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ABSTRACT. In this study, a robust driver inattention detection system based on a driver
model and dynamic relational network (DRN) using sensor data such as the quantity
of vehicle speed and pedal operation is proposed. The system can be divided into three
parts: the sensor diagnosis module, the driver model and inattentive driving detection.
The sensor diagnosis module using the DRN is developed to analyze and identify faulty
sensors (if any) through its measurement data. The driver inattention detection system
was tested with actual data from a car driving on a highway and the system’s diagnosis
performance was evaluated. The results obtained indicate the effectiveness of the proposed
system for inattentive driving detection.

Keywords: Dynamic relational network, Sensor diagnosis, Intentional driving, Vehicle,
Nonlinear auto regressive exogenous model

1. Introduction. The World Health Organization (WHO) reported that road accidents
are a new form of global health threat. It has been estimated that every year more than 1.2
million people are killed, while 50 million others are injured as a result of road accidents
[1]. The studies carried out to identify the leading cause of road accidents found that
driver inattention is one of the main factors contributing to these accidents [1-5]. Miyaji
et al. [6] reported in Japan that more than 25% of accidents are caused by drivers who
lose concentration while driving a vehicle on the road. Furthermore, in 2006, the National
Highway Traffic Safety Administration (NHTSA) stated that 80% of crashes and 65% of
near-crashes were caused by inattentive driving. Generally, inattention can be defined as
the withdrawal of attention due to the physical condition of the driver or external events,
which can be divided into drowsiness and distraction. The problem becomes worse with
the increasing variety of additional infotainment systems installed in vehicles that could
cause drivers to be distracted [7, 8]. Therefore, the study of driver inattention is key to
finding a solution to solve this problem or at least reducing the number of road accidents.

Numerous approaches and methods have been employed by the research community for
monitoring and detecting driver inattention. Generally, the methods can be categorized
into three groups: physiological measures [9-14], computer vision approaches [15-21] and
driving performance measures [22, 23]. Physiological measures utilize biological signals
such as the EOG, EEG, ECG, which are collected through electrodes contacting the hu-
man body. Then, signal processing methods are used to find the relationship between
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these signals and the driver’s state. Although these methods can provide more accurate
results, they are impractical in real driving situations because they always require at-
tachment of devices to the driver. The second approach using computer vision is more
practical as it is non-intrusive to the driver, hence many active studies have been con-
ducted in this field and a number of comprehensive methods have been created so far.
Suzuki et al. [20] in their study detected eyelids using a neural network from the driver’s
facial image, which was captured by a camera placed in the car, and proposed a method
to estimate driver alertness based on the movement of the eyelids. In reference [21] the
authors proposed the use of Active Appearance Models to model the driver’s face and
extract seven characteristic points. Facial analysis was carried out using these character-
istic points in order to detect driver drowsiness. Dinges and Perclos [15] proposed one of
the most widely accepted metrics known as Percentage Eyelid Closure (PRECLOS) for
the detection and evaluation of drowsiness using computer vision. In the third approach,
researchers are interested in studying the effects of inattentive drivers on their driving
performance. Similar to the computer vision approach, this approach also has the ad-
vantage of being non-intrusive to the driver compared with the first approach. Arnedt et
al. [22] and A. Vakulin et al. [23] studied the relation between drowsiness and driving
performance. However, only data from a simulated environment were used in the study
because of the risks of placing drowsy drivers in real situations. Moreover, most of the
studies described above only focus on detecting inattention caused by drowsiness and
fatigue. Inattention caused by distraction (cognitive and visual) has been explored and
discussed less.

On the other hand, Ishikawa et al. [24] proposed a method to detect driving with
secondary tasks using driving behavior signals modeled with a Bayesian network, while
taking driving situations into consideration. They showed that it is effective to consider
driving situations when detecting distracted driving involving secondary tasks. Here the
primary task is normal driving operation and secondary tasks such as talking on a cell
phone, reading a road sign and searching for a song on the radio are imposed on the driver.
However, the proposed method at best can achieve a correct detection rate of only 76%, so
there is need for improvement. Kuroyanagi et al. [25], furthermore, analyzed hazardous
situations in an actual driving environment based on the level of scene danger and driver
response. They confirmed that driver response decreases when driving with secondary
tasks. This shows that secondary tasks can be a good tool to create distraction for the
driver during an actual driving task. In addition to a low detection rate, the proposed
method uses the following distance (distance between cars) as one of the inputs to the
model. Following distance is vulnerable to the external environment such as heavy rain
and snow, which will cause the system capability to be reduced.

