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Abstract. The wakefulness state of healthy subjects tends to be an early drowsy state
because of the prolonged times required for electroencephalography (EEG) measurements.
In such cases, clinicians should consider accurate diagnosis of the wakefulness state of the
subjects in order to interpret EEG signals accurately. The aim of the present study was
to quantitatively evaluate the wakefulness state (early drowsy or fully awake) of subjects
using a novel index for determining the degree of alpha wave prominence and suppres-
sion in the time domain over the occipital lobe. This index was based on approximate
entropy (ApEn) during routine EEG examination. EEG recordings were acquired from
45 healthy adult subjects in either fully awake or light drowsy groups. ApEn parameters
were chosen based on the results that produced a statistical significant difference between
the two groups. The proposed index outperformed other best conventional indices used
for evaluating the wakefulness status of subjects, including relative delta sub-band power
(2-4Hz) (R.δ), relative theta sub-band power (6-8Hz) (R.θ), power ratios between theta
and alpha (Pθ/α) and between theta and beta band (Pθ/β) over the occipital lobe. Our
proposed index is superior to R.δ, R.θ, Pθ/α and Pθ/β, with 5.6%, 1.1%, 4.5%, and 20%
respectively.
Keywords: Routine EEG examination, Approximate entropy, Early drowsy and fully
awake state

1. Introduction. Eyes opening and closing are a commonly applied test in routine EEG
examination. This test is typically based on determining the degree of alpha wave promi-
nence and suppression by eyes closing and eyes opening. However, the wakefulness state
of the subjects can affect the prominence and suppression of alpha wave, and exhibits a
complex behavior with multiple different EEG patterns. In this study, the complexity of
the EEG signal means the unpredictability of a signal (i.e., irregularity), as well as diffi-
culties in the physical description of a signal. In this approach, the nonlinear dynamics
theory may be better than the spectrum method in characterizing the intrinsic nature
of EEG signals. In this respect, the irregularity in a physiological time series is often
quantified by computing the approximate entropy (ApEn). This measure is suitable for
capturing the macroscopic spatial temporal dynamics of the electrical activities of the
brain which makes it an attractive tool for monitoring the brain dynamics. However,
calculation of ApEn requires a priori determination of three user-specified parameters.
The recommended values for those parameters had been suggested by Pincus [1] who
first proposed ApEn measure. Although these parameters are critical in determining the
output of ApEn, no guidelines exist for optimizing their values. The recommended values
for the parameters of ApEn are applicable to relatively slow dynamics signals (i.e., slow
fluctuation within a narrow range) such as heart rate [2-5] and hormone secretion data
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[6, 7]. Lu et al. [8] analyzed the complexity of fast dynamics of neural signals by using
Monte Carlo simulations to show that the recommended range of ApEn parameters val-
ues may lead to an incorrect assessment of the complexity of a given signal, and may not
always be appropriate. However, in the current study, repetitive eyes opening and closing
of EEG signals instead of simulated signals were used to determine the optimal values of
the ApEn parameters. Those signals were used to produce ApEn values consistent with
the degree of irregularity which is typically embedded in EEG signals. The current study
was based on alpha rhythm (8-13Hz) over the occipital lobe during eye closure only in
healthy awake and drowsy subjects.
There are numerous reports on the use of ApEn measure for determining sleep stages

