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ABSTRACT. The paper concerns the design of an autotuning procedure for a fractional
order PI*D* controller. Given the specification on crossover frequency and phase mar-
gin the proposed procedure can be applied to the systems with the order greater than two.
The autotuning procedure is divided into two phases: the first one is devoted to the iden-
tification of the process at the desired crossover frequency while the second one sets all the
parameters of the PI*D* controller. The obtained controller ensures an iso-damping re-
sponse of the closed loop system. The simulation results are given comparing the PI* DM
controller with the traditional one, confirming the effectiveness of the approach proposed.
Keywords: Fractional order systems, Auto-tuning, PID control, Iso-damping control

1. Introduction. Starting from their introduction a lot of interest is dedicated to frac-
tional order PID controller that assumes the form given in (1), involving an integrator
of order A and a differentiator of order p, with A\, p € C.

1
PI*DF = K, + K + Kas" (1)

PI*D* has been introduced in [1] and in the same paper it has been demonstrated
that, compared with a classical PID, A = p = 1, it has a better response if it is used in
the control of fractional order systems.

At the moment the research activities are essentially based on the definition of new
effective tuning and auto-tuning techniques for PI*D* controllers based also on the ex-
tension of the classical ones.

In [2, 3], the extension of the derivation and integration orders from the integer to
complex numbers provides a more flexible tuning strategy and, as a consequence, an
easier way to achieve control requirements with respect to classical PID controllers.

In [4], it has been proposed an optimal PI*D* controller based on specified gain and
phase margins which guarantees a minimum integral squared error (ISE) criterion.

Another approach, described in [5, 6], is characterized by the use of a new strategy to
control first-order systems having a long time delay. In this last work it has been applied
a robustness constraint which allows to force the phase of the open-loop system to be flat
at the gain crossover frequency.

Further effective robust tuning and auto-tuning strategies have been proposed in [7-11].

The main drawback of PI*D* auto-tuning algorithm, see [10], lies in the following:
during the phase of plant identification at a frequency with a phase lower than —180°
(plant of order greater than two), it is required to look for a negative value for the delay
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in the auto-tuning equation. In this paper, it has been proposed an improved relay test
routine that allows to overcome this limitation.

From a designer point of view, given the desired crossover frequency w., and phase
margin ¢,,, the prosed procedure allows to design a PI*D* able to ensure a closed loop
system which is both robust versus gain variations and with an iso-damping step response.

The paper is divided into three sections: in the first one the autotuning procedure for
the non-integer PI*D* controller is explained; in the second one illustrative examples are
given and finally some conclusions are reported.

2. Plant Identification and Controller Auto-Tuning. The proposed auto-tuning
procedure has been divided into two steps. The first one, the Relay-test phase, is used to
identify the process at the desired crossover frequency, while the second, the Autotuning,
allows to determine the controller parameters in order to ensure a robust and iso-damping
system response.

After the phases of identification and auto-tuning, Relay and Delay blocks in Figure
1, the switch is commuted on the designed PI*D* controller, and the system works in
closed loop form.

¢

Process »( 1)

Outl

Inl

PPI'D

Fractional Controller

FiGUurE 1. Block diagram of the closed loop system

2.1. Relay-test phase. The relay auto-tuning process has been widely used for indus-
trial applications, see [12, 13]. The choice of relay feedback is motivated by the possible
integration of the system identification and control both in the algorithm and into the
control device.

During the relay test phase the ideal relay is substituted with its describing function
N(A) = 4d/Ar, where A and d are respectively the input and the output of the relay
itself.

By imposing a null reference signal to the closed loop system, see Figure 2, the system
goes in free evolution, so the pseudo-characteristic equation holds:

N(A) x G(jw) x el = —1 (2)

In Equation (2), G(jw) represents the plant frequency response and 6, takes into ac-
count the presence of the delay.