The authors [26, 27] proposed a new method to identify driver inattention due to
cognitive distraction using a model-based technique. The method uses in-vehicle driving
data collected by various sensors to predict output. Driver inattention is detected by
analyzing the difference between the predicted and actual output, i.e., the residual of the
model. The results demonstrated that the proposed method could differentiate and clearly
distinguish between neutral and inattentive driving, but the detection rate dropped when
one of the input sensors failed. Therefore, sensor failure diagnosis is needed in order to
obtain an optimum detection rate and to avoid false alarms of the detection results.

Several studies have been done to detect and identify sensor failure. Li and Chen [28§]
proposed a linear model to model the process and thus the resultant residual is expressed
in the form of a linear function. Simani et al. [29] used a linear state-space model
to create a bank of observers and assumed only one sensor fault in the measurement
process. Based on the residual generated, this method can identify a single faulty sensor.
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However, many real processes including driver behavior are naturally nonlinear. Thus a
linear model usually cannot hold the signal distribution well and the proposed methods
can only give good predictions with some constraints. Nevertheless, a dynamic relational
network (DRN) has been proposed as an effective technique for the abnormality diagnosis
of the system with a large number of sensors [30, 31]. It can express a diagnosis object as
an inequality limitation between variables in the observable condition when the diagnosis
object is not expressed as a closed equation model. In addition, the DRN can perform the
diagnosis that reflects the object when it cannot judge the object from a given sensor level
exactly. Yamada and Ito [32] proposed a consistency diagnostic method of front vehicle
recognition with the DRN using the data obtained by a laser radar and image sensor, and
confirmed its effectiveness.

This study aims to develop a new robust system that can perform driver inattention
detection. Here, the term ‘robust’ means that the system can still execute the detection
process even when one of its inputs is absent (a faulty sensor). To progress towards this
objective, this paper first constructs an in-vehicle sensor diagnosis module by DRN using
the data from sensors, such as the vehicle speed and pedal operation. Then, a driver
inattention detection system by combining the sensor diagnosis module and the driver
model proposed by the authors [27] is introduced for the purpose of monitoring the state
of the driver in the car and the detection of inattentive driving. The effectiveness of the
proposed system is also evaluated in an actual car driving on an expressway using each
operation data in the state that imposes a secondary task that causes inattentive driving
and the state that does not impose a secondary task.

2. Review of the Driving Model. The authors [26, 27] have proposed a new driver-
dependent model to capture nominal operation behavior of the driver. The study proved
that current driver operation behavior can be represented as a function of the past and
present driver behavior. Mathematically, this relation can be captured in a multivariable
nonlinear autoregressive exogenous (NARX) network with the consideration of a time
delay, order relations, a non-linearity between the time series data of driver operation
from different sensors, as follows:

:&(t) :f(ul(t)vul(t - 1)7 e aul(t - m)v o '7un(t)7un(t - 1)7 (1)
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where u(t) and y(t) are the model inputs, 3(¢) is the estimated model output, n + 1 is
the number of inputs and m is the model time delay. In this study, there are three input
signals (n + 1 = 3), where u;(t) denotes the vehicle speed, uy(t) denotes the synthesis
pedal pressure and y(t) denotes the steering angle, respectively. The function f(-) is
approximated by an NARX network. Figure 1 shows an example of the structure of
the NARX network, where 2~! is operators of time delay. As can be seen in Figure 1,
the proposed NARX network consists of three network layers which are the input layer,
middle layer and output layer. Through Equations (2) and (3), the present value g(t) can
be predicted from the input past chronological order data.

n
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where v; is the ith network input, wjlZ denotes the weight coefficient between the input
and middle layers, w]? is the weight coefficient between the middle and the output layers,
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Input layer Hidden layer Output layer

FIGURE 1. Driver model structure shown by the NARX network [27]

and 6; and 6, are the thresholds. In addition, V, = y(¢) is the output of the neural
network at time ¢. Generally, the activated functions g;(-) and g,(-) express the input and
output relations of the neuron, which often employ a function ¢g(z) = 1/(1 + e?) called
the sigmoid by a function with saturated values 0, 1. The weight coefficients and the
thresholds are determined by operating repeatedly according to a learning rule using the
Levenberg-Marquardt algorithm [34]. The predicted output value is obtained by inserting
the series of past observation data into the network.

