according to a
threshold Sk0 with Equation (3):

|rk0(t)| ≤ Sk0 : No fault is detected at time t

|rk0(t)| > Sk0 : A fault is detected at time t
(3)

The analysis of residuals rk0(t) also provides an estimation τk of the time of occurrence
tf . This estimation will be used for diagnosis issue. When several residuals are used, the
estimation τ of the time of occurrence of faults is given by:

τ = min {τk, k = 1, . . ., n} (4)

The main difficulty with this evaluation is that yk(t) is usually corrupted by disturbances
(for example, measurement noise). Thus, it is necessary to assign large thresholds Sk0

in order to avoid false alarms. Such thresholds usually imply a reduction of the fault
detection sensitivity and can lead to non detections. In order to prevent non detections,
one can run also the models of faulty behaviors from t = 0 and use the method described
below. The idea is to evaluate the probability of the fault candidates at each instant.
A fault is detected when the probability of one model of faulty behaviors NNFM(j),
j = 1, . . . , p becomes larger than the probability of the fault-free model NNFM(0) [29].

3.2. Fault diagnosis based on 3-valued residuals. The proposed approach is based
on the analysis of the residuals Rj(t), j = 0, . . . , p obtained with the parallel computation
of fault-free and faulty ANNs models (Figure 1). Detection and diagnosis are achieved
according to a decision block.

The faulty models run simultaneously from time t = τ where τ is the time when the
fault is detected. Each model will behave according to a single fault candidate and the
resulting behaviors will be compared with the collected data to provide rapid diagnosis.
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Figure 1. FDI design with models of fault-free and faulty behaviors

In case of numerous fault candidates fj, j = 1, . . ., p, the output Y ′
j (t) = (y′k(t, fj, τ)) of

the model NNFM(j) is compared with the measured vector Y (t) to compute additive
residual Rj(t) = (rkj(t, τ)), k = 1, . . ., n. The fault is isolated according to residuals
rkj(t, τ), k = 1, . . ., n, j = 1, . . ., p resulting from the n outputs and p models of faults:

rkj(t, τ) = yk(t)− y′k(t, fj, τ) (5)

The diagnosis results either from the usual thresholding technique with positive and
negative thresholds [5] or from the on-line determination of fault probabilities and confi-
dence factors as explained in next section.

3.3. Fault probability estimation. The introduction of probabilities to evaluate the
significance of each residual and the reliability of the decision is another contribution
of our approach [30]. To evaluate the probability of each fault candidate let us define
Rkj(t, T, τ) as the cumulative residuals over the sliding time interval [max(0, t− T ), t] of
maximal size T :

Rkj(t, T, τ) =

√∫ t

max(0,t−T )

(rkj(u, τ))2.du (6)

Then, Dj(t, T, τ) is the Euclidean norm of the vector Rj(t, T, τ) = (Rkj(t, T, τ)) of
dimension n that is used to decide the most probable fault.

Dj(t, T, τ) =

√∑k=n

k=1
(Rkj(t, T, τ))2 (7)

The most probable fault candidate is determined with (8):

j∗(t, T ) = argminj{Dj(t, T, τ), j = 1, . . ., p} (8)

A confidence factor CFj(t, T, τ) that the current fault is fj is also provided by (9):

CFj(t, T, τ) =

∑k=p
k=1,k 6=j(Dk(t, T, τ))∑k=p

k=1(Dk(t, T, τ))
(9)

CFj(t, T, τ) is near 1 when Dj(t, T, τ) is near 0 and CFj(t, T, τ) is far from 1 when
Dj(t, T, τ) is far from 0. The proposed method uses the time window [max(0, t − T ), t]
that can be sized in order to satisfy real time requirements for rapid diagnosis. Multi-steps
diagnosis at time t is obtained with a large window (i.e., T = t) and includes a diagnosis
delay but will lead to a decision with a high confidence index. On the contrary single step
diagnosis at time t leads to immediate diagnosis (i.e., T = 0) but with a lower confidence
index.
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Figure 2. FDI decision tree

3.4. Decision trees for residual evaluation. The aim of this section is to propose
a hierarchical structure to simplify the diagnosis of automation systems when numerous
residuals are computed. The idea is to organize the residuals in a decision tree presented
in Figure 2. This tree is used to compute only a selection of residuals that are the most
significant for the current signal. The tree starts with the evaluation of the residual
that corresponds to the fault free model (step 1). The value of the residual is used to
classify the fault candidates in several subgroups (Figure 2, G1 to Gm). Each subgroup
limits the number of fault candidates. The algorithm continues by evaluating another
residual for each subgroup resulting from the first step (step 2). Another time the fault
candidates are separated into subgroups (Figure 2, G11 to G1t for example). According to
that evaluation, the algorithm continues until a subset of faults with a single candidate
is isolated. Finally, the faults are isolated by the computation of selected residuals. Thus
the computational effort is reduced in comparison with the systematic evaluation of all
residuals. In practice, the use of hierarchical architecture is feasible on-line or offline
depending on the complexity of the system.

