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Abstract. Kriging is a well-known prediction method. It interpolates the value of an
unmeasured location from nearby measured locations. In a traditional Kriging interpola-
tion, a client (an entity that is looking for a prediction for a specific location) asks help
from a server (an entity that holds enough measurements collected for Kriging interpola-
tions in a region). Predictions are estimated based on location data and measurements,
which are considered confidential data. Neither the client nor the server wants to reveal
their private data to each other. Although Kriging is increasingly becoming popular and
widely used for estimating predictions, it fails to protect confidentiality. Thus, clients and
servers might hesitate to participate in Kriging interpolations. In this study, we investi-
gate how to provide Kriging-based predictions without violating data owners’ privacy. We
propose a scheme, which helps the clients and the servers perform Kriging interpolations
while protecting their confidentiality. In other words, our method does not allow them
from deriving information about each other’s private data. We show that the proposed
scheme protects privacy and it does not cause any accuracy losses. We also analyze it
with respect to inevitable additional costs, which do not affect online performance. Our
analyses show that the proposed scheme is able to provide accurate predictions efficiently
while preserving privacy.
Keywords: Kriging, Geo-statistics, Confidentiality, Accuracy, Performance, Prediction

1. Introduction. Collecting data and providing useful outcomes from such data after
mining are very common. There are various data mining and statistical functionalities
utilized to extract meaningful outcomes from collected data. Estimating predictions from
known measurements is among such functionalities and it is receiving increasing atten-
tion. In order to provide predictions, data collected for recommendation purposes are
used together with a prediction algorithm. Kriging is an interpolation method, which is
widely employed to estimate the value of an unmeasured location from known measure-
ments observed at nearby locations [1]. In addition to inverse distance weighted (IDW)
interpolation, Kriging is widely used interpolation technique for obtaining meta-models
[2]. Although there are different types of Kriging models, the most popularly used one is
referred to as ordinary Kriging.

Kriging interpolation might be utilized in various areas. Examples of such application
areas are including but not limited to mine reservoirs, petroleum industry, environmental
sciences, agriculture, and so on [3]. In addition to them, Kriging can be used to generate
topographic maps and estimate air pollution. Kriging has been very popular since the
work conducted by Matheron [4], where it is assumed that the closer points have more
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effect on unknown measurement. To put it in another way, effects of known measurements
are inversely proportional with distance in both IDW and Kriging interpolations. Kriging
consists of two major steps: creating a semi-variogram model from collected measurements
and making prediction for unobserved location.
In a traditional Kriging interpolation, one party, referred to as the server (S), collects

measurements (Pj values) for some measured locations (G sample points, where j =
1, 2, . . ., G) in a given region (R). After observing such measurements, S investigates
such Pj values to generate a model. It then starts providing predictions based on such
model. Another party, referred to as the client (C), might seek a prediction (Pq value)
for a specific location q (unmeasured location q). C sends a query (Q) including the
coordinates of the unmeasured location q (xq, yq) to S. After receiving the coordinates,
S estimates Pq using Kriging model based on its observed measurements in the nearby
locations of the unmeasured location. It finally returns the estimated prediction Pq to the
client C. The process depicted in Figure 1 can be summarized, as follows:

1) The client C sends the query Q to the server S including (xq, yq) coordinate values for
the unmeasured location q.

2) The server S utilizes the model generated previously from known measurements (Pj

values) for some locations j = 1, 2, . . ., G to estimate the prediction Pq.
3) It finally returns Pq (prediction for unmeasured location q) to the client C.
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Figure 1. An example of traditional Kriging interpolation