[9-11]. In those studies, the authors gave strictly heed to using the recommended values of
ApEn parameters, but in the current study, the values of ApEn parameters over a range
wider than the previous studies typically recommended were examined in repetitive eyes
opening and closing of EEG signals. Additionally, some of those reports [9, 10], reported
general EEG signals that were not measured during a specific test such as eye opening
and closure. In previous study, a combination of short time Fourier transform (STFT)
with relative statistical values (Z-values) was used to qualitatively evaluate the drowsiness
in healthy and patient subjects [12]. This study used EEG recordings where a potential
bias can be noticed in the mean age of the subjects groups who participate in this study.
Furthermore, this study used EEG recording from single EEG channel, and this may not
always be appropriate to capture the whole information over occipital lobe. However,
in the current study, the mean age of the subjects groups were almost similar and EEG
recordings from two EEG channels over occipital lobe of the brain were used.
Our work makes three important contributions to the previous researches on sleep

staging and quantifying works. First, the values of ApEn parameters over a range wider
than the previous studies typically recommended were examined in repetitive eyes opening
and closing of EEG signals, to determine a decision threshold value in complexity term
that represents as a quantitative border between fully awake state and early drowsy
state. Second, current study confirmed that the recommended range of one of ApEn
parameters was not acceptable in EEG signals which are measured by using specific test
such as eye opening and closure. Third, the proposed index outperformed other spectral
measures previously reported best measures used for evaluating the wakefulness state of
subjects [13]. The results of this study will aid clinicians in quantitative evaluation of the
wakefulness state of healthy adult subjects during EEG measurements.
The reminder of this paper is organized as follows. Section 2 describes the EEG record-

ings and presents the proposed approach to determine the values of ApEn parameters; a
brief description about the spectral measures is introduced. Section 3 states the biologi-
cal justifications for choosing eye closure periods rather than eye opening periods for the
analysis. Section 4 reports the experimental results. Section 5 analyzes the performance
of the proposed index and compares it with other spectral measures previously reported
best measures. Finally, the conclusions and the extensions of the current work are exposed
in Section 6.

2. Method.

2.1. EEG recording. A multichannel EEG signal was acquired using a (EEG-1100;
Nihon Koden polygraph, Tokyo, Japan) with a 0.3s time constant, a cut-off frequency
of 60Hz in a low-pass band filter, and a 97.5nV quantization level. EEG signals were
measured from 19 electrodes on the scalp, placed according to the international 10/20
system with mono-polar derivation from bilateral reference electrodes. In this study, we
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Figure 1. Schematic representation of the overall method

analyzed signals from the occipital lobe only, corresponding to O1 and O2. We used
data from an eyes opening and closing test during a routine EEG examination. Each
EEG recording period lasted for 70s, beginning with the eyes-closed test for 10s, followed
by a period with eyes open for 10s. This sequence was repeated for 70s, as shown in
Figure 1. Thus, each 10s period contained a section corresponding to either eyes-closed
or eyes-open state. Each section was considered as a block, and each block was described
as follows: “CLOSE0”, “OPEN1”, “CLOSE1”, etc., to “CLOSE3”. A clinical laboratory
technician made a visual confirmation of eyes opening and closing. Additionally, an in-
house computer program detected the execution of eyes opening and closing from the
electrooculogram. If these two checks indicated that eyes opening and closing had not
been performed correctly, the corresponding EEG was excluded from further analysis. In
addition, body motions, which can cause motion artifacts, were monitored and processed
accordingly. The EEG signals were digitized at a sampling frequency of 200Hz. All
data were collected at Utsunomiya hospital after obtaining informed consent. EEG data
were recorded from 45 healthy awake subjects and 45 healthy drowsy subjects. A full
description of the conditions of the healthy subjects is shown in Table 1. Classification
of the wakefulness state was based on the international classification scheme proposed
by Rechtshaffen and Kales [14]. According to this scheme, EEG recordings from drowsy
state subjects were considered as sleep stage 1 of non-rapid eye movement (NREM).