4. Application to an Industrial System. The DAMADICS benchmark is an engi-
neering research case-study that can be used to evaluate FDI methods. The benchmark
is an electro-pneumatic valve actuator in the Lublin sugar factory in Poland [21]. In [22],
passive robustness fault detection method using intervals observers is presented. In [23],
authors introduce signal model based fault detection using squared coherency functions.
An actuator fault distinguishability study is presented in [24]. A data-driven method in
FDI is presented in [25], where a novel classifier based on particle swarm optimization
was developed. Group methods of data handling (GMDH) neural networks have been
used in [26] for robust fault detection. A computer-assisted FDI scheme based on a fuzzy
qualitative simulation, where the fault isolation is performed by a hierarchical structure of
the neuro-fuzzy networks is presented in [27]. A neuro-fuzzy modeling for FDI, involving
a hybrid combination of neuro-fuzzy identification and unknown input observers in the
neuro-fuzzy and decoupling fault diagnosis scheme, has been proposed in [20].

4.1. DAMADICS description. The actuator consists of a control valve, a pneumatic
servomotor and a positioner (Figure 3). In the actuator, faults can appear in: control
valve, servo-motor, electro-pneumatic transducer, piston rod travel transducer, pressure
transmitter or microprocessor control unit. A total number of 19 different faults is consid-
ered (p = 19) [23,30,32]. The faults are emulated under carefully monitored conditions,
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Figure 3. DAMADICS actuator

keeping the process operation within acceptable limits. Five available measurements and
one control value signal have been considered for benchmarking purposes: process con-
trol external signal (CV), liquid pressures on the valve inlet (P1) and outlet (P2), liquid
flow rate (F ), liquid temperature (T1) and servomotor rod displacement (X). Within the
DAMADICS project the actuator simulator was developed under MATLAB Simulink.
This tool makes it possible to generate data for the normal and 19 faulty operating
modes [32].

4.2. Models design with ANNs.

4.2.1. Model of fault-free behaviors for DAMADICS. Two Multi Layer Perceptron ANNs
are designed to model the outputs y1(t) = X(t) and y2(t) = F (t) of the DAMADICS
system in case of fault-free behaviors. y′10(t) = X ′(t) and y′20(t) = F ′(t) are the estimated
values of X(t) and F (t) processed by ANNs:

(X ′, F ′) = NNFM(0)(CV, P1, P2, T1, X, F ) (10)

where NNFM(0) stands for the double MLP structures. To select the structure of
NNFM(0), several tests are carried out to obtain the best architecture to model the
operation of the actuator. Table 1 provides some results obtained during this stage. The
training and testing data are simulated using Matlab Simulink actuator model. Valida-
tion is done by the measured data provided by ‘Lublin Sugar Factory’. From Table 1, the
structure NNFM(0) with 6 nodes in the first hidden layer, 3 nodes in the second hidden
layer and 2 output neurons is selected in order to avoid the phenomenon of over-learning.
Adding more nodes in hidden layers does not improve the performance of NNFM(0).

Table 1. Structure selection for NNFM(0)

NNFM Hidden layer 1 Hidden layer 2 Output layer MS
(6, 3, 2) 6 3 2 3.3 ∗ 10−4

(10, 8, 2) 10 8 2 1.49 ∗ 10−4

(21, 12, 2) 21 12 2 3.91 ∗ 10−4

(26, 26, 2) 26 26 2 4.84 ∗ 10−6
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4.2.2. Models of faulty behaviors for DAMADICS. The preceding method is applied to
build ANNs models corresponding to the 19 fault candidates that are considered with
DAMADICS benchmark. For that purpose, it is necessary to create a data base that
contains samples for all faults [30] exposed to the DAMADICS system. For example, the
network NNFM(3) learns the mapping from q = 6 inputs to n = 2 outputs when fault
f3 is assumed to affect the system from time t = 0. Equation (11) holds:

(X ′
3, F

′
3) = NNFM(3)(CV, P1, P2, T1, X3, F3) (11)

To select the structure of NNFM(3), numerous tests are carried out to obtain the best
architectures. The training and test data are generated using Matlab-Simulink DABLIB
models [32]. The best structure is an ANN with 6 nodes in the first hidden layer, 3 nodes
in the second hidden layer and 2 output neurons. Validation is done with the measured
data provided by the Lublin Sugar Factory in 2001 [32].

