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Abstract. In this paper, we propose a design method for finite impulse response (FIR)
variable digital filters (VDFs) obtaining equiripple characteristic, even if notch frequen-
cies change. The changes in filter coefficients for changes in notch frequencies are ap-
proximated by polynomials using variable parameters. In this method, the minimization
problem for the polynomial coefficients with variable notches is formulated as semidef-
inite programming (SDP) in the frequency domain. As these variable parameters are
varied continuous for defined ranges, the amplitude response of the proposed VDF con-
tinuously changes. On the other hand, the number of polynomial coefficients increases
when variable parameters are a plural number or high order. Therefore, we also propose
a method for reducing the number of polynomial coefficients. In addition, we present that
the proposed VDF can be implemented using the Farrow structure, which is suitable for
real-time signal processing. The usefulness of the proposed VDF is demonstrated through
examples.
Keywords: FIR filters, Variable notches digital filters, SDP method, Farrow structure

1. Introduction. Recently, digital signal processing is required in various fields in [13-
16]. In this paper, the filter can instantly change the frequency characteristics in digital
signal processing which is referred to as variable digital filters (VDFs). The VDFs are
important in fields such as communications, measurement, sound, and image processing
[2]. Recently, several algorithms for the design of such filters have been proposed [2-6].

In the field of instrument and control, automatically dynamic measurement systems
to measure object weights are used in logistics and food industry, etc. The systems
are composed of belt conveyor and road cell, and is called checkweigher. Checkweighers
have a problem that noises of error factor change according to speed of belt conveyor
and installation surrounding. Digital filters are used to reduce these noises with the aim
of high accuracy and high speed measurement [5-8]. Digital filters can be classified as
finite impulse response (FIR) filters or infinite impulse response (IIR) filters. FIR filters
with exactly linear-phase characteristics are important for applications such as waveform
transmission and image processing [1]. To perform an exact measurement, we need the
filter with high stopband attenuation. FIR filters with high stopband attenuation need
high filter’s order. Therefore, the delay for the calculation becomes very large. To reduce
the delay, we designed a linear-phase FIR filters having a piecewise high attenuation
characteristics in the stopband, unlike the overall stopband that achieves high attenuation.
The range of the high attenuation in the stopband needs to vary according to differences
of the measurement environments and the measurement objects for high speed and high
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Figure 1. The amplitude response of filter when a notch moved

accuracy measurement. Therefore, we proposed a linear-phase FIR VDF that changes the
range of high attenuation in the stopband by using variable parameters [5, 6]. As a result,
the filter has the same measurement accuracy as a filter with high attenuation in the
overall stopband, and it can be implemented with fewer filter’s order. A highly accurate
measurement also becomes possible by applying a notch to the principal noise frequency
leading to measurement error. In this case, it is necessary to change the notch frequency
according to the measurement environments and measurement objects. The method in
[8] is used moving average filters and adaptive IIR notch filters to reduce noise. However,
moving average filters have very low attenuations in the stopband. Moreover, an adaptive
IIR notch filter with only a single notch cannot reduce noises generated by various factors.
FIR filters are preferable over IIR notch filters for continuous measurements because IIR
notch filters continue transient phenomena. Then, we are considered that notch positions
of FIR filters are moved to the principal noise frequency. If the position of the notch
in the FIR filter is simply moved as shown in the solid line of Figure 1, the amplitude
characteristic in the stopband is undesirable. As a result, it is impossible to measure the
same accuracy as the filter before the notch is moved. FIR VDFs have never been proposed
which the amplitude characteristics do not change, even if notch frequency changes.
In this paper, we present a transfer function for a linear-phase equiripple FIR VDF

which does not change the amplitude characteristics of the filter, even if notch frequencies
change. The changes in filter coefficients for changes in notch frequencies are approximated
by polynomials using variable parameters. In this method, the minimization problem for
filter coefficients with variable notches is formulated as semidefinite programming (SDP)
in the frequency domain. These variable parameters have arbitrary real numerical values.
Furthermore, as these variable parameters are varied continuous for defined ranges, the
amplitude response of the proposed VDF continuously changes. On the other hand, the
number of polynomial coefficients increases when the variable parameters are a plural
number or high order. Therefore, we also propose a method for reducing the number of
polynomial coefficients. The values of the term of high order in the polynomial are very
small when the polynomial orders are high. As a result, the polynomial coefficients can
be reduced. In addition, we demonstrate that the proposed VDF can be implemented
using the Farrow structure, which is suitable for real-time signal processing. We confirm
the effectiveness of the proposed method through design examples and a filtering result.