2.2. Approximate entropy (ApEn). ApEn is a measure of the complexity of a time
series, and assigns a nonnegative number to a noisy time series, with larger values cor-
responding to more complexity (i.e., unpredicted fluctuation) and vice versa [2]. ApEn
measures the (logarithmic) likelihood that runs of patterns that are close for m observa-
tions remain close on the next incremental comparisons. Calculation of ApEn requires a
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Table 1. Number and age of subjects in the two groups

Awake Drowsy
Number 45 45
Age 23.8± 3.09 23.4± 2.30

priori determination of three user-specified parameters, m, r, and N. The parameter m
determines the length of the segments (or vectors) to be compared, r is the tolerance for
accepting similar patterns between two segments, and N is the length of the time series.
Thus, ApEn measure can be considered as a measure that divides the signal into a series
of vectors whose lengths are m. Each vector serves, in turn, as a template vector for
comparison with all other vectors in the signal toward the determination of a conditional
probability. This means that each vector in the given signal has an associated conditional
probability. In this approach, ApEn aggregates these conditional probabilities into an
ensemble measure of regularity [2].
Usually, ApEn is estimated by using the widely established parameter values as sug-

gested by Pincus [1], where m = 1 or 2, and a values of the r parameter were fixed
between 0.1 to 0.25 times the standard deviation (STD) of the original data sequence
whose length was N. However, the prescribed values of ApEn parameters are not always
appropriate for neural signal as indicated by a previous study [8]. Thus, in the current
study, the parameters of ApEn over wide range of values were examined in repetitive eyes
opening and closing of EEG signals. ApEn is applicable to time series with at least 50
data points [15] and less than 5000 samples [2]. Calculation of ApEn was performed with
software developed using MATLAB version 7.6 (MathWorks, Natick, MA, USA). A more
detailed description of ApEn from the mathematical point of view can be found in [1-3].
In this study, ApEn was applied to alpha waves extracted by fast Fourier transform.

2.2.1. Selection of dimension m. In this study, the choice of m = 2 was chosen for three
reasons. First, a choice of m = 2 is superior to m = 1, in that it allows more detailed
reconstruction of the joint probabilistic dynamics of the process [2]. Second, (m > 2) typi-
cally produces poor conditional probability estimates unless r is very large, and such large
r values are generally too coarse to reveal pronounced process distinctions via ApEn(m, r)
[2]. Finally, a higher value of m results in a higher computational time.

2.2.2. Selection of parameters (a and N). When small N values are used to compute
ApEn, the estimates are typically inaccurate as they show a large variance. By contrast,
large N values may contain abrupt changes in the amplitudes that could result in inaccu-
rate estimates. Similarly, the value of r depends on a because (r = a× STD(N), where
N is the length of data). Thus, as the a value increases, variability in ApEn decreases
for the corresponding m, and vice versa [16]. To obtain an optimal value of N and a,
ApEn was computed with different N and a values for the eyes-closed periods. More
precisely, the selected N values were chosen to be multiple integer of 2000 samples (i.e.,
50, 80, 100, 125, 200, 250, 400, 500, 1000, and 2000 samples), while the various values of
a ranged from 0.05 to 1 with a step of 0.05. Occasionally the exact amount of the noise
present in a data set could not be determined in advance. Thus, the estimated ApEn
values were expressed by a matrix of 20 × 10 elements, where each element reports the
value of ApEn that was estimated by different combinations of a multiplied by the STD
of the analyzed section whose length is N. In the current study, the average of ApEn
values were calculated three times in sequence. First average (AVG1) was calculated for
the ApEn values across the sub-sections whose lengths were less than 2000 samples in
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Figure 2. Gray scale grid of 20× 10 matrix which corresponds to a com-
bination of a and N parameters after the calculations of AVG1, AVG2 and
AVG3. (a) Each element shows the value of ApEn. (b) Each element shows
the p-value by two-sample Student t-test. MIN denotes to the minimum
p-value.

each eye-closed period. As a consequence, all the ApEn values in the matrix 20× 10 that
corresponded to sub-sections whose lengths were less than 2000 samples were estimated
by using AVG1. This matrix was calculated for each eye-closed period over each signal
(i.e., O1 and O2) for each subject in both groups, as shown in Figure 2(a). Second average
(AVG2) was calculated for the ApEn values in the aforementioned matrix across the two
electrodes signals (i.e., O1 and O2) for each subject within both groups. Third average
(AVG3) was calculated for the second average (AVG2) across all eyes-closed periods for
each subject within the two groups. Consequently, after the calculation of AVG3, each
subject within both groups could be represented by a matrix of 20× 10 of ApEn values.