As seen from Figure 1, in a given region R, the server S estimates the prediction Pq value
for unmeasured location q based on the known measurements for G = 8 nearby locations
of q using the Kriging interpolation, which is explained in Section 3. Notice that each
location j is represented with coordinate values (xj, yj) and the related measurement Pj.
Providing various data mining and statistical services with privacy concerns is increas-

ingly becoming popular [5, 6, 7, 8]. With increasing popularity of confidentiality, perform-
ing various functionalities while hiding private data has been taken increasing attention.
Without any privacy concern, it is an easy job to perform different services based on
available data. However, it is challenging to offer the same services while reserving con-
fidentiality. Likewise, although providing Kriging-based predictions is comparable easy
without privacy concerns, it becomes a difficult task to do Kriging interpolation without
violating data owners’ privacy. The reason for this phenomenon can be explained the
conflicting nature of accuracy and privacy.
Data or measurements collected for Kriging interpolations and their related coordinates

are considered the server S’ confidential data. Hence, it does not want to disclose its
private data. S utilizes such measurements in order to provide predictions in return
of some benefits. Since it spends considerable efforts for observing such measurements
including budget, labor, and so on, it wants to make money or at least compensate for what
it has spent. Thus, such collected measurements are also considered its valuable assets. In
case of data disclosure, it might lose competitive edge over other rival companies. Due to
these privacy and financial concerns, S wants to hide its confidential data while performing
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Kriging interpolations. Like the server S, the client C also has concerns about her privacy.
The location for which C is looking for a prediction and the estimated prediction for that
location are considered confidential. Based on the outcome of the Kriging interpolation,
C plans investments. Thus, she does not want to reveal the unmeasured location and
the related estimated prediction to S. The problem is how to estimate Kriging-based
predictions without disclosing the server’s and the client’s confidential data to each other.

Without privacy-preserving measures, S and C do not feel comfortable. If we provide
a scheme preserving their privacy, they feel more comfortable to involve Kriging inter-
polations. Therefore, we propose a scheme, which helps S and the C perform Kriging
interpolations while preserving their confidentiality. Our method keeps confidential data
private and it is able to provide predictions with decent accuracy. The purpose of our
scheme is (1) to offer Kriging-based predictions with decent accuracy, (2) to estimate
them efficiently, and (3) to provide them while preserving privacy.

The contributions of our study can be summarized, as follows:

1) We define the problem of estimating Kriging-based predictions with privacy, as briefly
described previously.

2) We propose a näıve and an enhanced solution to this problem. Our enhanced scheme
helps S and C perform Kriging interpolations without disclosing their private data to
each other. To the best of our knowledge, Kriging has not been investigated in the
literature with respect to preserving privacy. Our work happens to be the first one
studying Kriging interpolation with privacy.

3) We analyze our scheme in terms of accuracy, privacy, and performance. Our analysis
shows that the proposed method does not cause any accuracy losses due to privacy
measures (it is able to achieve the same accuracy level as the one without privacy
concerns), protects data owners’ confidential data against each other, and it is able to
provide predictions efficiently.

4) Due to privacy and financial concerns, S and C might hesitate to involve in Kriging
interpolation services. Our scheme helps them feel more comfortable to join such
interpolations. Any party with privacy concerns can use our scheme.

2. Related Work. The study conducted by Tobler [9] has initiated the studies related
to geo-statistics. Since then geo-statistics has been receiving increasing attention. Geo-
statistics interpolation methods can be grouped as deterministic and geo-statistical meth-
ods [10]. IDW is a widely used deterministic method while Kriging is the main tool used
as a geo-statistical method [11]. Hence, in order to estimate predictions for unmeasured
locations, Kriging and IDW interpolations are widely used. Kriging is used in various
application areas. Krige [1], who developed Kriging, proposes to use Kriging in order to
predict the ore reserves. Armstrong [3] explains the application of geo-statistics in mine
reservoirs to calculate capacity of mine reservoir and errors. Kriging is also used to pre-
dict air pollution [12]. Shad et al. [12] utilize Kriging for air pollution prediction, where
the authors employ a genetic algorithm to optimize membership functions to improve
accuracy. Kriging-based techniques are used to predict and analyze soil properties by Sun
et al. [13]. The authors perform some experiments and demonstrate that their approach
provides highly accurate outcomes for some specific cases. They also develop a software
program to perform local regression Kriging automatically. In addition to analyzing soil
properties and air pollution prediction using Kriging, Kriging is also utilized to estimate
soil contamination [14]. Largueche [14] investigates whether Kriging is a useful tool to
estimate the spatial distribution of ground pollutants in contaminated land. The author
also discusses the identification of areas that should be subjected to remedial actions.
Kaymaz [15] proposes to apply Kriging to structural reliability problems. The author
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investigates the use of Kriging for such problems and compares it with response surface
method. Ali et al. [16] apply Kriging to the spatial interpolation of local disease rates.
Their approach helps researchers incorporate the pattern of spatial dependence into the
mapping of risk values.
Confidential information is becoming more important with the spread of data mining

