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Vojtech Veselý and Jakub Osuský
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Abstract. The paper addresses the problem of design stable robust model predictive
controller with hard input constraints in the frequency domain. Numerical results are
given to illustrate the effectiveness of the proposed method.
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1. Introduction. The model predictive control (MPC) has attracted notable attention
in the control of dynamic systems and played an important role in control practice. The
ideas of MPC can be summarized as follows [3,16]: 1) Predict the future behaviour of
the process state/output over a finite time horizon – prediction horizon. 2) Compute
the present and future input signals online at each step by minimizing the cost function
under inequality constraints on the same process variables. 3) Apply only the first of
vector control variable (calculated for time t) on the controlled plant and repeat the
previous step with new measured data.

Since the end of the 1970’s many structures of MPC have been proposed. One of
the most popular MPC is Generalized Predictive Control (GPC) [5,6]. Applications of
GPC to a cement mill, a spray drying tower and compliant robot arm are described in
[4]. GPC for systems with constrained input and output signals are presented in [2].
Continuous-time GPC has been proposed in [8].

In [13] the authors consider an extension of the GPC algorithm to a multivariable case
by designing several single-input-single-output controllers and compensation for cross-
coupling interactions. The idea of robustness of GPC for multivariable systems can be
found in [7]. Authors analyse closed loop robustness in terms of “tuning knobs” and
give a guideline as regards the final choice of “tuning knobs” with prevention of robust
performance.

Authors of [9] present the stability problem of GPC when it is applied to a multivariable
system with unstable transmission zeros. Feed-forward control of multivariable GPC is
presented in [10] and decoupling multivariable GPC is presented in [1]. Other approaches
of GPC design can be found in [15].

From the above survey it is clear that the basic formulation of GPC for SISO and
MIMO systems does not guarantee stability. In the references, two methods for ensuring
stability of GPC are shown: end-point constraints and end-point state weighting [11]. In
some cases GPC closed-loop stability can be reached by using the effect of weighting of
the control and control error or changing the output and input horizons.
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In this paper a modified version of multivariable (or SISO) GPC is developed. The de-
sign procedure of MGPC guarantees the closed-loop system robust stability, performance
and hard input constraints.
The success of MPC depends on the plant model precision. In practice, modelling of

real plants inherently includes uncertainties that have to be considered in control system
design. In the paper the bounded unstructured uncertainties are considered. The design
of multivariable GPC is based on a novel approach, equivalent subsystem method [12].
The full design procedure of multivariable GPC is partially open and is under research.
The paper is organized as follows. Section 2 brings preliminaries and problem formu-

lation. Theoretical results are presented in Section 3. In Section 4, numerical example
illustrates the effectiveness of the proposed approach. Section 5 concludes the paper.

2. Problem Statement and Preliminaries. Consider a multivariable system with
transfer function matrix

y(t) = Gu(z
−1)u(t), (1)

where Gu(z
−1) ∈ Rm×m and z−1 is the shift operator.

When deriving the MPC controller, a major source of difficulty is the plant model
inaccuracy. To deal with it, the uncertainty model is used. So instead of a single model
the behaviour of a class of models is considered. Let G(z−1) be any member of a set of
possible plants Π and G0(z

−1) ∈ Π be the nominal model of the plant. In the sequel the
bounded unstructured uncertainty in three most common types is considered: additive,
multiplicative input and multiplicative output uncertainty model for stable systems and
their inverse part for unstable ones. More details can be found [17].
Simultaneously with (1), we consider the nominal model of system (1) in the form

y(t) = G0(z
−1)u(t), (2)

where G0(z
−1) ∈ Rm×m ∈ Π is any constant transfer function matrix from set Π.

The nominal model (2) will be used for output prediction while (1) is considered as
a real plant description providing the plant output. Therefore, in the robust controller
design we assume that for time t, output y(t) is obtained from the uncertain model (1)
and predicted outputs for times t+ 1, . . . , t+Ny will be obtained from model prediction,
where the nominal model (2) is used.
Let modified GPC algorithm for time t, u(t) be given as

u(t) = F00(z
−1)(w(t)− y(t)) +

Ny∑
i=1

F0i(z
−1)(w(t+ i)− y(t+ i)) (3)

and for time t+ k, k > 0

u(t+ k) = Fkk(z
−1)(w(t+ k)− y(t+ k)), k = 1, 2, . . . , Ny, (4)

where
Fkk(z

−1) ∈ Rm×m is the controller transfer function matrix for k = 0, 1, . . . , Ny

F0i(z
−1) ∈ Rm×m is the controller transfer function matrix i = 1, 2, . . . , Ny

w(t+ k) is demanded output variable value for time t+ k, k = 0, 1, 2, . . . , Ny predicted
at time t.
The proposed modified GPC control structure is given in Figure 1.
In Figure 1, Ku = diag{kwi}m×m is an auxiliary gain matrix (7) (see later).
Consider the cost function associated with the system in Figure 1 in the following form:

J =

Ny∑
i=0

(w(t+ i)− y(t+ i))TQi(w(t+ i)− y(t+ i)) + u(t+ i)TRiu(t+ i), (5)
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where Qi, Ri, i = 1, 2, . . . , Ny are positive (semidefinite) definite matrices of corresponding
dimensions.