The ordinary (neutral) driving operation data of 15 licensed drivers were used for model
fitting and validation. The model fitting was carried out through a learning process as
described in reference [27]. Only driving operation data collected by normal sensors were
used to develop and test the driver model. Then, the model was used to detect inattentive
driving by analyzing the model residuals, i.e., the differences between the actual operation
signal and the model-predicted driver actions. When a driver drives normally, the model
residual has a small standard deviation and is in the form of white noise. However,
when the driver model is used for data from driving with a secondary task, the standard
deviation increased. To confirm the model effectiveness, the root mean square (RMS)
value of the model residual was calculated using Equation (4) as below:

where e(t) = y(t) — y(t), y(t) is the model-predicted value at time ¢ , y(¢) is the actual
steering angle at time ¢t and m is the number of data. Figure 2 shows the RMS value of
the model residual in the cases of neutral driving (data details can be seen in Section 4.1)
and inattentive driving for 15 licensed drivers [27]. As can be seen in Figure 2, in the
case of neutral driving, the RMS values for fitting and validation are very small for all 15
drivers, which also indicate the effectiveness of the model. That is, the model can almost
exactly predict the actual output value even though the difference data were used for
these processes. Compared with this, in the case of inattentive driving, RMS values are
almost more than two times larger than in the case of neutral driving. This is because the
driver model cannot predict output well, so it produces a big residual. This also indicates
the effectiveness of the model for inattentive driver detection.
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FIGURE 2. RMS values of neutral driving (fitting and validation process)
and inattentive driving for 15 licensed drivers [27]

3. A New Inattentive Driving Detection System Using a Dynamic Relational
Network (DRN). Asis shown in Section 2, when data from inattentive driving are used,
the driver model cannot predict output well, so it produces a big residual. However, if one
of the sensors is damaged or not functioning properly, the proposed model also cannot
provide good results, and sometimes it even gives the wrong detection result. This is
because the model assumes that the driver is not driving in a normal condition due to
wrong data collected by the faulty sensors. This situation can be avoided if we can exclude
the faulty sensor’s signal and only use the signal from the normal sensors as inputs into
the detection system. Therefore, sensor failure diagnosis is needed in order to obtain an
optimum detection rate and to avoid false alarm detection. In this section, a method of
driving sensor diagnosis using the DRN will be discussed. Then a new inattentive driving
detection system will be introduced.

3.1. Principle and dynamics of the dynamic relational network (DRN). In this
section, the principle of the Dynamic Relational Network (DRN) is discussed. The DRN is
a system consisting of different types of nodes that are linked together to form a network.
One important feature of the DRN is that each node can evaluate other nodes or can be
evaluated by other nodes independently and propagates its current state dynamically [30,
31]. This feature means the DRN can be used as a diagnostic system to detect faulty
nodes.

Suppose that a measurement system consists of multiple heterogeneous nodes S;, (i =
1,2,---,m), tied together with a link to form a network. The diagnosis of whether the
node is normal or faulty is carried out by determining the relationship of mutual trust
between the nodes. The relationship between nodes S; and S; that are linked together
is judged using measured values z;(t) and x;(t) of nodes S; and S;. If nodes S; and S;
have maximum matchability, a test value, T},(t) is assigned to 1 (T};(t) = 1). On the
other hand, if nodes S; and S; have no matchability, then T};(t) = —1 is assigned. This
process is performed between all linked nodes in the system. Figure 3 shows an example
of the DRN with 5 nodes, where an arc labelled with 1 indicates that 7;,;(¢) =1 and —1
indicates that 7} ,(t) = —1.

