
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 9, September 2013 pp. 3537–3548

A HYBRID OF ROUGH SETS AND GENETIC ALGORITHMS
FOR SOLVING THE 0-1 MULTIDIMENSIONAL

KNAPSACK PROBLEM

Hsu-Hao Yang, Ming-Tsung Wang and Chung-Han Yang

Department of Industrial Engineering and Management, M608 Management Building
National Chin-Yi University of Technology

No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan
yanghh@ncut.edu.tw

Received July 2012; revised December 2012

Abstract. The multidimensional 0-1 knapsack problem (MKP) is a well-known NP-
hard combinatorial optimization problem. This paper uses a methodology that integrates
a reduct of rough sets (RS) into the crossover operator of a genetic algorithm (GA) to
solve the MKP. Two algorithms are presented in this paper; one selects the crossover
points either randomly or via the reduct, whereas the other selects the crossover points
solely by the reduct. The performance of these two algorithms was compared with a stan-
dard GA using test cases from the literature. According to the experimental results, this
integration obtains both better quality and more clustered solutions, and could possibly
improve the performance if some mechanisms are developed in the algorithm. The results
justify the integration and demonstrate an alternative for improving the performance of
the GA.
Keywords: Multidimensional knapsack problem, Rough sets, Genetic algorithms, At-
tribute reduction

1. Introduction. The multidimensional 0-1 knapsack problem (MKP) can be stated as
follows:

Maximize z =
n∑

j=1

pjxj (1)

subject to
n∑

j=1

rijxj ≤ bi, i ∈ M = {1, . . . ,m}, (2)

xj ∈ {0, 1}, j ∈ N = {1, . . . , n}, (3)

where n is the number of items, and m is the number of knapsack constraints. Each
constraint in (2) is referred to as a knapsack constraint. Each item, j ∈ N , consumes
rij resources in the ith knapsack and generates pj units of profit. The objective is to
choose the subset of items that generates the maximum profit without exceeding the set
capacity constraints. According to [1], many practical problems can be formulated as the
MKP. For example, given a capital budgeting problem where project j has a profit pj and
consumes rij units of resource i, the goal is to find a subset of n projects so that the total
profit is maximized, and all resource constraints are satisfied.

The MKP is a well-known NP-hard combinatorial optimization problem commonly
solved via dynamic programming, branch and bound, and so on. Readers are referred to
[2] for a recent survey of the exact methods and heuristics for solving the MKP. Given
the intractability of the MKP solutions, this paper extends the work based on [3], which

3537

3538 H.-H. YANG, M.-T. WANG AND C.-H. YANG

integrates the attribute reduction (interchangeably referred to as the reduct) in rough
sets (RS) introduced by [4] into the crossover operator in the genetic algorithm (GA)
introduced by [5]. GAs are evolutionary algorithms (EAs) that have been widely applied
and found useful for solving computationally intractable problems, such as NP-complete
problems. The RS has the capability to process data sets containing uncertainty, reduce
the size of such data sets, and generate decision rules from these data sets. In these
data sets, certain attributes may be redundant and can be eliminated without reducing
the original classification quality. The process of finding a smaller set of attributes in
an RS that ensures the same classification quality is called attribute reduction, and the
underlying set is referred to as a reduct.
The technical content in terms of significance and innovation in the paper is stated as