methods. In addition, some laws force companies to keep their data secret. Privacy-
preserving and secure multi-party computation methods give us opportunities to conduct
data mining methods without revealing information to other parties. Agrawal and Srikant
[17] propose randomized data perturbation methods to hide sensitive information. The
authors show that accurate predictive models can be created from a large number of
perturbed data items. Evfimievski [18] discusses perturbation levels against privacy levels
and presents some methods to measure privacy. Li and Sarkar [19] propose a perturbation
method for categorical data to prevent disclosure of private data. Their scheme is based
on two steps consisting of linear programming and swapping. In [20], the authors propose
geometric data perturbation for preserving confidential data and discuss different aspects
of such method. Li and Wang [5] propose a classification method based on singular
value decomposition with privacy. Meskine and Bahloul [6] study and analyze privacy-
preserving k-means algorithms and classify them based on data distribution, where they
discuss advantages and disadvantages of each proposed protocol.
Privacy-preserving data mining methods on vertically or horizontally distributed data

have been widely studied [18, 21, 22, 23, 25, 26]. The authors in [18, 21, 22, 23, 25,
26] study performing various data mining functionalities like association rule mining,
clustering, outlier detection, and scoring on distributed data while preserving privacy.
Performing statistical analysis with privacy is also becoming popular. Xiao and Tao

[8] propose dynamic anonymization to construct privacy-preserving statistical database.
Du and Atallah [27] develop protocols to perform statistical analysis in cooperative envi-
ronments. Drosatos and Efraimidis [28] propose a privacy-preserving scheme to analyze
ubiquitous health data. They show that it is possible to conduct distributed statistical
analysis on health data with privacy. In [29], it is discussed how to estimate statistical
information in financial and commercial systems while keeping individual value private.
Yao et al. [30] propose secure protocols for estimating harmonic and geometric mean and
mode. They consider applications of secure multi-party computation in statistics.
Providing predictions while preserving privacy is also receiving increasing attention.

Polat and Du [7] show how to estimate predictions using collaborative filtering without
jeopardizing customers’ confidentiality. Sakuma and Arai [31] discuss how to conduct
online prediction from expert observes while preserving privacy. In [32], the authors
provide a method to protect customers’ privacy in churn prediction. They mask users’
data and conduct churn prediction on perturbed data.
Our work is different from the above mentioned ones with some respects. First of

all, to the best of our knowledge, our study is the first one describing the problem of
Kriging interpolation with privacy. Second, we are the first one investigating how to offer
Kriging-based predictions while preserving confidentiality. Finally, although there are
various studies concerning Kriging or preserving privacy while conducting various data
mining tasks, there is no one, which studies Kriging with privacy.

3. Background: Kriging-based Interpolation. As described previously, in a tradi-
tional Kriging-based interpolation, there are two parties (S and C). S owns measurements
(Pj values) for some G sample locations with their related coordinates in a given region
R. C asks a prediction for some location q from S. The steps of such interpolation are
given, as follows:
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1) C sends the coordinates of q (xq, yq) in R for which she is looking for a prediction to
S.

2) S first computes distances between measured locations in R using Euclidean distance
measure. Given two measured locations, i and j, the distance between them (dij) can
be calculated, as follows:

dij =
√

(xi − xj)2 + (yi − yj)2. (1)

3) Then, S calculates semi variances (V values) between measured locations, i and j, as
follows:

Vij = 0.5× [Pi − Pj]
2. (2)

4) S then groups sample points using binning and finds average semi variances and dis-
tances for each bin.