The state of the node (normal or abnormal) cannot be determined by simply obtaining
a test value for each node. However, which node is abnormal can be detected by including
dynamics in this network [31], for example as expressed in Figure 4.

The diagnosis of the sensor as being normal or abnormal is carried out by the rela-
tionship of mutual trust between the sensors. Here, a count of an evaluation vote of the
relationship of mutual trust from each sensor is performed and a change rate value r;(t)
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FIGURE 3. Derivation Tj,(t) for the network
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FicURE 4. The DRN for excursively driving

at time ¢ by a Skeptical model [33] expressed in the next equations is calculated.
dr;(t)

2D = S THOR(), )
T5() = Tya(t) + Ti(t) — 1, (6)

ri(t) € (00, 4+00), R;(t) € (0,1)

where R;(t) represents the credibility or reliability of node S; at time ¢, r;(¢) is its in-
termediate variable and T ;(t) is the test value obtained by S; testing S;. Initially, the
reliability value R() of all nodes at ¢ = 0 is set to 1. Equations (5) and (6) are renewal
equations for converging the network. Equation (7) is a sigmoid function and this network
is known to converge. If r;(t) is large, R;(t) converges to 1. Otherwise, if r;(¢) is small,
R;(t) converges to 0. A node that ultimately has low reliability when the network has
converged is determined to be abnormal.

3.2. A new DRN structure for in-vehicle sensor diagnosis. For the purpose of
monitoring the condition of in-vehicle sensors that are used to collect driving data, the
diagnosis algorithm is constructed based on the DRN’s principle, where nodes in the
DRN are replaced with an in-vehicle sensor. At first, the sensor network is constructed
by connecting all the sensors to each other with virtual arcs. In this study, the relationship
between each sensor is analyzed as follows and the DRN network is built.

Drivers always regulate speed by stepping on the accelerator pedal and the brake pedal
and repeating this operation. Here the operation quantity of the accelerator pedal and
the brake pedal, which are measured by different sensors, is treated as one pedal operation
quantity because they are related to the adjustment of speed. The quantity of the accel-
erator pedal is defined as a positive value and the quantity of the brake pedal is defined as
a negative value. Corresponding to this, the two sensors measuring the quantities of the
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conventional accelerator pedal and brake pedal are treated as one virtual sensor. Based
on the quantity of pedal operation and relation with the vehicle speed, the quantities of
the pedal operation and vehicle speed are firstly tied with an arc.

Generally, a car often travels at more than 70[km/h] on an expressway. Even if the car
is going straight, steering wheel operation is necessary for fine adjustment. In addition, if
it is not going straight even if it is said to be going straight, the operation quite a few near
cornering may be performed. In this case, it is thought that there is an action to decrease
the vehicle speed, and to operate the steering wheel. Therefore, the steering angle and
vehicle speed are tied by an arc.

As shown above, there is an operation action to decrease vehicle speed while driving and
operating the steering wheel. It is necessary to regulate the quantity of pedal operation
to decrease vehicle speed. In other words, it is thought that there is an action to operate
the steering wheel by adjusting the quantity of pedal operation. Therefore, the quantity
of pedal operation and the steering angle is tied by an arc.

Based on the above-mentioned argument, the three virtual sensors measuring the quan-
tity of pedal operation, vehicle speed and steering angle are represented by three nodes of
the DRN and the network is built. Figure 4 shows the built network for in-vehicle sensor
diagnosis. The Pd in the figure shows the quantity of the pedal operation sensor, Sp the
vehicle speed sensor, and St the steering angle sensor. Descriptions like these, hereafter,
are used.

3.3. Sensor diagnosis module with the in-vehicle sensor DRN. This section will
discuss a new sensor diagnosis module to identify sensor failure used in collecting driving
data. Figure 5 shows the proposed sensor diagnosis module. As is shown in Figure 5, the
sensor diagnosis module can be divided into two parts: offline sensor profiling and online
sensor diagnosis. Offline sensor profiling part aims to extract the relationship between
sensors that were tied together in a network. The relationship is obtained by calculating
the proper parameter of normal data collected by the sensor. This step was performed
offline and the parameter obtained will be used as a baseline or threshold value in the
online sensor diagnosis part.

