
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 9, September 2013 pp. 3515–3526

UNFOLDING-BASED SIMPLIFICATION OF QUERY-ANSWERING
PROBLEMS IN AN EXTENDED CLAUSE SPACE

Kiyoshi Akama1 and Ekawit Nantajeewarawat2

1Information Initiative Center
Hokkaido University

Sapporo, Hokkaido 060-0811, Japan
akama@iic.hokudai.ac.jp

2School of Information, Computer and Communication Technology
Sirindhorn International Institute of Technology, Thammasat University

P.O. Box 22, Thammasat-Rangsit Post Office, Pathum Thani 12121, Thailand
ekawit@siit.tu.ac.th

Received July 2012; revised January 2013

Abstract. To convert a first-order formula containing an existential quantification into
an equivalent clausal normal form, it is necessary to introduce function variables and ac-
cordingly extend the space of first-order formulas. This paper proposes unfolding trans-
formation and transformation by definite-clause removal on such an extended formula
space and demonstrates how they are employed to simplify query-answering problems.
The presented work provides a foundation for constructing a correct method for solving
query-answering problems that include unrestricted use of universal and existential quan-
tifications.
Keywords: Query-answering problems, Unfolding transformation, Equivalent transfor-
mation

1. Introduction. Recently, query-answering (QA) problems have attracted wider in-
terest, owing partly to emerging applications involving integration between schema-level
ontologies and object-level rules, e.g., interaction between Description Logics and Horn
rules [1, 2], based on the Semantic Web’s layered architecture. A problem in this class
is concerned with finding the set of all ground instances of a given query atom that are
logical consequences of a given logical formula. Equivalent transformation (ET) of for-
mulas is essential and very useful for solving many classes of logical problems [3]. In
ET-based problem solving, a logical formula representing a given problem is successively
transformed into a simpler but equivalent formula that preserves the answer to the given
problem. Correctness of computation is readily guaranteed by any combination of equiv-
alent transformations. Many kinds of correct and efficient algorithms for solving logical
problems have been devised successfully based on ET [4], motivating us to employ the
ET principle to deal with QA problems.

Solving QA problems on first-order logic involves the conversion of first-order formulas
into clausal normal forms (also called conjunctive normal forms) using Skolemization.
Since the classical Skolemization does not preserve the logical meaning of a first-order
formula [5], it cannot be used in an ET-based problem-solving process for QA problems
on full first-order logic. Meaning-preserving Skolemization has been developed recently in
[6] based on an extension of a logical formula space by incorporation of function variables.
A clausal normal form resulting from meaning-preserving Skolemization determines a set
of clauses in an extended clause space, called the ECLSF space. Compared with usual
definite clauses, a clause in this extended space may contain function variables in its

3515



3516 K. AKAMA AND E. NANTAJEEWARAWAT

body and may have multiple heads. This paper proposes unfolding transformation on the
ECLSF space and illustrates how it can be applied to simplify QA problems.
To begin with, Section 2 formalizes QA problems and describes a general scheme for

solving them using ET. Section 3 explains the basic idea of meaning-preserving Skolem-
ization and introduces QA problems on the ECLSF space. Section 4 presents equivalent
transformation by unfolding and that by definite-clause removal in the ECLSF space and
explains their usefulness in solving and simplifying QA problems. Section 5 illustrates
their application. Section 6 describes fundamental differences between this work and
existing theories. Section 7 provides concluding remarks.

2. Query-Answering Problems and Equivalent Transformation. A query-answer-
ing problem (QA problem) is a pair 〈K, a〉, where K is a logical formula, representing
background knowledge, and a is an atomic formula (atom), representing a query. The
answer to a QA problem 〈K, a〉, denoted by ans(K, a), is the set of all ground instances of a
that are logical consequences of K. According to the types of background knowledge, QA
problems can be classified into several subclasses, e.g., QA problems on definite clauses,
where background knowledge is a set of definite clauses, QA problems on description logics
(DLs), where background knowledge is a conjunction of axioms and assertions in DLs [7].
QA problems on definite clauses have been extensively discussed in logic programming
[8]. QA problems on DLs have been discussed in [9]. Answering queries in Datalog and
deductive databases [10] can be regarded as solving QA problems on a restricted form of
definite clauses.
Given a set K of definite clauses, since K has a unique minimal model, the answer set

of a QA problem 〈K, a〉 becomes the intersection of the minimal model of K and rep(a),
where rep(a) is the set of all ground instances of a. When K is an arbitrary first-order
formula, determining the answer set of a QA problem 〈K, a〉 is more complicated since K
possibly has multiple minimal models, none of which is included by the others.
We aim at dealing with QA problems on full first-order logic, where background knowl-

edge can be any arbitrary first-order formula, without any restriction on its form. Let
〈K, a〉 be a QA problem in this class. Using the set of all models of K, denoted by
Models(K), the set ans(K, a) can be equivalently formulated as (

∩
Models(K)) ∩ rep(a),

where
∩
Models(K) is the intersection of all models of K. Calculating (

∩
Models(K)) ∩

rep(a) directly often requires high computational cost. To reduce the cost, K is trans-
formed into a simplified formula K ′ such that (

∩
Models(K)) ∩ rep(a) is preserved and

(
∩
Models(K ′)) ∩ rep(a) can be determined at a low cost. It is obvious that ans(K, a) =

ans(K ′, a) if (
∩
Models(K)) ∩ rep(a) = (

∩
Models(K ′)) ∩ rep(a). If the logical meaning of

K is preserved, then the answer set (
∩
Models(K))∩ rep(a) is always preserved. However,

this answer set may not be preserved if only the satisfiability of K is preserved.