5) Next, S plots average semi variances versus average distances; and finds the formula
to estimate semi variance at any given distance. Semi variances can be represented, as
follows:

Semi variance = f(distance), (3)

where f is a function representing the relationship between semi variances and dis-
tances. The relationship is usually linear and estimated semi variances can be found
by multiplying the observed ones with distances.

6) S creates Γ matrix, which is an (G + 1) × (G + 1) symmetric matrix including the
estimated semi variances between any two locations using Equation (3). Notice that
the row and correspondingly the last column are filled with 1s, except the diagonal
entry, which is set at 0.

7) Then, S finds Γ−1 matrix, which is again (G+1)×(G+1) symmetric matrix including
γ values.

8) Next, S computes distances between q and each measured location using Equation (1).
It then creates matrix g, which is an (G+ 1) × 1 matrix including the semi variances
estimated between q and each measured location using Equation (3).

9) S then solves the Kriging weights (λ matrix), as follows:

λ = Γ−1 × g (4)

in which λ is a (G+ 1)× 1 matrix.
10) Finally, S estimates the final prediction Pq for unmeasured location by multiplying the

weight for each measured location and the related measure or value; and adds them
together. If we consider λ (remove the last weight representing the weight for the
unmeasured location) and P (including known measurements or values for G locations)
as vectors of length G, then Pq can be estimated by finding the scalar product of λ
and P, as follows:

Pq = λ ·P =
G∑
i=1

λi × Pi. (5)

4. Kriging-based Interpolation Schemes with Privacy. Although Kriging is widely
used in many applications for prediction purposes, it fails to protect private data. Due to
privacy risks, participating parties might not feel comfortable and they may decide not
to involve in Kriging interpolation. Hence, we propose a scheme allowing the servers and
the clients to perform Kriging without divulging their confidential data to each other.
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4.1. Confidential data. The aim of the privacy-preserving data mining schemes is to
protect private data. Hence, before we present our proposed scheme, we first need to
determine confidential data that should be protected against involving parties. Private
data items can be categorized, as follows:

1) Confidential data held by the server S
(a) Coordinate values of the sample locations ((xj, yj) values)
(b) Observed measurements (Pj values)

2) Confidential data held by the client C
(a) Coordinate values of the location q ((xq, yq))
(b) The estimated prediction (Pq)

4.2. Problem definition. On one hand, the server S holds measurements together with
their related coordinates and wants to provide Kriging interpolation services in return of
some benefits. On the other hand, the client C wants to obtain an estimated prediction
for a specific location without making measurements. Both S and C do not want to reveal
their confidential data to each other due to privacy concerns. Thus, the problem is how
these two parties perform Kriging interpolation without divulging their confidential data
to each other. How does S provide accurate predictions efficiently without violating its
privacy and C’s confidentiality.

4.3. Proposed schemes. As explained previously, S first needs to create a model (for-
mula for determining semi variances – Equation (3) and Γ−1 matrix) using its data for
a given region R in order to estimate a prediction for any unmeasured location q. How-
ever, it needs q’s coordinates to generate matrix g so that it can estimate matrix λ and
determine Pq. In the following, we describe two schemes assuming that S has already
created the model given R. In other words, we explain how S creates g, estimates λ, and
determines Pq without jeopardizing privacy constraints. In the following, we describe our
proposed näıve solution and then explain our enhanced method in detail.