2. Design Problem. In general, the transfer function of the FIR digital filter of order
2N is

H (z) =
2N∑
k=0

a (k) z−k, (1)

where a(·) is the real filter coefficient.
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Figure 2. Desired characteristics

Now, in order to change some variable notches, Equation (1) is transformed using some
variable parameters (θ1, θ2, · · · , θB).

H (z, θ1, θ2, · · · , θB) =
B∏
b=1

{
1− 2 cos (θbπ) z

−1 + z−2
} 2N−2B∑

k=0

ã (k, θ1, θ2, · · · , θB) z−k ,

(2)
where ã (k, θ1, · · · , θB) changes when parameter θb changes, the ranges of each variable
parameter θb are

θ1 ∈ [θ1,min, θ1,max]
θ2 ∈ [θ2,min, θ2,max]

...
θB ∈ [θB,min, θB,max]

, (3)

and each θb is limited 0 < θb < 1. Then, the coefficient of the filter with variable
notches ã (k, θ1, · · · , θB) is assumed to be a linear combination of some basic functions
of the variable parameters θb and the polynomial coefficients (sub filter coefficients)
h (k, l1, l2, · · · , lB), as given by

ã (k, θ1, θ2, · · · , θB) =
L1∑
l1=0

L2∑
l2=0

· · ·
LB∑
lB=0

h (k, l1, l2, · · · , lB) θl11 θl22 · · ·θlBB , (4)

where L1, L2, · · · , LB are order of the polynomial. As these parameters are varied con-
tinuous for the defined ranges, the amplitude response of FIR VDF with variable notches
also continuously changes. For notational simplicity, we assume that filter is type 1 and
B is 2 in the following.

Substituting Equation (4) into Equation (2), the frequency response of the proposed
linear-phase FIR VDF with two variable notches is

H (ω, θ1, θ2) =
2∏

b=1

4 {cos (ω)− cos (θbπ)}
N−2∑
k=0

L1∑
l1=0

L2∑
l2=0

g (k, l1, l2)θ
l1
1 θ

l2
2 cos (kω) , (5)

where

g (k, l1, l2) =

{
h (N − 2, l1, l2) k = 0
2h (N − 2± k, l1, l2) otherwise

. (6)

We assume that the desired amplitude response, shown in Figure 2, is denoted by

D (ω) =

{
1 0 ≤ ω ≤ ωp

0 ωs ≤ ω ≤ π
, (7)

where ωp and ωs are the normalized angular frequencies in the passband edge and the
stopband edge, respectively.
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Next, we define an error function

e (ω, θ1, θ2) = D (ω)−H (ω, θ1, θ2) . (8)

We minimize the error function e(ω, θ1, θ2) in the minimax sense. That is

minimize
G

[
max
ω∈Ω

|e (ω, θ1, θ2)|
]
, (9)

where

G = [ g (0, 0, 0) · · · g (k, l1, l2) · · · g (N − 2, L1, L2)︸ ︷︷ ︸
(N−1)(L1+1)(L2+1)

] , (10)

and Ω is the frequency of interest Ω = [0, ωp] ∪ [ωs, π]. To compute the design problem
Equation (9) using computers, we digitize the frequency ω and the variable parameter of
notch θ1 and θ2. That is, the discrete version of error function Equation (8) is defined as

e (ωm, θ1,q, θ2,r) = D (ωm)−H (ωm, θ1,q, θ2,r) , (11)

where M , Q and R are the number of evaluation points, and 1 ≤ m ≤ M , 1 ≤ q ≤ Q,
1 ≤ r ≤ R.
Therefore, the minimization problem in Equation (9) can be reformulated as

minimize λ (12)

subject to e (ωm, θ1,q, θ2,r)
2 ≤ λ (13)

where λ is the maximum allowable error.
Using Schur complement, the constraints in Equation (13) are equivalent to

Γ (ωm, θ1,q, θ2,r) =

[
λ e (ωm, θ1,q, θ2,r)

e (ωm, θ1,q, θ2,r) 1

]
�0 . (14)