3. Meaning-Preserving Skolemization and QA Problems on ECLSF. To solve
a QA problem 〈K, a〉 on first-order logic, the first-order formula K is usually converted
into a conjunctive normal form. The conversion involves removal of existential quan-
tifications by Skolemization, i.e., by replacement of an existentially quantified variable
with a Skolem term determined by a relevant part of a formula prenex. The classical
Skolemization, however, does not preserve the logical meaning of a formula – the formula
resulting from Skolemization is not necessarily equivalent to the original one [5]. In [6], we
developed a theory for extending the space of first-order logical formulas and showed how
meaning-preserving Skolemization can be achieved in the obtained extended space, called
the ECLSF space. The basic idea of meaning-preserving Skolemization is to use existen-
tially quantified function variables instead of usual Skolem functions. Function variables,



UNFOLDING-BASED SIMPLIFICATION OF QUERY-ANSWERING PROBLEMS 3517

extended clauses, extended conjunctive normal forms and QA problems on ECLSF are
introduced below.

3.1. Function constants, function variables and func-atoms. A usual function
symbol, say f , in first-order logic denotes an unevaluated function; it is used for con-
structing from existing terms, say t1, . . . , tn, a syntactically new term, e.g., f(t1, . . . , tn),
possibly recursively, without evaluating the new term f(t1, . . . , tn). A different class of
functions is used in the extended space. A function in this class is an actual mathematical
function, say h, on ground terms; when it takes ground terms, say t1, . . . , tn, as input,
h(t1, . . . , tn) is evaluated for determining an output ground term. We called a function in
this class a function constant . Variables of a new type, called function variables , are in-
troduced; each of them can be instantiated into a function constant or a function variable,
but not into a usual term.

In order to clearly separate function constants and function variables from usual func-
tion symbols and usual terms, a new built-in predicate func is introduced. Given any
n-ary function constant or n-ary function variable f̄ , an expression

func(f̄ , t1, . . . , tn, tn+1),

where the ti are usual terms, is considered as an atom of a new type, called a func-atom.
When f̄ is a function constant and the ti are all ground, the truth value of this atom is
evaluated as follows: it is true iff f̄(t1, . . . , tn) = tn+1.

3.2. Extended clauses and existentially quantified conjunctive normal forms.
An extended clause C is a formula of the form

∀v1, . . . , ∀vm : (a1 ∨ · · · ∨ an ∨ ¬b1 ∨ · · · ∨ ¬bp ∨ ¬f1 ∨ · · · ∨ ¬fq),
where v1, . . . , vm are usual variables, each of a1, . . . , an, b1, . . . , bp is a usual atom or a
constraint atom, and f1, . . . , fq are func-atoms. It is often written simply as

a1, . . . , an ← b1, . . . , bp, f1, . . . , fq.

The sets {a1, . . . , an} and {b1, . . . , bp, f1, . . . , fq} are called the left-hand side and the right-
hand side, respectively, of the extended clause C, denoted by lhs(C) and rhs(C), respec-
tively. When n = 0, C is called a negative extended clause. When n = 1, C is called
an extended definite clause, the only atom in lhs(C) is called the head of C, denoted by
head(C), and the set rhs(C) is also called the body of C, denoted by body(C). When n > 1,
C is called a multi-head extended clause. All usual variables in an extended clause are
universally quantified and their scope is restricted to the clause itself. When no confusion
is caused, an extended clause, a negative extended clause, an extended definite clause
and a multi-head extended clause will also be called a clause, a negative clause, a definite
clause and a multi-head clause, respectively.

An existentially quantified conjunctive normal form (ECNF) is a formula of the form

∃vh1, . . . , ∃vhm : (C1 ∧ · · · ∧ Cn),

where vh1, . . . , vhm are function variables and C1, . . . , Cn are extended clauses. It is often
identified with the set {C1, . . . , Cn}, with implicit existential quantifications of function
variables and implicit clause conjunction. Function variables in such a clause set are all
existentially quantified and their scope covers all clauses in the set.



3518 K. AKAMA AND E. NANTAJEEWARAWAT

3.3. QA problems and equivalent transformation on ECLSF. The set of all EC-
NFs is referred to as the extended clause space (ECLSF). By the above identification of
an ECNF with a clause set, we often regard an element of ECLSF as a set of (extended)
clauses. With occurrences of function variables, clauses contained in a clause set in the
ECLSF space are connected through shared function variables. By instantiating all func-
tion variables in such a clause set into function constants, clauses in the obtained set are
totally separated1.
A QA problem 〈Cs, a〉 such that Cs is a clause set in ECLSF and a is a usual atom is

called a QA problem on ECLSF. Given a QA problem 〈K, a〉 on first-order logic, the first-
order formula K is converted by meaning-preserving Skolemization, using the conversion
procedure given in [6], into a clause set Cs in the ECLSF space. The obtained clause
set Cs may be further transformed equivalently in this space into another clause set Cs′

for problem simplification. Unfolding and other transformation rules may be used. The
answer to the resulting problem 〈Cs′, a〉 is (

∩
Models(Cs′)) ∩ rep(a).