To test the hypothesis that the population mean of the awake subjects was significantly
different from the drowsy subjects, a two-sample Student’s t-test was performed between
the AVG3 samples, which corresponded to the ApEn values of the awake and drowsy
subjects. The ApEn values were estimated by using different combinations of a and N,
as previously described. Hence, the p-value (where p-value represents the probability
of t-test) of all the different combinations of a and N, which correspond to a matrix of
20 × 10 elements, was calculated, as shown in Figure 2(b). In this study, a significant
difference was considered at p-value < 0.01. Thus, the best result that corresponds to the
smallest p-value was determined with a = 0.05 times the SD of the data whose length
was N = 2000 samples. The location of the smallest p-value was labeled with “MIN”
(i.e., minimum p-value), as shown in Figure 2(b). Thus, m = 2, a = 0.05 and N = 2000
samples were chosen for the subsequent ApEn calculation, as shown in Figure 3.
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Figure 3. The values of ApEn (m = 2, a = 0.05, N = 2000) of the
subjects in the two groups. The dashed line denotes the decision threshold
value (ApEn0).

2.3. Spectral measures. Spectral measures are commonly used to measure and quantify
the wakefulness state of the subjects. Those measures are based on relative spectral
power and power ratios between two specific EEG sub bands. More precisely, those
measures are: relative delta sub-band power (2-4Hz) (R.δ), relative theta sub-band power
(4-6Hz) (R.θ), power ratio between theta and alpha (Pθ/α), and power ratio between
theta and beta (Pθ/β). The frequency bands of theta and beta rhythms were 4-8Hz and
16-30Hz, respectively. All of those measures were evaluated and previously reported as
best measures for distinguishing early drowsy state from the fully awake state over the
occipital lobe in healthy subjects [13]. The relative spectral powers were stated as the
ratios of the absolute spectral powers in specific bands to the total spectral power [13, 17].
All power spectrums were calculated using Welch averaged modified periodogram method
[18] for 2000 samples corresponding to the eyes-closed period without overlapping.
Similar to AVG2 and AVG3 in ApEn, the average of the spectral measures values were

not calculated only across O1 and O2 for each subject, but also across all eyes-closed
periods for each subject within the two groups. Consequently, each subject within both
groups had one value for each one of the spectral measures as a result from calculating
AVG3. To make a comparison between the spectral measures and ApEn measure, AVG1
was not calculated for the spectral measures because those measures were calculated to
the sections whose lengths were consistent with the optimal value of N parameter in ApEn
(i.e., 2000 samples).

3. Biological Justification for Choosing Eye Closure Periods. In healthy adult
subjects, alpha rhythm (8-13Hz) is typically prominent over the occipital lobe during eye
closure, when the state of the subjects is relaxed and wakefulness [19, 20]. In general,
the alpha rhythm can be markedly diminished by eye opening, a phenomenon termed
alpha blockage. The alpha rhythm can also be attenuated when alertness decreases to
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the level of drowsiness (i.e., early state of drowsiness (stage I)). However, this attenuation
is often accompanied by a gradual decrease in frequency to 2-7Hz as a person falls into
deep sleep [19, 20]. As a consequence, alpha rhythm in fully awake subjects is prominent
during eye closure and suppressed during eye opening, but it is only suppressed during
eye closure and eye opening in drowsy subjects, which may change the complexity of the
alpha wave. As such, eye closure may be more suitable than eye opening for evaluating
alpha prominence and suppression in awake and drowsy subjects, respectively. Therefore,
eye-opening periods were not evaluated in this study.