Equation (2) allows to determine the condition for which the process goes to the limit
of stability, approaching the limit cycle oscillations.
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FIGURE 2. Relay test block diagram

When the limit cycle oscillation is held, the plant output signal is a permanent oscilla-

tion with fixed amplitude A, and frequency w,. = 2T—7r

The magnitude and the phase are therefore givercl by:

. 1 A
o(jwe) = =1 + Gw. (4)

To identify the process at different frequencies, Equation (4) permits to easily change
the oscillation frequency w. by acting on the delay #,. Varying appropriately 6, it is
therefore possible to identify the system at the desired crossover frequency we,.

In order to determine the correct 6, value, so that w. = w.,, the following iterative
procedure has been implemented:

Relay-test routine

1) Two delays 6, 6y and the corresponding w1, wy are fixed as the initial condition
of the algorithm.
2) The iterative relation:

0, = M(gn—l - 9n—2) + 0,1 (5)
Wp—1 — Wnp-2
is applied for n steps.
3) If the current value of delay 6, is negative, a zero is added into the forward chain
and the procedure restarts from point 1).
4) If the comparison between w, and w,, is close to zero (~ 0.01) the procedure is
stopped.

As previously introduced, one of the improvements presented in this paper is related to
point 3). The possibility to identify the process with an order greater than two has been
in fact ensured by adding a zero into the forward chain.

2.2. PI*D* tuning. From now on the PI*D* transfer function assumes the following

form: R
)\18 +1 )\28 +1 a
PI'D*(s) = 6
(5) ( s ) < cs+1 ) (6)

In (6), it is possible to distinguish two different control actions; the Proportional-integrative
action and the Proportional-derivative action.

2.2.1. Proportional-integrative action. The proportional-integrative action is obtained th-
rough the term:

(7)

S

PP(s) = <A13+1>A
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This term is intended to flatten the phase of the system around w,, in order to obtain a
system more robust to the gain variations. With this in view the phase slope v close to
Weg is computed by using the following relation:

U= (pTZ+1 - (Pn—l (8)
Wp4+1 — Wnp—1

where w,_; and ¢,,_; are respectively the frequency and the phase at the n—1 iteration of
the relay-test. The delay 6,1 at the n+1 iteration is evaluated via the following relation:

0n+1 = ea + |9a - 9n71| (9)
The phase of the PI*(jw) block is given by:

o (PP (jw)) = A (- arctan <AL>> = (= + arctan(\w)) (10)

1w

and its derivate assumes the form:

d (¢ (PI*(jw))) :A< M ) (11)

dw 1+ (\w)?

To obtain a flat phase slope, (11) must assume, at w = w,,, the opposite value of the
slope given in (8), so it holds:

4 (#@2) = 12)

This relation depends both from A and A;. In order to find both values, the first step is
to derivate (10) with respect to A; as follows:

d ((,0 (PIA(jw))) B 1-— (Alwcg)Z
d\ =) ((1 1 (Alwcg)2)2> 3)

and fixing the derivate equal to zero, the following condition

1— (Mweg)? =0 (14)
allows to determine \; as:
1
A = 15
= (15)

Successively, A is calculated from (12) and assumes the form:

By fixing the previous obtained values of A and A; the proportional-integrative block
has been designed and the following open loop transfer function

G j1at(s) = PI(s) * G(s) (17)

ensures a flat phase around the crossover frequency we,.
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2.2.2. Proportional-derivative action. The term

PDH(s) - <A23+1>"

18
cs+1 ( )

is used to satisfy the phase margin ¢, and the crossover frequency w,, specifications. The
open loop transfer function is now:

F(s) = PD"(s) x G fia(5) (19)
with s = jw,,, the previous relation assumes the form:
F(jweg) = /@™ = cos(p,, — ) + jsin(py, — ) (20)
while for Equation (17) it holds:
G 10t (JWeg) = G f1at(Jweg) |€j@(Gflat(jwcg)) (21)
= |G frat(jweg) | * (€08 (0 (G p1at (jWeg))) + 750 (0 (G prar (jweg))))
Substituting (20) and (21) in (19), the following transfer function for PD*(jw.,) is ob-
tained: \ p F
o+ 1 e
PD"(jweg) = ( 20y ) _ Flite)
:U)\2]wcg + 1 Gflat (]wcg)
where x takes into account of the high frequency pole added to guarantee the implemen-

tation of the controller.
Equation (22) can be rewritten as:

Ao JWeg + 1 o1 .
(L) — (ay+ jb)E —a+ b (23)

=a + jbl (22)

and then:

0}
b:pi*sin (—
1

From Equation (23), the following conditions hold:

ey

- ()\chg :L‘)\chg> (27)
(T AoWeg)?

Ny — <b2+§wz—1 ) (28)

e <b2 +aa_a1— 1 ) (29)

By applying the below reported iterative algorithm it is possible to determine x, A, and
p that represent the design parameters of (22).

1) pis first fixed to a small value (ex. p = 0.48)
) from Equations (24) and (25), a and b are calculated
3) from Equations (28) and (29), Ay and x are estimated
) until > 0, a > 1 and b > 0, p is iteratively incremented if z < 0ora <1orb <0
to obtain the minimum value ppi,
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5) x and A, are respectively estimated at fimin

By adding the conditions @ > 1 and b > 1, to the traditional one x > 0, and starting
with g > 0.48 the algorithm converges recursively, being more efficient than the one
proposed in [11].

3. Numerical Examples. In order to validate the procedures introduced in the previous
sections, the following system has been considered:

The system G(s) to be identified and controlled is characterized by the following ele-
ments: a unity gain, two poles in s = 0 and one pole in s = 0.5.

In this example the design specifications have been fixed as:

® Wy = 1.97%;

® v, = 60°

e Gain variations robustness

To start the relay-test routine, the initial delay is fixed to # ; = 0.05s obtaining the
first oscillating output signal y_; for the closed loop system.

The amplitude, the period and the frequency of this output signal are computed ob-
taining A_; = 0.5753v, T_; = 2.156s and w_; = 2.9143"%4.

The same computation is done fixing a new #; = 0.1s and obtaining Ay = 1.1322v,
To = 3.042s and wy = 2.06557%4.

Starting from the evaluated couples (w_1,60_1) and (wy,y) and by applying Equation
(5), the new delay value #; = 0.1056s is obtained.

The relay-test iterative procedure has been stopped when |w., — w,| = 0.01.

The iteration results are shown in Table 1 where it is possible to note that the desired
cross-over frequency w, = 1.9727 = w,, is reached at the fourth iteration.

By substituting the value of the amplitude and the oscillation period, obtained at the
final iteration, in Equations (3) and (4) it is finally possible to determine the amplitude and
the phase of the G(s) at w,,, that take respectively the values |G (jw.,)| = —24.2173dB
and ¢ (G(jwey)) = —257.6122°.

As it can be noted, see Figure 3, the real values of the magnitude and phase of G(s)
are very close to the estimated ones.

Once the module and the phase of G(s) are determined at the cross-over frequency, the
tuning phase of the PI*D* controller starts.

The first control block that will be considered is the integral one.

To estimate the phase slope around w.y, a value of 0., ; equal to 0.08s is applied
in Equation (9) obtaining 6.,.5 = 0.1392s with the corresponding frequencies: wg, 5 =
2.30747%, wegy5 = 1.751279¢

Then from Equation (4) it is possible to determine the phases: ¢ (G(jw,—s5)) = —2.957
rad and ¢ (G(jwyys)) = —2.8978rad.