4.3. 3-valued residuals for DAMADICS actuator. The conditions for testing and
validating FDI algorithms on DAMADICS benchmark are given in [23,32]. The residual
vector R0(t) = (rk0(t)), k = 1, 2 for DAMADICS actuator is first considered for fault
detection: {

r10(t) = X(t)−X ′(t)

r20(t) = F (t)− F ′(t)
(12)

where X ′ and F ′ are the outputs of the NN model of fault-free behaviors. In this ap-
plication, the detection is obtained by comparing residuals with appropriate thresholds
but fault probability can also be computed as developed in Section 3.3. The threshold
selection is closely linked to the behavior of residuals and also to constraints that may be
imposed such as security margin tolerance [31]. 3-valued signals are obtained (positive,
negative and zero). The thresholds are worked out according to the standard deviation of
the residual for fault-free case [30]. Let us notice that the choice of constant or adaptive
thresholds strongly influences the performance of the FDI system. The thresholds must be
carefully selected. For the continuation of our work, the thresholds S10 = 5∗σ1 = 2.7∗10−3

and S20 = 5 ∗ σ2 = 4 ∗ 10−3 are selected where σ1 and σ2 are the standard deviations
obtained from the learning process. Table 2 sums up the signatures for the 19 types of
faults according to the sign of the residual vector R0. In Table 2, “+1” means that rk0>
Sk0; “–1” means that rk0< − Sk0; and “0” means that −Sk0 > rk0 > Sk0).

From Table 2, six groups of faults with similar signatures can be separated:

• Group 1 : G1 = {f3 f6 f9 f18} with signature ( 0
−1 )

• Group 2 : G2 = {f1 f7 f10 f16 f17} with signature
(
+1
−1

)
• Group 3 : G3 = {f5 f19} with signature ( 0

+1 )
• Group 4 : G4 = {f2 f11 f12 f15} with signature

( −1
+1

)
• Group 5 : G5 = {f4 f13} with signature

( −1
−1

)
• Group 6 : G6 = {f0 f8 f14} with signature ( 0

0 )

The faults in groups G1 to G5 are detected but not isolated because the signatures
over r10 and r20 are similar within the group. One can also notice that the faults in
group G6 have the same signature as the fault-free behaviors. Thus faults in group G6

Table 2. Signature matrix for DAMADICS Actuator with residual R0

G0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19
r10 0 +1 –1 0 –1 0 0 +1 0 0 +1 –1 –1 –1 0 –1 +1 +1 0 0
r20 0 –1 +1 –1 –1 +1 –1 –1 0 –1 –1 +1 +1 –1 0 +1 –1 –1 –1 +1
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Table 3. Signature matrix
for group G1

G1 f3 f6 f9 f18
r13 0 0 0 0
r23 0 –1 –1 –1
r16 0 0 0 0
r26 –1 0 –1 –1
r19 +1 +1 0 +1
r29 –1 +1 0 +1
r118 0 0 0 0
r218 –1 –1 –1 0

Table 4. Signature matrix
for group G2

G2 f1 f7 f10 f16 f17
r11 0 +1 +1 +1 +1
r21 0 0 –1 –1 –1
r17 –1 0 +1 +1 +1
r27 0 0 –1 –1 –1
r110 –1 –1 0 +1 +1
r210 +1 +1 0 –1 –1
r116 –1 –1 –1 0 +1
r216 +1 +1 +1 0 –1
r117 –1 –1 –1 –1 0
r217 +1 +1 +1 +1 0

Table 5. Signature matrix
for group G3

G3 f5 f19
r15 0 0
r25 0 –1
r119 0 0
r219 1 0

Table 6. Signature matrix
for group G4

G4 f2 f11 f12 f15
r11 0 +1 +1 +1
r22 0 +1 +1 –1
r111 –1 0 +1 +1
r211 –1 0 –1 –1
r112 –1 –1 0 +1
r212 –1 +1 0 –1
r115 –1 –1 –1 0
r215 +1 +1 +1 0

Table 7. Signature matrix
for group G5

G5 f4 f13
r14 0 0
r24 0 +1
r113 –1 0
r213 –1 0

Table 8. Signature matrix
for group G6

G6 f0 f8 f14
r10 0 0 0
r20 0 0 0
r18 0 0 0
r28 0 0 0
r114 0 0 0
r214 0 0 0

cannot be directly detected with residuals r10 and r20. For this reason additional residuals
generated by adequate faulty behavior neural models NNFM(j) are used for each group.
The signatures matrices in Tables 3 to 8 are obtained for the 19 types of faults according
to the sign of the residual vector Rj(t) generated by NNFM(j) with j = 1, . . . , 19.