4. Results. The wakefulness state discrimination of the subjects was based on decision
threshold value (ApEn0), which was derived from the minimum error in the discrimination
rate between the two groups. To achieve this, all the ApEn values corresponding to the
awake and drowsy subjects were sorted in ascending order. Next, all the possible locations
of the decision threshold value were examined to enable partitioning of the ranks of ApEn
values into two groups. Most of the ApEn values corresponding to the awake subjects
exhibited relatively small values when compared with the ApEn values of the drowsy
subjects when the ascending order was performed. Thus, to satisfy the condition of the
minimum error discrimination rate between the two groups, the left side of the decision
threshold value (ApEn0) was considered the region of the correct discrimination of awake
subjects, while the right side was considered as the region of the correct discrimination
of the drowsy subjects, as shown in Figure 3. Hence, the error discrimination rate of the
awake and drowsy subjects can be expressed by ApEnA and ApEnD, respectively, and
can be calculated by:

ApEnA =
ErrorDiscriminatedSubjects

NumberAwakeSubjects
=

7

45
= 0.155 = 15.5% (1)

ApEnD =
ErrorDiscriminatedSubjects

NumberDrowsySubjects
=

16

45
= 0.355 = 35.5% (2)

TotalErrorApEn =
TotalErrorDiscriminatedSubjects

TotalNumberSubjects
=

23

90
= 25.5% (3)

Similar to that for ApEn, all the values of AVG3 that are related to R.δ, R.θ, Pθ/α,
and Pθ/β were sorted into ascending order, and the best decision threshold value was
chosen based on the minimum error of the discrimination rate between the two groups.
More precisely, the condition of the minimum error discrimination rate was satisfied when
the right side of the decision threshold value (R.δ0) and (R.θ0) represented the region of
correct discrimination of the awake subjects, and when the left side represented the region
of correct discrimination of the drowsy subjects, as shown in Figures 4 and 5, respectively.
By contrast, the condition of the minimum error discrimination rate was satisfied when
the left side of the decision threshold value (Pθ0/α0) and (Pθ0/β0) represented the region of
correct discrimination of the awake subjects, and the right side represented the region of
the correct discrimination of the drowsy subjects, as shown in Figures 6 and 7, respectively.

The exact locations of all the best decision threshold values that are related to the
spectral measures are shown in Figures 4-7. The best decision threshold value of R.δ,
R.θ, Pθ/α and Pθ/β were denoted by R.δ0, R.θ0, Pθ0/α0 and Pθ0/β0 respectively. The error
discrimination rate of the awake and drowsy subjects, and the total error that is related
to R.δ, R.θ, Pθ/α, and Pθ/β, were calculated using Equations (1)-(3), as shown in Table 2.

5. Discussion. EEG measurements are typically acquired from healthy and patient sub-
jects and this procedure lasts for prolonged times. In such cases, the wakefulness state of
the subjects tends to be an early drowsy state, particulary in healthy subjects. Usually,



3218 M. ALARAJ AND T. FUKAMI

Table 2. Quantitative comparisons among the rates of all the measures.
ApEn: approximate entropy, R.δ: Relative delta sub-band (2-4Hz) power,
R.θ: Relative theta sub-band power (4-6Hz), Pθ/α: power ratio between
theta and alpha band, Pθ/β: power ratio between theta and beta band.