Sensor Profiling
(offline)

Sensor Diagnosis
(online)

Measurement data
from St, Sp and Pd

Data obtain from St,
Sp and Pd

Calculate correlation
value between each
sensor, g in 1s

Calculate correlation
value between each
sensor, p in 1s

Calculate average
correlation, p

N

L
Cd

P

F/

—Lp(t) <kp

Ty (®) ={ 1,p(t) < kp

v

Calculate sensor
Credibility R; (t)

Output: sensor
condition

FIGURE 5. Sensor diagnosis module using the DRN
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In this study, we use a correlation coefficient to represent the relationship between
sensors tied in the network. Let S; and S; be two sensors connected together via an arc
and z;(t) and z;(t) be measurement data from normal sensors S; and S;, respectively.
The correlation coefficient is calculated at every tenth (10) sample data z;(t) and x;(t)
using the following equation:

1LY (w®) = 2)(x(f) — 75)

m—1 Oy, O,

: (8)

where p;;(7) is the correlation coefficient, m is the number of samples in a window and
m = 10, 0., and o, are the standard deviations of data z;(t) and z;(t), and 7 is the time
of window center, respectively. Then, the baseline correlation coefficient p; ; is obtained
by averaging all correlation coefficients over M number of windows using the following
equation:

pij(T) =

Y i)

Pij = M (9)

In the sensor diagnosis part, the current correlation coefficient, p;;(7) that is calculated

using online measurement data z;(¢) and z;(t) of sensors S; and S; is compared with

the baseline correlation coefficient p; ;. When p; ; deviates from the calculated p; j(7) by

a predetermine amount (called a threshold), the test node, T; ;(7) is decided as —1. In
summary, the test node, T; ;(7) is decided based on the following rule:

Ty(r) =14 ;= 7 Vi 10
(7) { Lo pi(7) > kpij, (10)
where k is a constant value, p; ; is the baseline correlation coefficient, p; ;(7) is the current
correlation coefficient and 7; j(7) is a test node of the relationship of sensor S; to sensor ;.
After the test node T} ;(7) of the correlation between sensor S; and S; has been decided,
the credibility R;(7) of sensor S; is calculated using expressions (5), (6) and (7).

3.4. Driver inattention detection system using the driver model and the sensor
diagnosis module. In order to overcome the influence of faulty sensors on the detection
rate of inattentive driving, a novel inattentive driving detection system based on the
sensor diagnosis module and driver model is proposed. The idea is to eliminate the signal
from a failed sensor before inattention detection is done by the driver models. By doing
this, the signal from a faulty sensor will not affect the output of the driver models.

Figure 6 shows the overall concept of the inattentive driving detection system. As is
shown in Figure 6, the system can be divided into three parts: the sensor diagnosis module
shown in Figure 5 and Section 3.3, the driver model shown in Figure 1 and Section 2 and
the inattention detection part. The sensor diagnosis module analyzes and identifies a
faulty sensor (if any) through its measurement data. This module will produce total
sensor credibility R,(¢) that indicates the status of the input sensor of the system. R,(t)
is obtained using the following expression:

Ry(t) = Reu(t) <§R5p(t) " %de(t)> , (11)
where Rg; is the credibility of the steering sensor, Rpy is the credibility of the pedal
sensor and Rg, is the credibility of the steering speed sensor. These credibility values
indicate whether the respective sensor is working properly or not. The Rg;, Rpgq, and
Rg, values were calculated individually using the sensor diagnosis module. Table 1 shows
the interpretation of R,(¢) and the sensor state. As can be seen in Table 1, Equation
(11) is easily understandable since it gives a direct interpretation about the sensor’s state.
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FIGURE 6. Inattentive driving detection system with DRN-based sensor
diagnosis and driver model

TABLE 1. The interpretation of R,(¢) and sensor state

R, Sensor State

1 | All sensors are OK
2/3 | Problem with pedal sensor
1/3 | Problem with speed sensor

0 | Problem with steering sensor

Therefore, R,(t) can be used as a selector to choose a suitable driver model for inattentive
driving detection.