4.3.1. First solution − Näıve scheme. Our proposed schemes’ major concern is to pro-
tect confidential data of involving parties. Therefore, during Kriging-based interpolation
process, sample locations (their coordinates) and their related measurements and unmea-
sured location q (its coordinates) and the estimated prediction Pq should not be disclosed
to C and S, respectively. We propose the following näıve scheme in order to estimate
Kriging-based predictions without jeopardizing data owners’ privacy. Our näıve scheme
is based on randomness (creating bogus locations) and 1 out of n oblivious transfer (OT)
protocol. OT refers to a protocol, where at the beginning of the protocol one party, S
has n inputs I1, I2, . . . , In and at the end of the protocol the other party, C, learns one
of the inputs Ii for some 1 ≤ i ≤ n of her choice, without learning anything about the
other inputs and without allowing S to learn anything about i. An efficient OT protocol
is proposed by Naor and Pinkas [33], where it could be achieved with poly-logarithmic (in
n) communication time. The steps of our näıve method can be listed, as follows:

1) S first creates a model (formula for determining semi variances or Equation (3) and
Γ−1 matrix) using its data for the given region R.

2) C generates n− 1 bogus locations in order to mask her real location.
3) She hides the unmeasured location q among such fake locations; and sends the coordi-

nates of n locations including q to S.
4) For each location j = 1, 2, . . ., n; S performs the following steps:

(a) First, it estimates distances between j and each measured location using Equation
(1).

(b) It then computes semi variances using Equation (3).
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(c) Next, it creates g matrix.
(d) It then estimates the weights using Equation (4).
(e) Finally, it computes Pj using Equation (5).

5) After estimating predictions for all n locations, C utilizes OT protocol in order to get
the prediction for her real location q only. Due to OT protocol, which is shown to
be secure [33], S cannot learn which prediction is obtained by C; and C cannot know
other predictions rather than Pq. OT protocol allows C learns one of the n inputs (Pq)
held by S without learning anything about the other inputs and without allowing S
to learn anything about q.

Due to bogus locations, S cannot learn the real location q. However, it can guess it with
probability of 1/n because there are n possibilities. With increasing n, such probability
becomes smaller. Similarly, for S, the probability of guessing the estimated prediction
is 1/n because it estimates predictions for n locations and one of them is for the real
location. S does not want any client obtains more than one prediction during a single
process due to financial reasons. Service suppliers provide estimated predictions in return
of some benefits. To prevent C from receiving predictions for more than one location, OT
protocol is utilized. OT protocol forces C to get estimated prediction for her real location
only; and at the same time, it prevents S from learning which prediction is obtained by
C. Due to aggregate outcome (estimated prediction), C cannot derive useful information
about locations and their measurements held by S from received prediction.

In addition to our näıve scheme, we also propose the following scheme, referred to as
improved scheme (IS). Details of our IS are described in the following.

4.3.2. Second solution − Improved scheme (IS). As explained previously, given R, S first
can create a model using its data. It then needs to estimate distances between q and
each sample point it holds in the region R. After that it is supposed to estimate semi
variances in order to create g matrix. It finally needs to estimate Pq. Our second scheme
is based on homomorphic encryption (HE). We utilize the HE scheme proposed by Paillier
[34] to hide confidential data. If we assume that ξ is an encryption function and K is a
public key, and xj1 and xj2 are private data values, then Paillier’s HE scheme allows us
to compute ξK(X) =

∏n
j=1(ξK(xj1))

xj2 values. The steps of our IS are, as follows:

1) The first step is calculating distances between q and each sample location. Such dis-
tances between q and each location j = 1, 2, . . ., G can be computed using Equation
(1) while preserving confidentiality, as follows:
(a) Equation (1) can be written, as follows:

djq =
√

xj
2 + yj2 + xq

2 + yq2 − 2× (xjxq + yjyq) =
√

Sj + Cq − 2xjxq − 2yjyq. (6)

As seen from Equation (6), S and C can compute Sj and Cq, respectively without
needing each other. However, to estimate xjxq and yjyq values, they need to
collaborate.

(b) Using HE scheme, C finds ξKC(−2xq), ξKC(−2yq), and ξKC(xq
2 + yq

2) encrypted
values, where ξ represents encryption function and KC is C’s public key.

(c) She then sends such encrypted values to S. Since the related private key is known
by C only, S cannot learn xq and yq values.