4. Unfolding Transformation and Definite-Clause Removal on ECLSF.

4.1. Need for unfolding on ECLSF. Unfolding transformation is normally applied for
transformation of usual definite clauses [11, 12]. A clause set in ECLSF, however, may
contain multi-head clauses and occurrences of function variables. To provide a basis for
solving a class of QA problems on ECLSF, which is far larger than the class of QA problems
on usual definite clauses in terms of expressiveness, an unfolding rule for transforming
multi-head clauses with function variables is necessary. Given a QA problem 〈Cs, a〉 on
ECLSF, we propose in this paper (i) how to determine a set of extended definite clauses
that can be used for unfolding Cs and a sufficient condition for equivalently transforming
〈Cs, a〉 by unfolding, and (ii) a sufficient condition for equivalently transforming 〈Cs, a〉
by removal of extended definite clauses.

4.2. Unfolding operation on ECLSF. Assume that Cs is a clause set in ECLSF, D is
a definite-clause set in ECLSF, and occ is an occurrence of an atom b in the right-hand
side of a clause C in Cs. By unfolding Cs using D at occ, Cs is transformed into

(Cs− {C}) ∪
(∪
{resolvent(C,C ′, b) | C ′ ∈ D}

)
,

where for each C ′ ∈ D, resolvent(C,C ′, b) is defined as follows, assuming that ρ is a
renaming substitution for usual variables such that C and C ′ρ have no usual variable in
common:

1. If b and head(C ′ρ) are not unifiable, then resolvent(C,C ′, b) = ∅.
2. If they are unifiable, then resolvent(C,C ′, b) = {C ′′}, where C ′′ is the clause obtained

from C and C ′ρ as follows, assuming that θ is the most general unifier of b and
head(C ′ρ):
(a) lhs(C ′′) = lhs(Cθ)
(b) rhs(C ′′) = (rhs(Cθ)− {bθ}) ∪ body(C ′ρθ)

The resulting clause set is denoted by Unfold(Cs, D, occ).

4.3. Equivalent transformation by unfolding and definite-clause removal. For
any predicate p, let Atoms(p) denote the set of all atoms having the predicate p. Equiva-
lent transformation of QA problems on ECLSF using unfolding and using definite-clause
removal are formulated below.

1Clauses in the usual conjunctive normal form are also totally separated, i.e., usual variables occurring
in one clause are considered to be different from those occurring in another clause.



UNFOLDING-BASED SIMPLIFICATION OF QUERY-ANSWERING PROBLEMS 3519

4.3.1. Equivalent transformation by unfolding. Let 〈Cs, a〉 be a QA problem on ECLSF.
Assume that:

1. q is the predicate of the query atom a.
2. p is a predicate such that p 6= q.
3. D is a set of definite clauses in Cs that satisfies the following conditions:

(a) For any definite clause C ∈ D, head(C) ∈ Atoms(p).
(b) For any clause C ′ ∈ Cs−D, lhs(C ′) ∩ Atoms(p) = ∅.

4. occ is an occurrence of an atom in Atoms(p) in the right-hand side of a clause in
Cs−D.

Then 〈Cs, a〉 can be transformed into the QA problem 〈Unfold(Cs, D, occ), a〉.
Consider the assumption part above. Let C be the clause containing the occurrence

occ. Only definite clauses in D can supply atoms in Atoms(p) for the atom at occ (by
Conditions 3 and 4). Consequently, before C can be used for generating a model of Cs by
bottom up computation, some definite clause C ′ ∈ D must be already used. The use of
C and C ′ together yields the same result as the use of resolvent(C,C ′, b), where b is the
atom at the occurrence occ. Therefore Cs and Unfold(Cs, D, occ) have the same set of
models and the answer to the original problem is preserved.

4.3.2. Equivalent transformation by definite-clause removal. Let 〈Cs, a〉 be a QA problem
on ECLSF. Assume that:

1. q is the predicate of the query atom a.
2. p is a predicate such that p 6= q.
3. D is a set of definite clauses in Cs that satisfies the following conditions:

(a) For any definite clause C ∈ D, head(C) ∈ Atoms(p).
(b) For any clause C ′ ∈ Cs−D, lhs(C ′) ∩ Atoms(p) = ∅.