Figure 1. GPC control structure

Consider the system in Figure 1, where the control algorithm uc(t) is constrained to
evolve in the following set

Γ = {uc(t) ∈ Rm : |uci(t)| ≤ ui, i = 1, 2, . . . ,m}, (6)

where (see Figure 1)

uc(t) = Kuu(t). (7)

The problem studied in this paper can be summarized as follows. Design the robust
model predictive controller with an output feedback control algorithm (3) and (4), input
constraints (6) such that for a given prediction horizon Ny it guarantees robust closed-loop
system stability, and optimal performance (5).

3. Main Results. On substituting the control algorithm (4) to the nominal model (2)
and some manipulation one obtains the transfer matrix for y(t+ k), k = 1, 2, . . . , Ny

y(t+ k) = (I +G0(z
−1)Fkk(z

−1))−1G0(z
−1)Fkk(z

−1)w(t+ k). (8)

For control algorithm (3) using (8) one obtains

u(t) = F00(z
−1)(w(t)− y(t))+

+
Ny∑
i=1

F0i(z
−1)(I +G0(z

−1)Fii(z
−1))−1w(t+ i)
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or if w(t+ i) = Viz
iw(t)

u(t) = F00(z
−1)(w(t)− y(t))+

+
Ny∑
i=1

F0i(z
−1)(I +G0(z

−1)Fii(z
−1))−1Viz

iw(t)
(9)

where Vi = diag{vij}m×m and vij is the j-th setpoint value for i-th prediction horizon.
With (9), (7) and (1) we can obtain the closed-loop transfer function of GPC in the

following form:

y(t) = (I +Gu(z
−1)F u

00(z
−1))−1Gu(z

−1)[F u
00(z

−1)+

+
Ny∑
i=0

F u
0i(z

−1)(I +G0Fii)
−1Viz

i]w(t)
(10)

where F u
00(z

−1) = KuF00(z
−1) and F u

0i(z
−1) = KuF0i(z

−1).
Equation (10) implies the following robust stability conditions for the proposed GPC:
a)

Gcl(z
−1) = (I +Gu(z

−1)F u
00(z

−1))−1Gu(z
−1)F u

00(z
−1) (11)

The closed loop system (11) needs to be robust stable. Controller F00(z
−1) and matrix

Ku guarantee robust stability for the whole set Π.
b)

(I +G0(z
−1)Fii(z

−1))−1, i = 1, 2, . . . , Ny (12)

The closed-loop with transfer matrix (12) needs to be stable. Controller Fii(z
−1) need

to be designed in such a way that it guarantees stability of (12).
c)

Gu(z
−1)F u

0i(z
−1), i = 1, 2, . . . , Ny (13)

The open-loop system has to be stable for all plants transfer function matrices from set
Π.
Note: Controllers F00(z

−1), Fii(z
−1), i = 1, 2, . . . , Ny guarantee closed-loop system robust

stability and controllers F0i(z
−1), i = 1, 2, . . . , Ny are used to minimize the cost function

(5).
The robust stability condition of uncertain models set Π can be formulated using a M-

delta structure depending on the uncertainty type. For input multiplicative uncertainty,
used also in the studied case, has robust stability condition assumes the following form:

σM((I +Gu(z
−1)F u

00(z
−1))−1Gu(z

−1)F u
00(z

−1) ≤ 1

li(ω)
, ∀ω, (14)

where
li(ω) = max

k
σM [G0(jω)

−1(G0(jω)−Gu(jω))] (15)

Let us introduce a heuristic method for input constraints. For the obtained value of
u(t) (3), the control algorithm with input constraints which guarantee robust stability is
constructed as in (7):

uc(t) = Kuu(t) (16)

where Ku = diag{kui}m×m and kui, i = 1, 2, . . . ,m is defined as follows

kui =

〈
1 → if |ui(t)| ≤ UMi > 0
UMi

|ui(t)| → if |ui(t)| > UMi

∣∣∣∣ i = 1, 2, . . . ,m (17)

Equation (17) implies
Kimin ≤ kui ≤ 1, i = 1, 2, . . . , Ny (18)

Kimin is the minimal value of gain when robust stability (11) and (13) is guaranteed.
The minimal value of Ku can be reached substituting Kimin to the entries of matrix Ku.
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The maximal value of Ku is Ku = I. Using both marginal values of Ku one obtains two
different closed-loop systems (19) which are stable in the set Π.