(d) For each location j = 1, 2, . . ., G, using HE scheme, S determines ξKC(Djq) =
ξKC(−2xq)

xj × ξKC(−2yq)
yj × ξKC(xq

2 + yq
2)1 × ξKC(xj

2 + yj
2)1 = ξKC(xj

2 + yj
2 +

xq
2 + yq

2 − 2xjxq − 2yjyq).
(e) To find distances, square root of such encrypted values must be computed. Thus,

S then sends ξKC(Djq) values for all j = 1, 2, . . ., G to C.
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(f) C then decrypts ξKC(Djq) values using the related private key, obtains Djq values;
and finds djq distance values between q and each location j by taking the square
roots of Djq values. Since Djq values are aggregate values, C cannot learn the
related xj and yj values from them. Even if she knows the distances, she cannot
determine the true coordinates. She only learns that any location j is on the circle
whose center is q and radius is djq.

(g) Using HE scheme, C encrypts djq values using her public key KC and sends
ξKC(Djq) to S.

2) S finds estimated semi variances in encrypted form for location q using Equation (3)
and HE property; and creates the g matrix including the encrypted values, ξKC(gj)
values for all j = 1, 2, . . ., G.

3) Now, S needs to compute weights or λ values using Equation (4). Using HE scheme,
S computes ξKC(λj) = ξKC(g1)

γj1 × ξKC(g2)
γj2 × . . . × ξKC(gG)

γjG = ξKC(g1 × γj1 +
g2 × γj2 + . . .+ gG × γjG).

4) S then can estimate the prediction Pq using Equation (5), as follows: ξKC(Pq) =
ξKC(λ1)

P1 × ξKC(λ2)
P2 × . . .× ξKC(λG)

PG = ξKC(λ1 × P1 + λ2 × P2 + . . .+ λG × PG).
5) Finally, S sends ξKC(Pq) to C. Due to encryption, S cannot know the estimated

prediction.
6) Since C knows the related decryption key, she decrypts the received encrypted value

and gets Pq. Due to aggregate estimation; C cannot derive information about S’s
confidential data.

To recapitulate our enhanced scheme, we give the pseudo-code of the IS in Figure 2.

Improved Scheme  

Input: (xj, yj), (xq, yq), & Pj for j = 1, 2, …, G 

Output: Pq 

Algorithm IS 

KC: C’s public key

 : Homomorphic encryption function 

G: Number of sample points 

!: Weight

1. Compute dqj for j = 1, 2, …, G

a. Compute  !"#$%&'(,  !" #$%&'(, and  !" #$%& ' (%&) by C     

b. Send them to S

c. Determine  !"#$%&' & send them back to C

d. Obtain  !" values by C                       //decrypt the received encrypted values  

e. Calculate djq values by C

f. Compute  !"#$%&' values and send them to S.

2. Compute semi variances and create the matrix g by S

3. Compute  !"#$%& values 

4. Calculate  !"#$%& 
5. Send it to C

6. Find Pq                                  //decrypt the received encrypted value 
 

Figure 2. Pseudo-code of the proposed improved scheme

5. Analysis of the Improved Scheme. There are basically two evaluation criteria for
prediction algorithms. They are called performance and accuracy. Performance means
that how effectively a prediction algorithm can estimate predictions. It can be measured
with respect to off-line and online costs like storage, computation, and communication
(number of communications and amount of transferred data) costs. Hence, performance
analysis can be done in terms of off-line and online costs. Compared with online costs,
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off-line costs are not that critical for overall performance. Online efficiency requirements
differ for various applications. For some applications, there are very hard online perfor-
mance requirements. For example, recommender systems should be able to return many
recommendations to their customers simultaneously in a very short time during an online
interaction. However, performance requirements might be soft for some applications like
geo-statistics. Online time limitations are not that rigid in geo-statistical predictions. For
example, if one petroleum company looks for oil reserves in a given region, it might ask
prediction from those that owns enough measurements in that region. Since investments
in energy take some time and considerable amount of budgets, oil companies spend some
time to get reliable and accurate predictions. Obtaining dependable and precise predic-
tions is much more important than receiving predictions in a short time. Therefore, it
can be said that online performance constraints are soft in Kriging-based interpolations.
Performance criterion covers the time needed to perform a single prediction, number of
communications spent for a prediction (and/or amount of transferred data), and amount
of storage space is needed. Resources spent for interpolations should be minimized for
performance reasons.