4. For any clause C ′ ∈ Cs−D, rhs(C ′) ∩ Atoms(p) = ∅.
Then 〈Cs, a〉 can be transformed into the QA problem 〈Cs−D, a〉.

Consider the assumption part. Atoms in Atoms(p) can only be supplied by definite
clauses in D (by Condition 3). However, these atoms are not used for derivation of any
instance of the query atom a and are not used for derivation of a contradiction by any
negative clause in Cs, the reason being that no instance of a belongs to Atoms(p) (by
Conditions 1 and 2) and the predicate p does not occur in the right-hand side of any
clause in Cs−D (by Condition 4). Thus D can be removed without changing the answer
to the original problem.

4.4. Benefits of unfolding and definite-clause removal. Unfolding is one of the most
important equivalent transformations. When applied along with definite-clause removal,
it is useful for (i) problem solving and (ii) problem simplification. Simple problems may
be solved by unfolding alone. For example, many QA problems on definite clauses can
be solved, at least in principle, using unfolding. For more difficult problems, unfolding is
useful for transforming them into simplified forms, which can be subsequently solved by
using other equivalent transformation rules. Alternative methods for solving restricted
classes of QA problems are problem-specific solver generation [13] and conversion into
satisfiability problems [14]. With these methods, problem simplification by unfolding
and definite-clause removal is useful in procedures for (i) checking the applicability of a
selected method, i.e., testing whether a given problem belongs to the class of problems
that can be handled by the method, and (ii) generating smaller problem-specific solvers
or smaller satisfiability problems.



3520 K. AKAMA AND E. NANTAJEEWARAWAT

5. Examples. Simplification of QA problems using unfolding and definite-clause removal
will now be demonstrated.

Example 5.1. Consider a QA problem 〈Cs, q(x)〉, where Cs consists of the following
clauses, assuming that c is a constant:

C1: p(c)←
C2: r(x)← p(x)
C3: s(x, x), s(x, y)← p(x), r(y)
C4: q(x)← s(x, y)

Note that C3 is a multi-head clause. By unfolding using {C1}, the clauses C2 and C3 are
replaced with:

C2a: r(c)←
C3a: s(c, c), s(c, y)← r(y)

By unfolding using {C2a}, the clause C3a is replaced with:

C3b: s(c, c), s(c, c)←
By eliminating a duplicate atom in its left-hand side, C3b can be simplified into:

C3c: s(c, c)←
By unfolding using {C3c}, the clause C4 is replaced with:

C4a: q(c)←
The resulting clause set is {C1, C2a, C3c, C4a}. Since the predicate q appears only in the
head of C4a and none of the head predicates of C1, C2a and C3c appears in the body of
C4a, the definite clauses C1, C2a and C3c can be removed. The initial QA problem is thus
equivalently transformed into the QA problem 〈{C4a}, q(x)〉, from which the answer set
{q(c)} is readily obtained.

As illustrated below, not all QA problems can be solved using only unfolding and
definite-clause removal alone.

Example 5.2. Assuming that c and d are constants, let Cs consist of the following clauses:

C1: p(c)←
C2: r(x)← p(x)
C3: s(x, d), s(d, y)← p(x), r(y)
C4: q(x)← s(x, d)
C5: q(x)← s(d, x)

Consider the QA problem 〈Cs, q(x)〉. In a way similar to the transformation in Ex-
ample 5.1, Cs can be simplified using unfolding and definite-clause removal into Cs′ =
{C ′, C4, C5}, where C ′ = (s(c, d), s(d, c)←). No further unfolding is applicable to Cs′. The
simplified problem 〈Cs′, q(x)〉 can be solved by bottom-up computation [15] or by further
transformation using other equivalent transformation rules in a conjunction-based clause
space [16]. Bottom-up computation and transformation of conjunction-based clauses are
beyond the scope of this paper.

Example 5.3. Consider the Oedipus problem described in [7]. Oedipus killed his fa-
ther, married his mother Iokaste, and had children with her, among them Polyneikes.
Polyneikes also had children, among them Thersandros, who is not a patricide. The
problem is to find a person who has a patricide child who has a non-patricide child. The
difficulty of this problem arises due to the absence of information as to whether Polyneikes
is a patricide or not.
Assuming that “oe,” “io,” “po” and “th” stand, respectively, for Oedipus, Iokaste,

Polyneikes and Thersandros, this problem is represented as a QA problem 〈K,Prob(x)〉



UNFOLDING-BASED SIMPLIFICATION OF QUERY-ANSWERING PROBLEMS 3521

on first-order logic, where K is the conjunction of the logical formulas hasChild(io, oe),
hasChild(io, po), hasChild(oe, po), hasChild(po, th), Pat(oe), ¬Pat(th) and

∀x : ((∃y : (hasChild(x, y) ∧ Pat(y) ∧ (∃z : (hasChild(y, z) ∧ ¬Pat(z)))))→ Prob(x)).