ApEn R.δ R.θ Pθ/α Pθ/β

AwakeSubjects 15.5% 37.7% 28.8% 13.3% 28.8%
DrowsySubjects 35.5% 24.4% 24.4% 46.6% 62.2%
TotalError 25.5% 31.1% 26.6% 30% 45.5%
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Figure 4. The values of R.δ for the subjects of two groups. The dashed
line denotes the decision threshold value (R.δ0).

this transition from fully awake state to early drowsy state can complicate the interpre-
tation of EEG signals. In such cases, the wakefulness state of the subjects during EEG
measurements should be determined in advance for more precise interpretation. However,
the transition to the early drowsy state (stage I) is still unclear [19] as it represents a
mixture of alertness and sleep [13]. Thus, a system for quantitative evaluation for the
wakefulness state of the subjects is needed. Such system can be based on a proper index to
evaluate the wakefulness state of the subjects. In this respect, routine electroencephalog-
raphy (EEG) examination was used to examine the proposed index in healthy adults
subjects.
Although, we did not use eyes-opening periods for evaluating our proposed index, eyes

opening and closing test can be considered more appropriate than continuous eye closure
test in quantifying early drowsy state (stage I), because the early state of drowsiness
typically contains several forms of eyes closing and eyes opening, ranging from complete
eyes closing to incomplete closing. However, such transitions from eyes closing to eyes
opening may affect on the complexity of the EEG signals during early state of drowsiness
and make it be close to that in the wakefulness state [11]. As a consequence, the task of
distinguishing fully awake state from early drowsy states quantitatively during repetitive
eyes opening and closing is more difficult than distinguishing in continuous eye closure,
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Figure 5. The values of R.θ for the subjects of the two groups. The
dashed line denotes the decision threshold value (R.θ0).
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as reported by [9, 10]. Thus, the current study would solve this problem by determining
a distinct quantitative border by using best decision threshold value that satisfies the
minimum error in the discrimination rate, to aid clinicians for more precise interpretation
of EEG signals.
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In the current study, we did not use any automated classifier or any feature extraction
techniques. Although, a classifier may improve the discrimination performance, the results
would be affected by the performance of the chosen feature extraction technique.
The best decision threshold value that corresponds to ApEn (ApEn0) was determined

after a careful examination for the values of ApEn parameters over a range wider than
the previous studies typically recommended. The best values for ApEn parameters as
we described earlier were: m = 2, a = 0.05 and N = 2000 samples. The value of N
indicates that the calculation of AVG1 was not included in the estimation of ApEn values
which were used to constitute the two sample sets of ApEn values for statistical test. By
calculating AVG2 and AVG3, we were able to eliminate the differences that might have
existed between O1 and O2, and differences that might have existed among the eyes-closed
periods. Thus, the reported results in the current study can be considered more reliable
than other results where the average values were not used, as reported by [9, 10, 13].
To examine the superiority of proposed index quantitatively, we compared our proposed

index with the spectral measures which were evaluated as best measures in distinguishing
fully awake state from early drowsy state (stage I) over the occipital lobe (i.e., O1 and O2)
in healthy subjects [13], by using decision threshold value which satisfies the minimum
error in the discrimination rate. Thus, other measures reported as best measures in either
O1 or O2 alone were not evaluated in the current study. Although the error discrimination
rate of the ApEn method was higher than that of Pθ/α and (R.δ and R.θ) for evaluating
the fully awake and early drowsy states, respectively, the total error of Pθ/α, R.δ and R.θ
was still higher than that for the ApEn method, as shown in Table 2. All the values
that related to the total error in Table 2 indicate that the proposed index has more
superiority than spectral analysis-based indices. In order to illustrate that the proposed
index based on ApEn measure is more efficient than spectral analysis-based indices in
evaluating the subject’s wakefulness state, we evaluated the overall discrimination power
(i.e., performance) that is related to the ApEn and the spectral measures in quantifying
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the early drowsy state and fully awake state over occipital lobe by using receiver operating
characteristics curve (ROC) [21]. ROC, is used to examine the performance of a diagnostic
test (i.e., ApEn and spectral measures) by using different thresholds or cut-off points
(i.e., different ApEn and spectral thresholds as shown in Figures 3-7) and calculates the
sensetivity/specficity pair for each one of those points to show the overall discrimination
power for the given measure. Sensitivity (i.e., the true positive rate) is the percentage of
drowsy subjects who are correctly discriminated, whereas specificity (i.e., the true negative
rate) represents the percentage of fully awake subjects who are correctly discriminated.
The area under ROC curve (AUC) is a measure of the probability of correctly identifying
the wakefulness state of the subjects. Thus, diagnostic measure with higher AUC value
indicates that this measure has more discrimination power than diagnostic measure with
lower AUC value. A rough guide to classify the precision of the diagnostic measure [22]
that is related to AUC is as follows: with values between 0.9 and 1, the precision of the
diagnostic measure is considered to be excellent, good for the values between 0.8 and 0.89,
fair for the values between 0.7 and 0.79, poor for the values between 0.6 and 0.69, and
bad for the values below than 0.6. Thus, the results of ApEn measure over occipital lobe
can be considered good. All the values of AUC for ApEn measure and spectral measures
are shown in Table 3.