Gu(z
−1) =

〈
G1

u(z
−1) → Ku = I

G2
u(z

−1) → Ku = diag{kimin}m×m

∣∣∣∣ (19)

For a given structure, controller parameters F00(z
−1), Fii(z

−1), i = 1, 2, . . . , Ny and
minimal value of Ku entries are calculated using the small gain theorem, under the same
model of uncertainty (additive, multiplicative input and output), in such a way that the
closed loop system is stable for any value kui, i = 1, 2, . . . , Ny in (18).

Robust GPC controller design using Equivalent Subsystem Method
In this part the independent controller design method will be used. At first, we in-

troduce the equivalent subsystem method (ESM) proposed in [12] which will be used in
GPC controller design. In this paper, ESM in the basics proposed design procedure for
robust decentralized GPC controller design.

Consider the transfer function matrix of nominal model G0(s) ∈ Rm×m, i = 1, 2, . . . , 2p

with m subsystems that can be split into diagonal and off-diagonal parts describing re-
spective models of decoupled subsystems Gd(s) and interactions Gm(s) (i is omitted):

G0(s) = Gd(s) +Gm(s), (20)

where

Gd(s) = diag{Gdi(s)}i=1,...,m (21)

with

det(Gd(s)) 6= 0 ∀s ∈ D. (22)

Here, the Nyquist D-contour, s ∈ D comprises the imaginary axis and an infinite semi-
circle into the right-half plane avoiding locations, where open-loop transfer function has
jω-axis poles by small indentations around them. Factorization of the determinant of the
return-difference matrix under decentralized controller in terms of the correspondingly
partitioned system for the i-th vertices yields

detF (s) = det{I +G0(s)R(s)} =
det{I + [Gd(s) +Gm(s)]R(s)} =
det[R(s)−1 +Gd(s) +Gm(s)] detR(s)

(23)

The existence of R−1(s) is implied by the assumption

det(R(s)) 6= 0 (24)

Denote

detF1(s) = det[R−1(s) +Gd(s) +Gm(s)] (25)

Using Nyquist stability conditions, [17], the necessary and sufficient conditions of closed-
loop system stability can be determined as follows:

Corollary 3.1. Closed loop system will be stable if controller R(s) is stable and
a)

detF1(s) 6= 0 (26)

b)

N [0, detF1(s)] +N [0, det[R(s)] = nq (27)

where nq is number of unstable poles of R(s)G0(s).
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Both matrices R−1(s) and Gd(s) are diagonal so P (s) will be diagonal too.

P (s) = R(s)−1 +Gd(s) = diag{pi(s)}m×m (28)

Simple manipulation of (21) yields

I +R(s)(Gd(s)− P (s)) = 0 (29)

I +R(s)Geq(s) = 0 (30)

Geq(s) is a diagonal matrix of equivalent subsystems.

Geq(s) = Gd(s)− P (s) (31)

Characteristic equations for individual subsystems are

I +Ri(s)G
eq
i (s) = 0 i = 1, 2, . . . ,m (32)

Substituting (28) into (25)

detF1(s) = det[P (s) +Gm(s)] (33)

According to the independent design philosophy pi(s), i = 1, 2, . . . ,m can actually
represent the bounds for local controller designs. To be able to guarantee closed-loop
stability of the full system they have to be chosen so as to appropriately consider the
interaction term Gm(s). The problem of creating the diagonal equivalent subsystem model
Geq(s) allowing to design an independent controller without increasing conservatism is
reduced to finding the diagonal matrix P (s) = diag{pi(s)}i=1,2,...,m. A general method for
choosing P (s) is not available but interesting results have been obtained for the case of
[12] choosing P (s) with identical entries.