By converting K into a conjunctive normal form, the QA problem 〈K,Prob(x)〉 is trans-
formed into a QA problem 〈Cs,Prob(x)〉, where Cs consists of the following seven clauses:

C1: hasChild(io, oe)← C2: hasChild(io, po)←
C3: hasChild(oe, po)← C4: hasChild(po, th)←
C5: Pat(oe)← C6: ← Pat(th)
C7: Prob(x),Pat(z)← hasChild(x, y), hasChild(y, z),Pat(y)

Let D be the set of all definite clauses with the head predicate hasChild in Cs, i.e., D =
{C1, C2, C3, C4}. Since hasChild does not appear in the left-hand side of any clause in
Cs−D, Cs can be transformed by unfolding using D as follows:

1. By unfolding Cs using D at hasChild(x, y) in C7, the clause C7 is replaced with the
following four clauses:

C8: Prob(io),Pat(z)← hasChild(oe, z),Pat(oe)
C9: Prob(io),Pat(z)← hasChild(po, z),Pat(po)
C10: Prob(oe),Pat(z)← hasChild(po, z),Pat(po)
C11: Prob(po),Pat(z)← hasChild(th, z),Pat(th)

2. By unfolding the resulting clause set four times using D at hasChild-atoms in C8,
C9, C10 and C11, these four clauses are replaced with the following clauses:

C12: Prob(io),Pat(po)← Pat(oe)
C13: Prob(io),Pat(th)← Pat(po)
C14: Prob(oe),Pat(th)← Pat(po)

Since the predicate hasChild does not appear in the right-hand side of any of C5, C6 and
C12-C14, the definite clauses in D are then removed.

The resulting clause set is Cs′ = {C5, C6, C12, C13, C14}. At this point, Pat is the only
predicate of a possible target body atom. Since each of C12, C13 and C14 also contains a
Pat-atom in its left-hand side, no further unfolding is applicable to Cs′. By bottom-up
computation [15] or by further equivalent transformation in a conjunction-based clause
space [16], the simplified problem 〈Cs′,Prob(x)〉 can be solved, with the answer set being
the singleton {Prob(io)}, i.e., Iokaste is the answer to this problem (no matter whether
Polyneikes is a patricide).

Example 5.4. Next, consider the “Tax-cut” problem discussed in [2]. This problem is to
find all persons who can have discounted tax, with the knowledge that:

1. Any person who has two children or more can get discounted tax.
2. Men and women are not the same.
3. A person’s mother is always a woman.
4. Peter has a child, who is someone’s mother.
5. Peter has a child named Paul.
6. Paul is a man.

This background knowledge is represented in the SHOIN (D) description logic, which
is the logical formalism underlying the Web Ontology Language OWL-DL [17], as the
following axioms and assertions2:

2OWL-DL is a W3C recommendation language for ontology representation in the Semantic Web. It
is a syntactic variant of the SHOIN (D) description logic.



3522 K. AKAMA AND E. NANTAJEEWARAWAT

A1: ≥ 2 hasChild v TaxCut A2: Man uWoman v ⊥
A3: ∃motherOf.> vWoman A4: ∃hasChild.(∃motherOf.>)(Peter)
A5: hasChild(Peter,Paul) A6: Man(Paul)

These axioms and assertions are translated into the following first-order formulas:

F1: ∀x : ((∃y1∃y2 : (hasChild(x, y1) ∧ hasChild(x, y2) ∧ notSame(y1, y2)))
→ TaxCut(x))

F2: ∀x∀y : ((Man(x) ∧Woman(y))→ (notSame(x, y) ∧ notSame(y, x)))
F3: ∀x : ((∃y : motherOf(x, y))→Woman(x))
F4: ∃x : (hasChild(Peter, x) ∧ (∃y : motherOf(x, y)))
F5: hasChild(Peter,Paul)
F6: Man(Paul)

Accordingly, the “Tax-cut” problem can be formulated as a QA problem 〈K,TaxCut(x)〉
on first-order logic, where K is the conjunction of the above six first-order formulas.
Using the meaning-preserving Skolemization procedure given in [6], this QA problem is
transformed into a QA problem 〈Cs0,TaxCut(x)〉 on ECLSF, where the clause set Cs0
consists of the following extended clauses:

C1: TaxCut(x)← hasChild(x, y1), hasChild(x, y2), notSame(y1, y2)
C2: notSame(x, y)← Man(x),Woman(y)
C3: notSame(x, y)←Woman(x),Man(y)
C4: Woman(x)← motherOf(x, y)
C5: hasChild(Peter, x)← func(h1, x)
C6: motherOf(x, y)← func(h1, x), func(h2, y)
C7: hasChild(Peter,Paul)←
C8: Man(Paul)←

The clauses C5 and C6 together represent the first-order formula F4, where h1 and h2 are
0-ary function variables.
The clause set Cs0 can be transformed by unfolding and definite-clause removal as de-

scribed below:

1. Cs0 is unfolded with respect to the predicate hasChild as follows:
(a) The set D = {C5, C7} is determined.
(b) Unfolding is applied using D as follows:

(i) The occurrence of hasChild(x, y1) in C1 is selected and, by unfolding using
D, C1 is replaced with:

C9: TaxCut(Peter)← func(h1, y1), hasChild(Peter, y2), notSame(y1, y2)
C10: TaxCut(Peter)← hasChild(Peter, y2), notSame(Paul, y2)

(ii) The occurrence of hasChild(Peter, y2) in C9 is selected and, by unfolding
using D, C9 is replaced with:

C11: TaxCut(Peter)← func(h1, y1), func(h1, y2), notSame(y1, y2)
C12: TaxCut(Peter)← func(h1, y1), notSame(y1,Paul)

(iii) The occurrence of hasChild(Peter, y2) in C10 is selected and, by unfolding
using D, C10 is replaced with:

C13: TaxCut(Peter)← func(h1, y2), notSame(Paul, y2)
C14: TaxCut(Peter)← notSame(Paul,Paul)

2. By definite-clause removal with respect to hasChild, C5 and C7 are removed. The
resulting clause set is Cs1 = {C2, C3, C4, C6, C8, C11, C12, C13, C14}.