In the driver model part, three driver models were developed in the system. Driver
model 1 is a normal model that has three input sensors shown in Section 2, while driver
models 2 and 3 have only two input sensors. Based on (11) and Table 1, if all input
sensors are normal, the output of the sensor diagnosis module is R, = 1, so the output of
driver model 1 is chosen. If a pedal sensor is diagnosed as having failed, in other words
R, = 2/3 | the output of driver model 2 will be used to detect inattentive driving. The
same concept is applied when R, = 1/3, which means that the speed sensor is faulty, and
then the output of driver model 3 will be used for the detection. However, if the total
sensor credibility R, = 0, where the steering sensor is the problem, then inattentive driving
detection cannot be performed because the output of each model cannot be computed.

In addition, in the inattention detection part, the percentage of confidence score is
calculated using the driver model residuals, which are obtained for the cases with and
without a secondary task for all drivers, to inattentive driving detection. The percentage
of confidence score is calculated based on the following equation:

C' = 100e~frus %] (12)

where C' is the percentage of confidence score, Rrys = aRMS x RMS, RMS is calcu-
lated using Equation (4) and a = 40 is a constant value. Equation (12) shows that the
percentage of confidence score depends on the residual’s value. If the residual’s value is
small which shows that the driver is driving neutrally, the value of the confidence score,
C will be high. In contrast, if the residual’s value is big which shows that the driver is
inattentively driving, the value of the confidence score, C' will be low.
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4. Confirmation Experiments and Results Discussion.

4.1. Driving data. The driving data utilized in this study were collected in collaboration
with Professor Kazuya Takeda’s Laboratory, Nagoya University, Japan. A real vehicle
equipped with various sensors and cameras was used for synchronous recording of data,
which consists of video, speech, driving control and physiological signals.

The aim of these experiments was to record multimodal driving data on different types
of roads, such as city roads and expressways, under ordinary driving and with four tasks,
in order to collect neutral and inattentive driving data. The four different secondary tasks
are: 1) a navigation dialog task, 2) a repeating alphanumeric task, 3) a signboard-reading
task and 4) a music retrieval task. Figure 7 shows the course map used in this study,
where mark (1) denotes the start location, marks (2) to (7) and (12) to (13) denote city
roads and marks (8) to (11) denote highway roads. Table 2 shows all twelve portions of
the experiments that correspond to numbers (2) to (13) shown in Figure 7, the types of
roads and their conditions during data collection.

TABLE 2. Description of experiments and driving conditions

Experi. | Road type Task Description
1 - Idling -
2 City Ordinary driving Driving without extra task
3 City Signboard reading Reading aloud information on signboard
4 City Ordinary driving Driving without extra task
) City Navigator Following navigator instructions
6 City Alphanumeric verbalization | Repeating four alphanumeric letters
7 City Ordinary driving Driving without extra task
8 Highway | Ordinary driving Driving without extra task
9 Highway | Alphanumeric Repeating four alphanumeric letters
10 Highway | Music retrieving Music retrieving by spoken dialog
11 Highway | Ordinary driving Driving without extra task
12 City Music retrieving Music retrieving by spoken dialog
13 City Ordinary driving Driving without extra task
14 - Idling -
]m oFEn 2 ; w1 ERAL .gi
(10)T ﬁ wr q., a0/ oy o
e | e [ emm o s (1)(14)

Idling |

:m' S L] ’“'{4 = Hﬁ'.‘ - ey

; City road t:“%) bl
- 4 nwﬂ'
Wik o AR ‘.n e wERM g

s \ L

FIGURE 7. The course map used in this study
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On the city road, changes often occur outside of the car, such as pedestrians crossing
and road traffic signals changing. Besides these, every car performs a variety of driving
actions such as coming to a complete stop, turning left or right, and going slowly. In this
study, in order to pay attention to the state of the driver, we want to remove elements
such as the environment out of the car and the driving condition of the car if it is possible.
Therefore, the driving data of the Highway are used. The operation signals of experiments
8, 11 (without secondary task) and 9 (with a secondary task of alphanumeric repeating),
10 (with a secondary task of music retrieval) from 20 licensed drivers were selected as
examples, in order to investigate the influence of the secondary task on the driver’s per-
formance and to confirm the difference between inattentive driving and neutral driving.
For the same reason, only the data when driving straight are treated.