follows. First, since the successful implementation of a GA to solve the MKP by [1], GAs
have been widely applied to the MKP. Tavares et al. [6] classified the GAs proposed in the
literature into two main groups according to their representation and variation operators.
Second, Raidl and Gottlieb [7] suggested that the success of EAs mainly depend on the
representation of the solution candidates and variation operators used. Varnamkhasti and
Lee [8] also suggested that GA performance is dependent on the genetic operators and the
type of crossover operator in particular. These two articles highlight the importance of
crossover operators. Third, according to [9], the integration of a reduct into the crossover
operator appears to provide higher quality and more clustered solutions for 0-1 knapsack
problems. Motivated by these three facts, we present two algorithms in this paper to
investigate how the integration performs when solving the MKP. On the one hand, we
further the area of MKP research by developing several problem solving innovations. On
the other hand, our approach primarily differs from the proposed GAs in that we use the
reduct notion for the crossover operator. As will be reviewed in more details later, to the
best of our knowledge, we are the first to integrate a reduct into a crossover when solving
the MKP. Our positive results reveal that this integration is a promising approach for
tackling the MKP. In summary, the major contribution of this study is its variation of
the crossover operator based on the reduct.
This paper presents two algorithms based on the reduct for the crossover operator. The

first algorithm, referred to as CRGA, uses either the attributes obtained from the reduct,
or random points if no reduct is found. In contrast, the second algorithm, referred to as
SRGA, only uses those attributes obtained from the reduct to crossover, and no crossover
occurs if no reduct is found. To investigate the results, we compare the performance of
the two algorithms to a standard GA in terms of the solution quality and computational
convergence, which will both be defined later. According to the computational results,
the integration primarily provides an advantage by producing higher quality and more
clustered solutions. This advantage justifies the integration and shows an alternative to
standard GAs while improving their performance. However, the algorithms have trouble
finding optimal solutions for certain test cases. Despite these not uncommon difficulties
in finding optimal solutions for computationally intractable problems, the size of our test
cases was limited relative to those reported in the literature. With regard to testing sizes,
Khuri et al. [10] only tested a small number of problems, and Thiel and Voss [11] obtained
results based on moderately sized test problems.
The remainder of this paper is organized as follows. Section 2 briefly reviews the liter-

ature. Section 3 provides background on the standard GA and RS. Section 4 introduces
the CRGA and SRGA in more detail. Section 5 compares and discusses the empirical
results. Section 6 presents conclusions and future research directions.

HYBRID OF ROUGH SETS AND GENETIC ALGORITHMS 3539

2. Literature Review. The literature is reviewed, though far from exhaustively, from
primarily two perspectives, either (1) EAs are included or (2) exact and/or heuristic
methods are used to solve the MKP. We begin by including EAs.

Varnamkhasti and Lee [8] proposed several techniques to tackle premature convergence
in GAs by controlling the population diversity. The authors compared the results to
those of other genetic operators, heuristics, and local search algorithms commonly used
for solving the MKP. Al-Shihabi and Ólafsson [12] presented a hybrid algorithm and com-
pared to the state-of-the-art solution techniques. Ke et al. [13] proposed an ant colony
optimization approach to deal with the MKP and performed computational experiments
on benchmark problems. Tavares et al. [6] investigated five representations of the MKP
to better understand of the role of both representation and heuristics in the MKP. Raidl
and Gottlieb [7] provided guidelines and practical help for designing appropriate repre-
sentations and operators for EAs by studying six different representations and associated
variation operators for the MKP. Chu and Beasley [1] applied a GA to the MKP and
showed that it is effective for finding solutions with good quality. Khuri et al. [10] de-
veloped a GA using standard operators, tested it on a small number of standard test
problems, and reported only moderate results. Thiel and Voss [11] used simple heuristic
operators based on local searches, tested them on a set of standard test problems, and
obtained promising results for test problems of moderate size.

Angelelli et al. [14] applied a kernel search framework to solve the MKP and con-
cluded that this method is effective and efficient with respect to known, problem-specific
approaches. Boyer et al. [15] presented a method to combine dynamic programming
and branch-and-bound to solve the MKP and tested several randomly generated test
sets and problems from the literature. Boyer et al. [16] presented two heuristics for the
MKP and showed their approaches gave better results than existing heuristics. Puchinger
et al. [17] studied the MKP and showed the effectiveness of their proposed methods.
Akcay et al. [18] proposed a new greedy-like heuristic method and demonstrated that
significantly improves the computational efficiency of the existing methods and generates
robust, near-optimal solutions. Bertsimas and Demir [19] presented an approximate dy-
namic programming approach for solving the MKP and concluded that the base-heuristic
approach used to approximate the value function is a promising computational approach
worthy of further investigation. For a comprehensive review of the exact methods and
heuristics for solving the MKP, we refer readers to [2,20,21].