3. By unfolding with respect to the predicate notSame, C11-C14 are replaced with:

C15: TaxCut(Peter)← func(h1, y1), func(h1, y2),Man(y1),Woman(y2)
C16: TaxCut(Peter)← func(h1, y1), func(h1, y2),Woman(y1),Man(y2)



UNFOLDING-BASED SIMPLIFICATION OF QUERY-ANSWERING PROBLEMS 3523

C17: TaxCut(Peter)← func(h1, y1),Man(y1),Woman(Paul)
C18: TaxCut(Peter)← func(h1, y1),Woman(y1),Man(Paul)
C19: TaxCut(Peter)← func(h1, y2),Man(Paul),Woman(y2)
C20: TaxCut(Peter)← func(h1, y2),Woman(Paul),Man(y2)
C21: TaxCut(Peter)← Man(Paul),Woman(Paul)
C22: TaxCut(Peter)←Woman(Paul),Man(Paul)

4. By definite-clause removal with respect to notSame, C2 and C3 are removed.
5. By unfolding with respect to the predicate Man, C15-C22 are replaced with:

C23: TaxCut(Peter)← func(h1,Paul), func(h1, y2),Woman(y2)
C24: TaxCut(Peter)← func(h1, y1), func(h1,Paul),Woman(y1)
C25: TaxCut(Peter)← func(h1,Paul),Woman(Paul)
C26: TaxCut(Peter)← func(h1, y1),Woman(y1)
C27: TaxCut(Peter)← func(h1, y2),Woman(y2)
C28: TaxCut(Peter)← func(h1,Paul),Woman(Paul)
C29: TaxCut(Peter)←Woman(Paul)
C30: TaxCut(Peter)←Woman(Paul)

6. By definite-clause removal with respect to Man, C8 is removed.
7. By unfolding with respect to the predicate Woman, C23-C30 are replaced with:

C31: TaxCut(Peter)← func(h1,Paul), func(h1, y2),motherOf(y2, y)
C32: TaxCut(Peter)← func(h1, y1), func(h1,Paul),motherOf(y1, y)
C33: TaxCut(Peter)← func(h1,Paul),motherOf(Paul, y)
C34: TaxCut(Peter)← func(h1, y1),motherOf(y1, y)
C35: TaxCut(Peter)← func(h1, y2),motherOf(y2, y)
C36: TaxCut(Peter)← func(h1,Paul),motherOf(Paul, y)
C37: TaxCut(Peter)← motherOf(Paul, y)
C38: TaxCut(Peter)← motherOf(Paul, y)

8. By definite-clause removal with respect to Woman, C4 is removed.
9. By unfolding with respect to the predicate motherOf, C31-C38 are replaced with:

C39: TaxCut(Peter)← func(h1,Paul), func(h1, y2), func(h1, y2), func(h2, y)
C40: TaxCut(Peter)← func(h1, y1), func(h1,Paul), func(h1, y1), func(h2, y)
C41: TaxCut(Peter)← func(h1,Paul), func(h1,Paul), func(h2, y)
C42: TaxCut(Peter)← func(h1, y1), func(h1, y1), func(h2, y)
C43: TaxCut(Peter)← func(h1, y2), func(h1, y2), func(h2, y)
C44: TaxCut(Peter)← func(h1,Paul), func(h1,Paul), func(h2, y)
C45: TaxCut(Peter)← func(h1,Paul), func(h2, y)
C46: TaxCut(Peter)← func(h1,Paul), func(h2, y)

10. By definite-clause removal with respect to motherOf, C6 is removed.

Since C41 = C44, C44 can be removed. Similarly, since C45 = C46, C46 can be removed.
Since C42 and C43 have the same meaning, C43 can be removed. The resulting clause set
is Cs2 = {C39, C40, C41, C42, C45}.

Next, by the functionality constraints imposed by func-atoms in their bodies, C39, C40,
C41 and C42 are transformed into the following clauses, respectively:

C47: TaxCut(Peter)← func(h1,Paul), func(h2, y)
C48: TaxCut(Peter)← func(h1,Paul), func(h2, y)
C49: TaxCut(Peter)← func(h1,Paul), func(h2, y)
C50: TaxCut(Peter)← func(h1, y1), func(h2, y)



3524 K. AKAMA AND E. NANTAJEEWARAWAT

Since C45 = C47 = C48 = C49, the clauses C47, C48 and C49 can be removed. Since y1
and y do not appear in the head of C50 and no constraint is imposed by the body of it, the
clause C50 can be replaced with:

C51: TaxCut(Peter)←
The resulting clause set is Cs3 = {C45, C51}. Since C45 and C51 have the same head

and C51 is a unit clause, C45 can be removed. The resulting clause set is Cs4 = {C51}.
The original “Tax-cut” problem is thus equivalent to the QA problem 〈{C51},TaxCut

(x)〉, from which the answer set {TaxCut(Peter)} is directly obtained, i.e., Peter is the
only person who gets discounted tax.