The second criterion accuracy is related to how accurate the estimated predictions are.
Accuracy is measured in terms of the closeness between the estimated predictions and
their true values. Estimated interpolations should be as close as to their observed values.
Since predictions are estimated values based on available observed measurements, their
values should be as close as possible to their expected values. Therefore, predictions
generated by our proposed scheme with privacy concerns should be as close as possible
their true values.

In addition to performance and accuracy, privacy is another evaluation metric, which is
used to investigate privacy-preserving prediction schemes. Privacy-preserving algorithms
should be able to protect confidential data. Privacy requirements state that involving
parties in interpolation processes cannot derive useful information about each other’s
private data. Thus, privacy, in this context, means that confidential data should be hidden
to those but the intended parties. In other words, our proposed privacy-preserving scheme
should be able to hide confidential data held by S and C against each other.

We analyze our enhanced method in terms of privacy, accuracy, and efficiency. We
basically analyze additional costs due to privacy concerns even though online performance
requirements are not that rigid. We also concern with accuracy losses due to privacy-
preserving measures because accuracy and privacy are conflicting goals. Finally, we want
to show that our scheme does not violate privacy constraints.

5.1. Accuracy analysis. In privacy-preserving prediction schemes, privacy measures
usually make accuracy worse due to the conflicting nature of confidentiality and pre-
ciseness. However, in our scheme, privacy-preserving methods do not cause any loss in
accuracy. In other words, predictions estimated by our method with privacy concerns
are the same as the ones provided by traditional Kriging scheme without confidentiality
fears. Since we utilize cryptographic techniques preserving data originality, accuracy is
not affected. Thus, our scheme is able to provide the same predictions while preserving
confidentiality.

5.2. Performance analysis. We investigate our scheme in terms of supplementary costs
due to privacy concerns. We first analyze additional storage costs. Our scheme does not
cause any extra storage costs. Involving parties (S and C) do not need additional spaces
required to save data caused by confidentiality measures. Thus, storage costs will not be
affected by privacy concerns.
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As shown in Figure 1, in a traditional Kriging-based prediction process, number of
communications is two only because C and S communicate two times only. However,
number of communication in our scheme increases due to privacy measures. As described
in Figure 2, number of communications is four in our scheme. In other words, number of
communications increases two times due to our proposed scheme. Amount of transferred
data is also important. In a conventional interpolation, C sends coordinates of location q
and S returns a prediction. If we assume that four bytes are needed to save a coordinate
and four bytes are enough to store an estimated prediction, then amount of sent data
from C to S is about eight bytes while it is about four bytes from S to C in a traditional
scheme. In our scheme, C first sends three encrypted values to S. The size of an encrypted
value is imperative. As explained in [35], the size of an encrypted value produced by block
cipher encryption can be computed as size of plain text + block size – (size of plain text
mod block size). For example, if we assume that size of plain text is four bytes, block
size is 16 bytes, and then we need 16 bytes for an encrypted value. Thus, amount of
sent data during this communication is about 48 bytes. After computing G encrypted
aggregates, S then sends them to C. Assuming again that 16 bytes are needed for a
single encrypted value; amount of sent data is about 16G bytes. During the second turn,
C sends G encrypted values to S. Thus, amount of transferred data is again 16G bytes.
And finally, S returns an encrypted value to C. Hence, amount of sent data is about
16 bytes. To sum up, like number of communications, amount of transferred data also
increases due to privacy measures.
Supplementary computation costs caused by our scheme are also inevitable. In addi-

tion to multiplications and additions, our method includes encryptions, decryptions, and
exponentiations because of privacy measures. Number of encryptions is in the order of
O(G) and similarly, number of decryptions is in the order of O(G). On the other hand,
number of exponentiations is in the order of O(G2). Notice that G is a constant represent-
ing number of measured locations in the region R. Cryptographic functions are usually
costly operations. In order to find out the running times of cryptographic operations,
benchmarks for the CRYPTO++ toolkit from http://www.cryptopp.com/ can be used
[36].
Although our scheme does cause some extra communication (in terms of number of com-

munications and amount of transferred data) and computation costs, they are not critical
due to the nature of Kriging-based interpolation schemes. Unlike some real time applica-
tions, online performance requirements are softer for Kriging-based prediction methods.