P (s) = pi(s)I (34)

The entries of diagonal matrix P (s) are chosen so as to appropriately take into account
interactions between subsystems given by the transfer function Gm(s).
Substituting P (s) = diag{pi(s)} to (30) and equating to zero yields

det[pi(s)I +Gm(s)] = 0, i = 1, . . . ,m (35)

which actually defines m characteristic functions gi(s), i = 1, . . . ,m of the matrix [−Gm

(s)]. Moreover, if p(s) = pi(s) is taken to be any of the characteristic functions of [−Gm(s)]
then for fixed l ∈ {1, . . . ,m} and p(s) = −g

l
(s) we obtain

P (s) = −gl(s)I (36)

and

det(P (s) +Gm(s)) =
m∏
i=1

[p(s) + gi(s)] =

=
m∏
i=1

[−gl(s) + gi(s)] = 0
(37)

For P (s) = diag{pi(s)}i=1,2,...,m the closed-loop system has some poles on the imaginary
axis and no poles in the right half-plane, i.e., it is at the limit of instability.
Note: Characteristic functions of matrix [−Gm(s)] can be found as functions of frequency.
This is the reason why the equivalent subsystem model also depends on frequency and
a graphical SISO frequency domain method has to be applied to stabilize equivalent
subsystems using local controllers.
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4. Control Design. Consider a heating system as a multivariable system where the
temperature in two channels is controlled. Due to introducing 25% uncertainty operating
points no. 2 and no. 3 are obtained as Gu2 = 0.75Gu1 and Gu3 = 1.25Gu1.

Gu1(z
−1) =

[
0.3231z2+0.2658z+0.01559

z3−0.1448z2−0.01064z−0.001308
−0.1094z2−0.05881z+0.0003448
z3−0.2542z2+0.0761z−0.0004704

0.2675z2+0.03886z+0.0007296
z3+0.06892z2+0.001236z−0.00000765

0.2609z2+0.2846z+0.007013
z3−0.6561z2+0.1399z−0.000026

]

Gu2(z
−1) =

[
0.2424z2+0.1993z+0.01169

z3−0.1448z2−0.01064z−0.001308
−0.08208z2−0.04411z+0.0002586
z3−0.2542z2+0.0761z−0.0004704

0.2007z2+0.02915z+0.0005472
z3+0.06892z2+0.001236z−0.00000765

0.1956z2+0.2135z+0.005259
z3−0.6561z2+0.1399z−0.00002.64

]
(38)

Gu3(z
−1) =

[
0.4039z2+0.3322z+0.01948

z3−0.1448z2−0.01064z−0.001308
−0.1368z2−0.07351z+0.000431

z3−0.2542z2+0.0761z−0.0004704
0.3344z2+0.04858z+0.000912

z3+0.06892z2+0.001236z−0.00000765
0.3261z2+0.3558z+0.008766

z3−0.6561z2+0.1399z−0.0000264

]
According to GPC control structure from Figure 1 we will start with designing a con-

troller for the first loop. A standard robust controller with performance specified by its
phase margin will be designed.

First, the nominal model G0(z
−1) is calculated as an average value of previous three

matrices. According to the way how operating points no. 2 and no. 3 were calculated,
the nominal model will be equal to the first operating point, so G0(z

−1) = Gu1(z
−1).

Controller F00(z
−1) will be calculated by the equivalent subsystem method (ESM) as a

robust controller from the nominal model G0(z
−1) and it will be used for the whole set of

operating points.
Off-diagonal elements of G0(z

−1) were used to calculate the characteristic functions.
Equivalent subsystem models were calculated choosing P (s) = p(s)I with identical

entries and p(s) = −g2(s). Equivalent subsystems were calculated according to (31) and
plotted as bode characteristics (Figures 3 and 4).

SISO PI controller with a phase margin of 55◦ which should ensure overshoot less than
20% for nominal model (nominal performance) was designed for each subsystem.

Designed controller for subsystem no. 1:

r11(z
−1) =

0.913− 0.457z−1

1− z−1 (39)

Figure 2. Characteristic functions of nominal model
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Figure 3. Equivalent subsystem no. 1

Figure 4. Equivalent subsystem no. 2

Designed controller for subsystem no. 2:

r22(z
−1) =

0.6− 0.295z−1

1− z−1 (40)

The final decentralized controller F00(z
−1) is in the form F00(z

−1) =

[
r11(z

−1) 0
0 r22(z

−1)

]
and guarantee stability of (11), see Figure 6 and nominal performance see Figure 5. The
minimum value of Ku guaranteeing robust stability is Ku min = 0.75.
Since the decentralized controller F00(z

−1) was designed as robust, it can be used also
in predictive loops (Figure 1, loops 2, 3, . . . , Ny) for local control of nominal models.

Fii(z
−1) = F00(z

−1), i = 1, 2, . . . , Ny (41)
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Figure 5. Step response of nominal model with designed feedback controller

Figure 6. Robust stability condition for different Ku

As a final step of GPC controller design, F0i(z
−1) have to be designed in order to

minimize the slightly modified criteria function (5).