4.4. Decision trees for the diagnosis of DAMADICS actuator. In order to prevent
the combinatory explosion with the number of residuals, we introduce decision trees to
select the more significant residuals. Depending on the order used to evaluate the resid-
uals, numerous decision trees with different sizes are obtained. For example, the decision
trees in Figures 4 and 5 are both suitable for the proposed application.
According to Figure 4, the faults f6 and f9 are isolated with the residuals generated by

the faulty models NNFM(6), NNFM(3) and NNFM(0) (i.e., 6 residuals are required
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Figure 4. An example of decision tree for the diagnosis of DAMADICS
(tree 1)

to isolate these two faults). Similarly, to isolate the faults f16 and f17, the residuals
generated by the faulty models NNFM(16), NNFM(10), NNFM(1) and NNFM(0)
are required (i.e., 8 residuals are needed to isolate these two faults) and so on. Figure
5 presents another decision tree that lead to different sets of residuals suitable to isolate
the faults.

4.5. Discussion. The works that are the more related to the present contribution are
[8,24]. In [8] binary-valued evaluation of the fault symptoms is explored and the au-
thors focus on the optimization of the neural network architecture according to Akaike
Information Criteria and Final Prediction Error (FPE). Both criteria include the learning
error and also a term that depends on the complexity (size of the network in number of
nodes) and on the dimension of the learning set in order to optimize the ratio complex-
ity/performance. The authors provide interesting performances with small networks for
detection but some faults are not isolable. In comparison, our approach requires a larger
number of ANNs with more nodes but the majority of faults are detected and isolated.
In [24], multiple-valued evaluation of the fault symptoms is introduced to improve the
isolation of faults. Such a method requires a heuristic knowledge about influence of faults
on residuals. In comparison, our approach uses 3-valued evaluation of the residuals for
fault-free behaviors and binary-valued evaluation of the residuals for faulty behaviors.
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Figure 5. Another decision tree for the diagnosis of DAMADICS (tree 2)

Table 9. Numbers of residuals to isolate each fault according to trees 1 and 2

G0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19
Tree 1 2 4 4 4 4 4 6 4 ND 6 6 6 6 4 ND 4 8 8 4 4
Tree 2 2 10 6 6 4 4 8 10 ND 8 8 8 8 4 ND 4 8 4 4 4

Table 10. Comparison between the trees 1 and 2

Tree 1 Tree 2
Maximal number of residuals 8 10
Average number of residual 4.4 5.4

In order to sum up the performances and complexity of the proposed method, the
number of models required to isolate each fault is reported in Table 9 and the maximal
and average depth of the trees are reported in Table 10. One can notice that only fault
f8 and f14 are not detectable.
Another conclusion is that the average number of residuals is about 4 with tree 1 and

this measurement is an indicator of the computation effort that will be required to apply
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the method on-line. In comparison with the total number of fault-free and faulty models
(20), the effort is divided by 10. From Table 10, one can conclude that the decision tree
1 in Figure 4 is more compact than the tree 2 in Figure 5: tree 1 will be preferred for
on-line applications.

5. Conclusion. In this paper, a multiple-model FDI scheme is presented. ANNs tech-
nique is applied for residual generation as an alternative to the usual model-based ap-
proach. The proposed ANNs are used to diagnose the faults in the DAMADICS actuator.
A probabilistic interpretation of residuals is also proposed. Then decision trees are intro-
duced for residual selection. An iterative technique is used to isolate the fault candidates
into several groups with same signatures. This study shows that the developed approach
can produce good diagnosis results for a complex system exposed to numerous faults. The
use of decision trees divides the computational effort by 10 and can be implemented on
line.

Implementing decision trees with residuals generators for the online diagnosis will be
the key issue of our interests in future research. We will also apply this scheme on other
types of operating systems.
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[25] C. D. Bocaniala and J. Sà da Costa, Application of a novel fuzzy classifier to fault detection and
isolation of DAMADICS benchmark problem, Control Engineering Practice, vol.14, no.6, pp.653-669,
2006.

[26] M. Witczak, J. Korbicz, M. Mrugalski and R. J. Patton, A GMDH neural network-based approach
to robust fault diagnosis: Application to the DAMADICS benchmark problem, Control Engineering
Practice, vol.14, pp.671-683, 2006.

[27] J. Calado and J. S. da Costa, Fuzzy neural networks applied to fault diagnosis, Computational
Intelligence in Fault Diagnosis, pp.305-334, 2006.

[28] Y. Kourd, N. Guersi and D. Lefebvre, A two stages diagnosis method with Neural networks, Proc.
of ICEETD, Hammamet Tunisie, 2008.

[29] Y. Kourd, N. Guersi and D. Lefebvre, Neuro-fuzzy approach for fault diagnosis: Application to the
DAMADICS, Proc. of ICINCO 2010, Funchal, Portugal, 2010.

[30] Y. Kourd, D. Lefebvre and N. Guersi, Early FDI based on residuals design according to the analysis
of models of faults: Application to DAMADICS, Advances in Artificial Neural Systems, 2011.

[31] D. Lefebvre, H. Chafouk and M. Lebbal, Modélisation et Diagnostic des Systèmes. Une Approche
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