3. GA and RS. In this section, we briefly introduce the standard GA and RS.

3.1. GA. A GA is an evolutionary algorithm developed from the natural evolutionary
process. In general, GAs start by selecting an initial population then iteratively appliesy
operators to reproduce new populations, evaluate these populations, and decide whether
the algorithm should continue. GAs differ from classical optimization algorithms primarily
in that they operate on a population of individuals instead of parameters. This population-
based operation enables GAs to process in parallel and search a solution space rather than
a single solution, which reduces the likelihood of converging to a local solution in the early
stages. Each individual in a population is encoded as a chromosome that represents a
candidate solution. A chromosome is composed of genes that are usually binary. The
evaluation of an individual is determined by the fitness function value. A standard GA
includes the following steps.

• Generate an initial random population of chromosomes.
• Evaluate the chromosome population using an appropriate fitness function.
• Select a subset of chromosomes with better fitness values as parents.

3540 H.-H. YANG, M.-T. WANG AND C.-H. YANG

• Cross-over the pairs of parents with the probability (Pc) to produce offspring.
• Mutate the offspring chromosomes with the probability (Pm) to avoid early conver-

gence into a local solution.
• Reevaluate the fitness values of the offspring.
• Terminate the algorithm if the stopping criteria are satisfied.
In the selection step, an “elitism” strategy may be considered where a proportion (Pe)

of the chromosomes is placed with the offspring, and one of the selection schemes, such as
“roulette wheel”, can be used. In the crossover step, one can use either a single-point or
uniform-point to interchange the chromosome parts. For more details about GAs, refer
to [22].

3.2. RS. In the RS, a database can be treated as an information table that is a quadruple
S =< U , Q, V , f >, where U is the universe consisting of a set of objects, Q is a set of
attributes, V is a set of values = ∪q∈QVq with Vq the value for attribute q, and f : U×
Q → V is a function such that f(x, q) ∈ Vq for every q ∈ Q, x ∈ U .
Objects characterized by the same amount of knowledge (or information) are said to

be indiscernible. That is, given the set of attributes A ⊆ Q and objects x, y ∈ U , x
and y are indiscernible by A if and only if f(x, a) = f(y, a) for every a ∈ A. Every set
of attributes A forms an equivalent relation in the universe U . This relation is referred
to as the A-indiscernibility relation and can be denoted by IND(A), which partitions the
universe, U , into a family of the equivalence classes {X1, X2, . . . , Xn}. This partition
is commonly referred to as a classification and denoted by U/IND(A). An equivalence
class, Xi, for the relation IND(A) is called an A-elementary set and denoted by [x]A if it
contains an object x.
Any objects that cannot be distinguished exactly given the set of the attributes could

be approximated. Such an approximation allows us to define a set by a pair of sets, i.e.,
the lower and upper approximations. Let A ⊆ Q and X ⊆ U ; the A-lower approximation,
denoted by AX, and A-upper approximation, denoted by ĀX, for set X are defined as
follows:

AX = {x ∈ U : [x]A ⊆ X} (4)

ĀX = {x ∈ U : [x]A ∩X 6= φ} (5)

According to these definitions, x ∈ AX means x certainly belongs to X, while x ∈ ĀX
possibly belongs to X. The difference between ĀX and AX is called the A-boundary of
X and is denoted as follows:

BNA(X) = ĀX − AX (6)

BNA(X) consists of objects that do not certainly belong to X given A. A set X is said
to be rough (or crisp) if its BNA(X) is non-empty (or empty).
In an information system, some attributes may be redundant in the sense that eliminat-

ing them will not reduce the classification power of the original system. We described in
the introduction that the RS can eliminate redundant attributes via attribute reduction
to determine the set reduct. Formally, given A and B ⊆ Q, a reduct is a minimal set of
attributes such that IND(B) = IND(A). In other words, a reduct is the minimal non-
redundant set of attributes that ensures the same quality for classifications for universe
U .