J =

Nk∑
k=0

(w(kTs)− y(kTs))
TQ(w(kTs)− y(kTs)) + u(kTs)

TRu(kTs), (42)

where
Ts is the sampling time (in this case Ts = 3s),
Q is the matrix of weights for system outputs (Q = qI),
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I is a unity matrix appropriate dimension,
R is the matrix of weights for controller outputs (R = rI),
Nk is the number of samples in simulation.
To minimize this criteria function, F0i(z

−1) controllers were chosen also with a PI
structure and its parameters were found using a simple genetic algorithm.
Finally, the heating system model was controlled in all operating points using a standard

robust decentralized controller and also with a GPC controller, which is in our case a
robust controller extended by prediction loops.
Simulation was made for q = 1, r = 0.1 and prediction horizon Ny = 5.

F01(z
−1) =

[
−0.71+1.94z−1

1−z−1 0

0 −2.85+7.1z−1

1−z−1

]
, F02(z

−1) =

[
−0.8+1.7z−1

1−z−1 0

0 2.44−5.2z−1

1−z−1

]

F03(z
−1) =

[
0.75−2.8z−1

1−z−1 0

0 1.1−0.24z−1

1−z−1

]
, F04(z

−1) =

[
3.25+10.65z−1

1−z−1 0

0 3.74.−0.86z−1

1−z−1

]
, (43)

F05(z
−1) =

[
−0.37−0.49z−1

1−z−1 0

0 −0.57+0.15z−1

1−z−1

]
Comparison of the system control with a robust decentralized controller and GPC

controller is in Figure 7.

Figure 7. Comparison of robust decentralized controller and GPC con-
troller in all operating points

Table 1. Cost functions comparison

Cost function GPC Cost function PI
Operating point 1 26.61 28.2
Operating point 2 11.47 12.43
Operating point 3 16.10 17.56
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Figure 8. Comparison of GPC and PI controller outputs

The operation points have different gains; hence, the controller outputs for each oper-
ating point have different settling values.

One of several advantages of using GPC controller is the possibility to add constraints
for the controller output into the cost function. Consider controller output limitation
where in the second loop the maximum value 0.81 will be limited to 0.66. Then the
controller output in the second loop will be limited to 81.5% and the whole system will
stay stable because 0.815 > 0.75 = Kumin.

The cost function will be changed so that if the output is higher than 0.66 in second
loop controller, a value of 100 will be added to the final value of the cost function.

New parameters of F0i(z
−1) controllers have been found again using a genetic algorithm.

F01(z
−1) =

[
5.83−3.2z−1

1−z−1 0

0 −3+0.99z−1

1−z−1

]
, F02(z

−1) =

[
−5.34+8.05z−1

1−z−1 0

0 0.54−0.12z−1

1−z−1

]

F03(z
−1) =

[
3.82−5.79z−1

1−z−1 0

0 6.51−0.7z−1

1−z−1

]
, F04(z

−1) =

[
2.84−5.42z−1

1−z−1 0

0 −5.3+2.25z−1

1−z−1

]
, (44)

F05(z
−1) =

[
−0.49+0.25z−1

1−z−1 0

0 −0.2+0.045z−1

1−z−1

]
Due to the new parameters of F0i(z

−1) controllers, system outputs and controller out-
puts changed a little.

The final controller output in the second loop was successfully limited to 0.66 (Figures
10 and 11) by finding new parameters for F0i(z

−1) controllers. The cost function of the
constrained system has worse values than without constraint but still better than in a
classical PI controller.

5. Conclusions. In this paper, a modified version of multivariable GPC is developed.
The design procedure of MGPC guarantees closed-loop system robust stability perfor-
mance and input constraints. As a robust controller design procedure, the equivalent
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Figure 9. Step response for system with controller output constraint, all
operating points

Figure 10. Controller outputs with constraint in second loop

Table 2. Comparison of cost functions GPC, GPC with constraints and PI controller

Cost function GPC
Cost function PI

Cost function GPC
with constraint without constraint

Operating point 1 26.81 28.2 26.61
Operating point 2 12.34 12.43 11.47
Operating point 3 16.65 17.56 16.10
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Figure 11. Controller outputs with constraint in second loop – detail
(green ellipse)

subsystems method was used. The parameters of the predictive controller were found
using a genetic algorithm due to missing analytical rules for its design. The advantage of
GPC controller is the possibility of designing a criterion function J according to perfor-
mance needs. System output constraints like no overshoot or controller output constraints
can be simply integrated into the criteria function J with no effect upon stability. The
full design procedure of multivariable GPC is partially open and is under research.
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