6. Fundamental Differences from Existing Approaches. This work differs from
existing works on automated reasoning (e.g., [5, 18, 19, 20]), logic programming (e.g.,
[8, 11, 12]) and query answering for description logics (DLs) and for DLs with rules (e.g.,
[2, 9, 22, 23, 24]) in the following fundamental main points:

1. Definite clauses vs. Arbitrary clauses: Unfolding in this paper works in the extended
space ECLSF with multi-head clauses and existentially quantified function variables.
The conventional unfolding for logic programs [11, 12], which has been extensively
used for transformation of Prolog programs, is not applicable in this extended space,
since it is devised in the usual restricted space of definite clauses, where there is
no need for finding a definite-clause part of a given set of arbitrary clauses. The
extended space ECLSF is necessary for meaning-preserving Skolemization, which is
in turn essential for solving QA problems on full first-order logic based on equivalent
transformation (ET).

2. Conventional Skolemization vs.Meaning-preserving Skolemization: Meaning-preserv-
ing Skolemization is a necessary transformation process for converting an arbitrarily
given first-order formula into a logically equivalent normal form, which can then be
further equivalently simplified using ET rules. Existing approaches to automated
reasoning with first-order formulas, e.g., [5, 18, 19, 20], use the classical Skolemiza-
tion for conversion of given formulas into normal forms. The classical Skolemization
cannot be used for ET-based QA-problem solving since it does not preserve the
logical meaning of a first-order formula [5].

3. Inference-based problem solving vs. ET-based problem solving: The ET principle
opens up the possibility of employing a very large class of transformation rules for
problem solving – any rule whose application always results in meaning-preserving
transformation can be used [3]. As a result, various types of transformation rules,
with varying expressive power, can be introduced, e.g., rules with applicability con-
ditions, possibly involving extralogical predicates, rules with execution parts, and
multi-head rules [4]. By the ET principle, the correctness of a rule is verified in-
dividually, and is not threatened by the addition of any other rule – stepwise in-
cremental algorithm construction and improvement are inherently supported [4, 21].
By contrast, usual approaches to problem solving use only certain specific inference
rules (e.g., the resolution rule [20]). When computation by SLD resolution in logic
programming [8], for example, is viewed in the ET framework, expansion of a node
(generation of its children) in a search tree for finding SLD-refutations corresponds to
an unfolding transformation step. Accordingly, computation in logic programming
can be seen as computation using only one specific class of transformation rules, i.e.,
single-head general unfolding-based rules. By employment of such a restricted class
of rules alone, it is often difficult to achieve effective computation control, in partic-
ular, for preventing infinite computation or for improving computation efficiency.



UNFOLDING-BASED SIMPLIFICATION OF QUERY-ANSWERING PROBLEMS 3525

4. Restricted subclasses of first-order logic vs. Full first-order logic: Without ET-based
problem solving, the range of possible problem-solving methods is restricted, making
it difficult to devise an effective method for coping with QA problems on full first-
order logic. Existing theories for solving QA problems deal only with QA problems
on restricted subclasses of first-order logic, e.g., the definite-clause subclass [8], a
family of description-logic (DL) subclasses [9], an integration of the DL language
SHOIN (D) and DL-safe Horn rules [2], the fragment Description Horn Logic of
first-order logic [22] (which is contained in the intersection of DL and Horn first-
order logic), a hybrid integration of Datalog and the DL language ALC [23], and
that of Datalog and the DL language ALCNR [24].

7. Concluding Remarks. This paper proposes equivalent transformation rules for un-
folding and definite-clause removal in the ECLSF space. The unfolding transformation
rule consists of two steps: (i) find a set of definite clauses from a given clause set Cs, which
may include multi-head clauses, and (ii) unfold clauses in Cs using the obtained definite
clauses. The definite clauses obtained by the first step can be subsequently removed when
they are no longer useful for unfolding and their head predicates do not occur in the body
of any query clause of a QA problem under consideration. Many QA problems can be
simplified by the proposed transformation rules. However, unfolding transformation and
definite-clause removal alone are in general not sufficient for simplifying all QA problems
thoroughly. They should be supplemented with other kinds of equivalent transformation
rules, which will be discussed in subsequent papers.