5.3. Privacy analysis. Our privacy requirements state that private data values should
not be disclosed during prediction process. Notice that the measured locations (or their
coordinates) and the related measurements are confidential for S. Similarly, the unmea-
sured location (or its coordinates) and the estimated prediction are private for C. The
parties cannot learn each other’s confidential data during our scheme. C sends her loca-
tion coordinates in encrypted form rather than plain form. Since the related decryption
key is known by C only, S cannot decrypt the received values and learn coordinates. After
performing required computations using HE scheme, S sends encrypted aggregates to C.
Since C knows decryption key, she can decrypt the received values and find distances
between q and each measured location. Although C learns the distances, she cannot learn
the true coordinates. For each measured point j, given q and the related distance djq, the
only information that C can derive is that j is in somewhere on the circle whose center is
q and its radius is djq.
S returns the estimated prediction in encrypted form. Since the decryption key is

known by C only, S cannot decrypt it and learn the prediction. When C obtains the
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prediction, which is an aggregate value, she cannot learn the measurements of G sample
points. Paillier [34] shows that HE is semantically secure for inference of input values.
In other words, the parties cannot derive any information from the exchanged encrypted
values. Our method prevents C from learning the measured location coordinates and
their related measurements. It also prevents S from deriving useful information about
the unmeasured location coordinates and the estimated prediction.

6. Conclusions and Future Work. Kriging interpolation is popularly used in many
applications. However, it fails to preserve data privacy. In this study, we basically achieved
the followings:

1) We defined the problem of Kriging interpolation with privacy.
2) We proposed two solutions (näıve and enhanced schemes) to this problem.
3) We analyzed the enhanced method with respect to accuracy, performance, and privacy.

Our study is the first one investigating how to offer Kriging-based predictions while
preserving privacy. The followings can be derived from our analysis of the improved
scheme:

1) Since we used cryptographic techniques (which happen to preserve the originality of
the confidential data) in order to hide private data, our scheme did not cause any
accuracy losses.

2) Although our scheme caused additional costs, they are not critical for the online perfor-
mance, because online performance requirements are not rigid in Kriging interpolation.

3) Our scheme did preserve data privacy because we used cryptographic methods, which
were proved to be secure.

Kriging has many applications in disciples like mining, remote sensing, hydrogeology,
environmental sciences and natural resources. In these disciples, privacy is increasingly
becoming a serious issue. With increasing popularity of preserving privacy, privacy-
preserving data mining and statistical analysis are also receiving increasing attention.
Hence, our scheme can be used by those providing Kriging interpolation to some clients
in the above mentioned applications. Our method helps both the servers and the clients
hide their private data against each other while still allowing them to perform Kriging
interpolations. The proposed scheme helps them overcome privacy concerns so that they
can participate in Kriging-based predictions.

Kriging and inverse distance weighted interpolations are two popularly used geo-statisti-
cal techniques. Since our study is the first one discussing Kriging with privacy problem,
there is no contemporary scheme like inverse distance weighted interpolation with privacy
in order to compare our method with the existing ones. Therefore, we are planning
to study how to provide inverse distance weighted-based predictions while preserving
privacy. We will also want to compare such a scheme with the one proposed in this
paper with respect to accuracy, performance, and privacy. We are planning to expand
our study to conduct Kriging in two or multi-party scenarios in which it is assumed that
data are distributed among various parties. Although we stated that additional costs are
not critical, we will study how to improve overall performance. In some applications,
supplementary costs might become vital. Thus, such limitations should be eliminated.
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