TABLE 1. Delay, amplitude, period and frequency results during the three iterations

n 91! (S) AR (v.) TJI (s) rad

Wy (T)
-1 0.05 0.5753 2.156 29143
0 0.1 11322 3.042 2.0655
1 0.1056 1.1923 3.126 2.01
2 0.1096 1.2365 3.185 1.9727
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The phase slope v = —0.1064 is therefore obtained from Equation (8).
Finally from Equations (15) and (16), A; = 0.5069 and A = 0.4198 are determined so

that the integral part of the fractional order controller is fixed:

S

P = (

0.5069s + 1

>0.4198

From Equation (17) it is possible to compute |G fiq:(jweg)| = —25.4309dB and ¢(G fiar

(jweg)) = —276.5°, showed also in Figure 4.
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FIGURE 5. PI*D*(jw) bode diagram

The successive PD* tuning phase has been performed as described in Section 2.2.2
looking for a ¢, = 60°. According to the described procedure, the parameters ; = 1.826,
x =0645%x10"", Ay = 4.4251 and ¢ = = * Ay = 2.8542 x 1075 are determined so that the
P D" block assumes the form:

4.42515 + 1 1826
2.8542 % 1065 + 1

PD*!(s) = (

Respectively in Figures 5 and 6, the bode diagrams of the PI*D*(jw) controller and the
open loop F(jw) transfer function are plotted. As it is possible to note the specifications
have been respected.

The Simulink model of the PI*D* controller is shown in Figure 7, where the integro-
differential equations of fractional order have been implemented according to the definition
of Grunwald-Letnikov in [14]. By using this definition it is not necessary to approximate
the fractional order PID controller with a transfer function of integer and high order so
as a consequence the simulation results speed and without approximation.

The step responses of the controlled system (Figure 7) are shown in Figure 8, where it
can be observed that the system exhibits robust performances to gain variations, keeping
constant the overshoot of the time response.

In the following it is reported the tuning of a standard PID controller on the same
plant. The three PID parameters have been fixed applying the closed loop Zielgler-
Nochols methods.

In Figure 9, the system output and the values of K. and T, used during the tuning
procedure are shown.

It is possible to note the small values of the gain K. and the long T, period. The
controller parameters are reported below, and the step response is depicted in Figure 10.
K,=06%10"", T, = 1% 10* T, = 2.5 % 10%.

Even if the system remains stable the setpoint is reached very slowly.
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FiGure 7. Block diagram of the controlled system

As a further example the following fractional order system has been taken into account:

1
Gy(s) = (m) (31)

In this case the design specifications have been fixed as:

— orad
° wcg—Qsec

® ¢, = 60°
e Gain variations robustness
In Figure 12, it is reported the bode diagram of the fractional order system.

By applying the proposed auto tuning procedure the following PI*D* controller has
been determined:

S 0.671ls+1

PP DH(s) = <0.5s + 1>°'32 <1061.5s + 1)“5
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Step responses with the variation of gain K
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FiGurE 9. Closed loop system output during tuning procedure

Figure 12 shows the Bode diagram of the open loop system:
F(s) = PI*D*(s) x G(s)

It is possible to note that the desired specifications are met. Finally, Figures 13 and 14
show respectively the nominal closed loop step response and the step response for different

values of the open loop gain.
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FIGURE 10. Step response of the system with standard PID controller
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As it happens in the case of fractional order system, the proposed autotuning procedure
allows to design effective and robust controller. It is relevant to outline that the proposed
designed strategy has been implemented on an HIL (Hardware In the Loop) system, a
Dspace board. Both the relay test and the PI*D* tuning have been in fact designed to
be applied to real world system using the HIL approach. In the previous examples the
systems to be controlled have been simulated via their transfer function, the fact remains
that can be replaced with the real system interfaced with the HIL device.

4. Conclusions. An auto-tuning method for fractional order PI*D* controller has been
proposed. The method permits a flexible and direct selection of the parameters of the
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controller through the knowledge of the magnitude and phase of the plant at the fre-
quencies of interest. Specifications on crossover frequency, w.q, and phase margin, ¢,,,
can be easily accomplished guaranteeing iso-damping response of the system versus gain
variations. Experimental results illustrate the effectiveness of the proposed approach.
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