Therefore, a discrete version of minimizing in Equations (12)-(14) is given as follows:

minimize dxT , (15)

subject to U (x)�0, (16)

where

d =
[1 0 · · · 0︸ ︷︷ ︸

(N−1)(L1+1)(L2+1)

],
(17)

U (x) = diag[ Γ (ω1, θ1,1, θ2,1) · · · Γ (ωm, θ1,q, θ2,r) · · · Γ (ωM , θ1,Q, θ2,R) ], (18)

x = [λ G ]T . (19)

Since matrix U (x) is affine with respect to x, Equations (15)-(19) are a SDP problem
as in [11]. However, the number of polynomial coefficients increases if the number of
variable parameters increases or polynomial orders are high. Next, we propose a method
for a reducing the number of polynomial coefficients.
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3. Method for Reducing the Number of Polynomial Coefficients. In this section,
we show a method for reducing the number of polynomial coefficients.

The filter coefficient ã(·) in Equation (4) is composed of the sum of the product of
polynomial coefficients h(·) and power of variable parameters θb. Here, the value of each

variable parameters θb is 0 < θb < 1. θlbb becomes very small when lb in Equation (4) is
large. In addition, the value of the product of the many variable parameters in Equation
(4), θl11 θ

l2
2 · · · θlBB , is also very small. Therefore, in the term of the large power of many

variable parameters, because the influence given to the variable coefficient is a small, there
is a possibility that the polynomial coefficients can be reduced like a multivariable Taylor
expansion.

The filter coefficient ã(·) in Equation (4) is redefined as follows:

ã (k, θ1, θ2, · · · , θB) =
Y1∑

y1=0

Y2∑
y2=0

· · ·
YB∑

yB=0

h (k, y1, y2, · · · , yB) θy11 θy22 · · ·θyBB , (20)

Yb =


K −

b−1∑
j=1

yj if K −
b−1∑
j=1

yj ≤ Lb

Lb if K −
b−1∑
j=1

yj > Lb

, (21)

where K is

K ≤
B∑
b=1

Lb. (22)

If b− 1 is equal to zero in Equation (21), the Σ terms will also equal to zero. The number
of coefficients of the polynomial can be reduced by limiting the value of K to be smaller
than the sum of the orders of a polynomial. That is, the total number of polynomial
coefficients in Equations (20)-(22) is less than the number of polynomial coefficients in
Equation (4).

4. Farrow Structure. The frequency response of the proposed VDFs with variable pa-
rameters when the number of polynomial coefficients is reduced, that is given by

H (z, θ1, θ2) =
2∏

b=1

{
1− 2 cos (θbπ) z

−1 + z−2
} 2N−4∑

k=0

Y1∑
y1=0

Y2∑
y2=0

h (k, y1, y2) θ
y1
1 θy22 z−k. (23)

The frequency response has fixed polynomial coefficients h (k, y1, y2) with variable param-
eters θb. Then, Equation (23) can be rearranged as

H (z, θ1, θ2) =
2∏

b=1

{
1− 2 cos (θbπ) z

−1 + z−2
} Y1∑

y1=0

θy11

Y2∑
y2=0

θy22

2N−4∑
k=0

h (k, y1, y2)z
−k. (24)

We apply the Farrow structure in [9, 10] to the transfer function given by Equation
(23). Figures 3 and 4 show the proposed structure. These figures clearly show that
the operation of the Ybth power of variable parameters θb becomes unnecessary for each
coefficient h(k, y1, y2). The proposed structure has a fixed number of multiplications
for filter coefficients of same number of direct structure in Equation (23). However,
the proposed structure requires fewer multiplications for variable parameters θb than the
direct structure. Consequently, the proposed structure requires only a small number of
multiplications to obtain a new frequency characteristics, which is particularly suitable
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Figure 3. The proposed Farrow structure
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Figure 4. Structure of αy1 in Figure 3

for high-speed tuning. Note that, we show the structure with two parameters in this
paper, the proposed structure can be applied to more than two parameters.