This work provides an important step towards solving QA problems on first-order logic
through equivalent transformation (ET). Using our ET-based method, a QA problem
〈K, a〉 on first-order logic can be solved as follows: (i) convert the first-order formula K
by meaning-preserving Skolemization [6] into a set Cs of extended clauses in the ECLSF

space, (ii) transform Cs by simplification using unfolding and definite-clause removal, (iii)
compute all representative models of the resulting clause set by bottom-up computation
[15] or by satisfiability solving [14], and (iv) find the answer set ans(K, a) by computing the
intersection of the representative models of the resulting clause set and the set of all ground
instances of a. This approach has many potential practical applications in many significant
application domains, including QA problems on natural languages (e.g., Example 5.3) and
the Semantic Web (e.g., Example 5.4). Using natural language processing, a QA problem
on a natural language can often be translated into a QA problem on first-order logic, which
can then be input to our method. Similarly, queries concerning OWL-based ontological
background knowledge in the Semantic Web, possibly with rules defining relations between
individuals represented in the Semantic Web Rule Language (SWRL) [1], can be converted
into QA problems on first-order logic, which can be dealt with using our method.

Acknowledgment. This research was supported by the Collaborative Research Program
2012, Information Initiative Center, Hokkaido University, and by the National Research
University Project of Thailand Office of Higher Education Commission.

REFERENCES

[1] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer and D. Tsarkov, OWL rules: A proposal and
prototype implementation, Journal of Web Semantics, vol.3, no.1, pp.23-40, 2005.

[2] B. Motik, U. Sattler and R. Studer, Query answering for OWL-DL with rules, Journal of Web
Semantics, vol.3, no.1, pp.41-60, 2005.

[3] K. Akama and E. Nantajeewarawat, Formalization of the equivalent transformation computation
model, Journal of Advanced Computational Intelligence and Intelligent Informatics, vol.10, no.3,
pp.245-259, 2006.



3526 K. AKAMA AND E. NANTAJEEWARAWAT

[4] K. Akama, E. Nantajeewarawat and H. Koike, Program generation in the equivalent transformation
computation model using the squeeze method, Perspectives of System Informatics, Lecture Notes in
Computer Science, vol.4378, pp.41-54, 2007.

[5] C.-L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press,
1973.

[6] K. Akama and E. Nantajeewarawat, Meaning-preserving Skolemization, Proc. of 2011 International
Conference on Knowledge Engineering and Ontology Development, Paris, France, pp.322-327, 2011.

[7] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi and P. F. Patel-Schneider, The Description
Logic Handbook, 2nd Edition, Cambridge University Press, 2007.

[8] J. W. Lloyd, Foundations of Logic Programming, 2nd Edition, Springer-Verlag, 1987.
[9] S. Tessaris, Questions and Answers: Reasoning and Querying in Description Logic, Ph.D. Thesis,

Department of Computer Science, The University of Manchester, UK, 2001.
[10] J. Minker, Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann Pub-

lishers, 1988.
[11] A. Pettorossi and M. Proietti, Transformation of logic programs: Foundations and techniques, Jour-

nal of Logic Programming, vol.19/20, pp.261-320, 1994.
[12] A. Pettorossi and M. Proietti, Synthesis and transformation of logic programs using unfold/fold

proofs, Journal of Logic Programming, vol.41, pp.197-230, 1999.
[13] S. He, K. Akama and B. Li, Generation of specific solvers for query-answering problems with Skolem

functions, International Journal of Innovative Computing, Information and Control, vol.8, no.10(A),
pp.6613-6628, 2012.

[14] K. Akama and E. Nantajeewarawat, Correctness of solving query-answering problems using satisfi-
ability solvers, Technical Report, Hokkaido University, 2012.

[15] K. Akama and E. Nantajeewarawat, A delayed splitting bottom-up procedure for model generation,
Proc. of the 25th Australasian Joint Conference on Artificial Intelligence, Lecture Notes in Computer
Science, vol.7691, Sydney, Australia, pp.481-492, 2012.

[16] K. Akama and E. Nantajeewarawat, Conjunction-based clauses for equivalent transformation of
query-answering problems, International Journal of Future Computer and Communication, vol.1,
pp.5-8, 2012.

[17] P. F. Patel-Schneider, P. Hayes and I. Horrocks, OWL Web Ontology Language: Semantics and
Abstract Syntax, W3C Recommendation, www.w3.org/TR/owl-semantics, 2004.

[18] M. Fitting, First-Order Logic and Automated Theorem Proving, 2nd Edition, Springer-Verlag, 1996.
[19] M. Newborn, Automated Theorem Proving: Theory and Practice, Springer-Verlag, 2000.
[20] J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM,

vol.12, pp.23-41, 1965.
[21] K. Miura, K. Akama and H. Mabuchi, Creation of ET rules from logical formulas representing

equivalent relations, International Journal of Innovative Computing, Information and Control, vol.5,
no.2, pp.263-277, 2009.

[22] B. N. Grosof, I. Horrocks, R. Volz and S. Decker, Description logic programs: Combining logic pro-
grams with description logic, Proc. of the 12th International World Wide Web Conference, Budapest,
Hungary, pp.48-57, 2003.

[23] F. M. Donini, M. Lenzerini, D. Nardi and A. Schaerf, AL-log: Integrating datalog and description
logics, Journal of Intelligent Information Systems, vol.10, no.3, pp.227-252, 1998.

[24] A. Y. Levy and M.-C. Rousset, Combining Horn rules and description logics in CARIN, Artificial
Intelligence, vol.104, no.1-2, pp.165-209, 1998.