An example of driving data that was measured from the operation signals in experiment
8 is shown in Figure 8, where the top figure shows the car speed, the bottom figure shows
the steering angle and the middle figure shows the pedal pressure. The sampling rate of
the operation signals is 100[Hz]. Note that the pedal pressure signal shown in the top
figure is a synthetic signal, which was made to be the sum of the gas pedal pressure (made
to be positive) and the brake pressure (made to be negative). In addition, in a part of
the Highway, a secondary task such as alphanumeric repeating and music retrieval was
assigned to the drivers, and driving without a task was defined as neutral driving and
driving with a secondary task was defined as inattentive driving.

o 20 40 60 80 100 120 140
£ so
E DJ\/\J—\,\,\/\/_\M\/\/\J\/W
E -50
[+] 20 40 60 80 100 120 140
° 100
- .
z 50
. ]
5_ v}
-SDU 20 40 80 80 100 120 140
Time [s]

Ficure 8. Example of neutral driving data of driver 18 in experiment 8

4.2. Faulty sensor detection using the sensor diagnosis module. There are many
types of sensor failure, but here we consider a constant fault as an example because
this type of failure occurs during the experiments and data collection. A constant fault
happens when a sensor reports a constant value for a large number of successive samples.
The reported constant value is either zero, very high, very low compared with the normal
sensor reading and uncorrelated to the underlying physical phenomena. FExamples of
driving data with this type of sensor failure are shown in Figure 9, which is neutral
driving data of driver 18 with a speed sensor failure. The top figure shows the pedal
pressure, the bottom figure shows the steering angle and the middle figure shows the car
speed.

Based on the method discussed in Section 3.3, faulty sensor diagnosis using the sensor
diagnosis module can be realized. At first, offline analysis was performed to determine
the average correlation (threshold) value, p; ;(7) of each driver by Equation (8) using all
driving data from neutral and inattentive driving collected by the working sensor. The
average correlation, p;; for each driver was calculated using Equation (9). Figure 10
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FIGURE 9. Example of neutral driving data of driver 18 with speed sensor
failure in experiment 8
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shows the average correlation coefficient for four experiments of driver 18. Experiment 8
is neutral driving with a speed sensor failure, experiment 11 is neutral driving, experiment
10 is driving with a music retrieval task and experiment 9 is driving with an alphanumeric
repetition task. As can be seen in the figure, the average correlation between the pedal
and speed, and speed and steering in the experiment 8 decreases due to the speed sensor
failure.