5. Design Example. In this section, we show design examples to demonstrate the ef-
ficiency of the proposed VDF with variable notches. These design examples have been
designed using a workstation that runs 64-bit Linux (CentOS 5.3) and has a 3.33-GHz
Intel Xeon W5590 quad-core processor and a main memory of 48 GB. SeDuMi [12] was
used to solve SDP. Moreover, we compare normal version with the proposed method in
Section 3. VDF is designed to satisfy the following specifications:
Order of filter: 2N = 70
Order of polynomial: L1 = 3, L2 = 3
Passband edge: ωp = 0.2π
Stopband edge: ωs = 0.3π
Variable notch range: θ1 = 0.4 ∼ 0.5, θ2 = 0.75 ∼ 0.85
In this example, 450 grid points were used with 100 points in the passband and 350

points in the stopband. Evaluation points of the variable parameters for each moving
notches were equally divided into 5. Figures 5 and 6 show the amplitude response of the
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Figure 5. Amplitude response of θ1 = 0.45, θ2 = 0.8 in design example
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Figure 6. Amplitude response of θ1 = 0.47, θ2 = 0.79 in design example

proposed VDF. It is clear from Figures 5 and 6, the frequencies of the notches have changed
depending on the variable parameters. Moreover, even if notch frequencies change, the
amplitude responses have equiripple characteristics. The design time in this example was
23.0 minutes.

Now, we show the design example using a method for reducing the number of polynomial
coefficients in Section 3. In this example, we set the limiting value K = 4. Figures 7 and
8 show the amplitude response of the proposed VDF. It is clear from Figures 7 and 8,
the amplitude responses of the obtained filter using the proposed method for reducing the
number of polynomial coefficients have equiripple characteristics. Table 1 shows minimum
attenuations in the stopband of obtained using normal version and the proposed method
in Section 3. The minimum attenuations in both versions are almost the same values.
Now, we compare the number of polynomial coefficients each version. Normal version
is 1072 and reducing version is 871. As a result, the proposed reducing method can
effectively reduce the number of polynomial coefficients. The design time in this example
was 16.3 minutes.
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Figure 7. Amplitude response of θ1 = 0.45, θ2 = 0.8 in design example
using a method for reducing the number of polynomial coefficients
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Figure 8. Amplitude response of θ1 = 0.47, θ2 = 0.79 in design example
using a method for reducing the number of polynomial coefficients

In addition, the proposed method has the advantage that the proposed VDF does
not need to be redesign only by changing the parameters, even if the demanded filter
characteristics changed.
We compare the proposed VDF with the linear-phase FIR filter. Figure 9 shows wave-

form in the time domain after filtering by the proposed VDF. In addition, Figure 10
shows waveform in the time domain after filtering by the linear-phase FIR filter which
is designed by Remez algorithm. In the field of instrument and control, a value of three
times of standard deviation (three-sigma) is generally used to evaluate the performance of
measurement hardware. Then, we show the three-sigma between the proposed VDF and
the linear-phase FIR filter in Table 2. As a result, it is clear from Figures 9, 10 and Table
2 that the proposed VDF effectively reduces the noises compared with the linear-phase
FIR filter.

6. Conclusion. In this paper, we proposed a design method for linear-phase equiripple
FIR VDF which does not change those frequency characteristics, even if notch frequencies
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Table 1. Comparing minimum attenuations at the stopband in design example

θ1 = 0.45, θ2 = 0.8 θ1 = 0.47, θ2 = 0.79
Normal version −61.8695 dB −61.2118 dB
Reducing version −61.8726 dB −61.1984 dB

Table 2. Comparing three-sigma values between the proposed VDF and
the linear-phase FIR filter

Proposed VDF Linear-phase FIR filter
Three-sigma 0.2785 0.7754
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Figure 9. Filtering result using the proposed VDF
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Figure 10. Filtering result using the linear-phase FIR filter

change. The changes in filter coefficients for changes in notch frequencies are approximated
by polynomials using variable parameters. The variable parameters are varied continuous
for defined ranges. In the proposed design method, the minimization problem for the
coefficients of the filter with variable notches was formulated as SDP in the frequency
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domain. Then the amplitude response of the proposed VDF continuously can be changed
according to variable parameter values.
Furthermore, we also proposed a method for reducing the number of polynomial coeffi-

cients. In addition, we presented a suitable structure for real-time signal processing. We
demonstrated the effectiveness of the proposed method through numerical examples.
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