Table 3. The values of area under ROC curve (AUC) for all the measures.
ApEn: approximate entropy, R.δ: Relative delta sub-band (2-4Hz) power,
R.θ: Relative theta sub-band power (4-6Hz), Pθ/α: power ratio between
theta and alpha band, Pθ/β: power ratio between theta and beta band.

ApEn R.δ R.θ Pθ/α Pθ/β

AUC 0.82 0.64 0.77 0.78 0.5

Although, ApEn measure could show relative small improvement for evaluating the
wakefulness state of the subjects over spectral measures, ApEn has more potential wide-
spread utility for practical data analysis and clinical application due to its ability to
elucidate specific transit-temporal patterns of EEG signals called unclear significant pat-
terns [11, 19]. In general, these patterns are normal findings in healthy adults subjects
and have many types. Usually, these patterns associate with a specific EEG band fre-
quency including alpha band and their durations were ranging from brief of seconds to
several seconds depending on the type of these patterns [19]. Particular types of these
patterns are close associated with alpha band over occipital lobe during eye closure when
the wakefulness state of the subjects is fully awake state. More precisely, the types of
those patterns are called alpha squeak and alpha variant and can be easily characterized
by their distinctly characteristic shapes [19]. Comparing the durations of those patterns
with the relative short periods of eyes-closing in our EEG data set, revealed that those
types of patterns may affect the complexity of the time series as they have distinct char-
acteristic shapes. Although these patterns have not appeared in each trial of eye closure,
their effects on the complexity can be used as a proper indicator for the wakefulness state
of the subjects.

It is important to note that the frequency bands of the EEG signals in our study were
similar to the frequency bands as defined by Susmakova and Krakovska [13], except for
the alpha band. In our study, the alpha band was considered as 8-13Hz, as reported by
a wide range of medical and clinical studies [12, 17, 19, 20, 22]. By contrast, the alpha
band was considered as 8-12Hz in [13]. Nevertheless, this difference in the frequency
band of the alpha rhythm would not significantly affect our new analysis method. In
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order to generalize the proposed index to be used in other applications, rather than only
during the eyes-closed test in routine EEG examination, future studies are required using
a preprocessing step performed in advance.

6. Conclusions. Due to the nonlinear nature of physiological systems, ApEn is a pow-
erful tool for revealing hidden characteristics of various biological signals. We used ApEn
with new values for its parameters as a new index for quantitative evaluation of the wake-
fulness state in healthy adults subjects, as the alpha rhythm is known to occur over the
occipital lobe during eye closure. We observed an increment in the amount of the fluc-
tuation in the time series and spectrum components of alpha waves in drowsy subjects.
Using this approach, we determined the optimal values of the ApEn parameter that al-
lowed quantitative evaluation of the wakefulness state of a subject. The choice of ApEn
parameters was performed based on a two-sample Student t-test where a statistical signif-
icant difference could be obtained between the awake and drowsy subjects. The proposed
index was superior to other spectral analysis-based indices for quantitative evaluation of
wakefulness state of subjects.
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