After the threshold value (average correlation) p; ;(7) for each driver has been deter-
mined, online in-vehicle sensor diagnosis can be performed. Measurement data from the
speed sensor, pedal sensor and steering sensor are input into the sensor diagnosis module.
Figure 11 shows an example of the diagnosis results of the sensor credibility using highway
driving data shown in Figure 8 and Figure 12 shows an example of the diagnosis result
of the sensor credibility using driving data on the highway shown in Figure 9. Figure (a)
shows the R;(7) value of each sensor and (b) shows the sensor diagnosis module output.
In Figure (a), the credibility, R;(7) is evaluated once every second and its magnitude
is expressed in binary, either one or zero. In Figure (b), the sensor diagnosis module
outputs a diagnosis result for each sensor every three seconds. This is because there is
a possibility of momentary signal disorders caused by pebbles on the road. As can be
seen in Figure 11(b), the sensor diagnosis module can provide good diagnosis results. The
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sensor credibility of the speed, pedal and steering sensors converged to one for most of
the time and indicates that the sensors were working properly. On the other hand, sensor
credibility of the speed sensor shown in Figure 12(b) converged to zero and indicates the
failure of the sensor. The results show the effectiveness of the proposed in-vehicle sensor
diagnosis module. The same result can be obtained from other driving data.
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Ficure 11. Example of sensor detected result obtained using the sensor
diagnosis module in the case where all sensors are normal
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FIGURE 12. Example of sensor detected result obtained using the sensor
diagnosis module in the case where the speed sensor is faulty
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4.3. Performance of driver inattention detection system. In order to investigate
the effect of sensor failure on the detection result and the effectiveness of this system,
we first constructed and trained an individual driver model for 20 drivers. The model’s
construction and training procedures are the same as those discussed in Sections 2 and
3. We used neutral and inattentive driving data from the 20 drivers to test their model,
respectively. All sensors (pedal sensor, speed sensor and steering angle sensor) were
working properly when collecting driving data for drivers 1 to 15, while one of the sensors
that measured data for drivers 16 to 20 was faulty. In other words, we used 15 driving
data collected by normal sensors and 5 data collected by a faulty sensor (only one of the
sensors was faulty) to study their effects on the detection result. The obtained results are
very encouraging, which increased the detection rate and avoided false alarm detection.
Figure 13 shows output from the driver models when inputting the neutral and inattentive
driving data, where (a) is the output from the old driver model as discussed in Section 2
and (b) is the output from the new driver models shown in Section 3, which are in
the driver model part of the inattentive driving detection system. As can be seen from
Figure 13(a), using the old driver model, the RMS value increased dramatically if one of
the sensors was faulty, and produced incorrect detections for drivers 16 to 20. However,
with our new proposed driver models, the system can clearly identify neutral driving and
inattentive driving even though there was a faulty sensor as shown in Figure 13(b). These
results confirm the effectiveness of the proposed system.

Figure 14 shows the output of the driver inattention detection system, and the confi-
dence score obtained by the inattention detection part from neutral driving (validation
process) and inattentive driving data, where the confidence scores are calculated by Equa-
tion (12). As can be seen, the percentage of the confidence score is very high for all drivers
and is more than 80[%] for the neutral operation residual whereas for inattentive opera-
tion the score drops below 70[%]. This result indicates the effectiveness of the proposed
driver inattention detection system for inattentive driving detection and also shows that
the percentage of the confidence score obtained from the inattention detection part can
be used to interpret how much the driver is affected by distraction from the given task.

® Neutral Driving
0.3

= 025
3
‘% 02
&
& 0.15
o
v 0.1
=
/& 0.05
0
12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20
Driver number
(a) Old model shown in Section 2.
® Neutral Driving ¥ Inattentive Driving
0.3
_ 025
<
S 02
17
& 0.15
S o1 La | - . . |
2 005 U LLL
Z 0
0 4

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Driver number
(b) New models shown in Section 3.4.

Ficure 13. RMS of residual for neutral driving and inattentive driving
data using two different methods
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FIGURE 14. Output of the driver inattention detection system, where the
confidence score was obtained by the inattention detection part from vali-
dation, testing and inattention driving data for the all drivers

Furthermore, the percentage of the confidence score differs for each driver. We think this
is due to the fact that the influence of the secondary task for inattentive driving differs
based on different driving experiences, and the driver’s behavior.

5. Conclusion and Remarks. In this study, in order to monitor the driver’s state in
the car and to detect inattentive driving, a robust driver inattention detection system by
driver model and dynamic relation network (DRN) using sensor data such as the quantity
of vehicle speed and pedal operation was proposed. The system can be divided into
three parts: the sensor diagnosis module, the driver model and inattention detection. In
order to achieve robustness of the system, the sensor diagnosis module using the DRN
was developed to analyze and identify faulty sensors (if any) through its measurement
data. In the driver model part, three driver models were developed. Driver model 1 is
a normal model that has three input sensors, while driver models 2 and 3 have only two
input sensors. The built driver inattention detection system was operated with actual car
driving data on a highway and the diagnosis performance was evaluated. As the obtained
results, the percentage of the confidence score of system output was very high for all
drivers and was more than 80[%)] for the neutral operation residual whereas for inattentive
operation the score dropped below 70[%]. This result indicates the effectiveness of the
proposed driver inattention detection system for inattentive driving detection.

Future work will seek to determine which secondary tasks have the largest effect on
driver inattention. Additionally, we intend to examine the influence of the secondary task
on inattentive driving in different conditions of driving experience and driver behavior.
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