4. The Algorithms. In this section, we describe the CRGA and SRGA, beginning with
the basic idea behind the algorithms.
As stated earlier, a standard GA relies on operators such as selection, crossover, and

mutation. Also recall that, in the RS, attribute reduction process can ensure the same

HYBRID OF ROUGH SETS AND GENETIC ALGORITHMS 3541

Figure 1. An illustration of applying the reduct to the crossover

(a)

(b)

Figure 2. (a) Flowchart for the CRGA, (b) flowchart for the SRGA

classification quality using a smaller set of attributes. We hope that more representative
genes can be generated from the reduced attributes and used as the basis for crossover.

3542 H.-H. YANG, M.-T. WANG AND C.-H. YANG

To apply the RS, we treat a population as an information system consisting of chromo-
somes with each chromosome represented by a set of condition attributes and a decision
attribute. For the knapsack, i, associated with the capacity constraint, bi, each condition
attribute represents the selection of an item, xj, and the decision attribute represents the
feasibility of the underlying chromosome in the population. In this way, encoding a gene
simply becomes binary with a value of “1” meaning item xj is selected and a decision
with a value of “1” meaning the chromosome satisfies the knapsack’s capacity bi. After
formulating the set of items (x1, x2, . . . , xn) as a set of condition attributes, we can use the
attribute reduction process to eliminate redundant items while preserving the feasibility.
To illustrate how the reduct is applied to the crossover, consider the two attribute

reduct (a2, a3) in Figure 1. If these two attributes are identified as elements in the reduct,
they are used as gene points for crossover. The CRGA and SRGA fundamentally differ
in selecting gene points for crossover when no reduct is found. Figure 2(a) and Figure
2(b) show the flowcharts for both CRGA and SRGA. As shown in Figure 2(a), CRGA
operates on the principle that, if a reduct can be found, then the genes in that reduct
are selected for crossover; otherwise, a single-point selection is used. In contrast to the
CRGA, the SRGA (Figure 2(b)) does not crossover and mutates directly if no reduct can
be found, which means it only uses genes generated from the reduct. Both the CRGA
and SRGA include a roulette selection and elitism selection.

5. Experimental Results. To investigate how CRGA and SRGA perform, we compared
their performance to that of a standard GA (GA for short). Each algorithm executes 50
experiments for various numbers of items and knapsacks. We refer readers to [1] for more
details about these experiments. Before presenting the results, we describe the parameters
for the GA.

5.1. The parameters and penalty function for the GA. Some of the GA parameters
are as follows: the crossover rate, Pc, is 0.6; the mutation rate, Pm, is 1/n; the population
size is 50; and the elitism rate, Pe, is 0.4. The stopping criteria of the algorithm are (1)
the parents and offspring are entirely identical for 100 consecutive generations, or (2) a
maximum of 2000 iterations was executed. We refer to the solution as the final solution,
which may not be the optimal solution.
To deal with infeasibility over the course of the iterations, we implemented and slightly

modified the penalty function proposed by [23]. The penalty function is briefly described
below. Let eval(x) denote the fitness value after the penalty and item be the number of
the knapsack; eval(x) is evaluated as the following:

eval(x) = (f(x)− p(x))/item, where (7)

f(x) =
n∑

j=1

pjxj, (8)

p(x) = f(x)× (dist/diff),

dist =
m∑
i=1

|rij − bi|, (9)

diff = min

(
m∑
i=1

bi,
m∑
i=1

|TRi − bi|

)
, and (10)

TRi =
n∑

j=1

rij. (11)

HYBRID OF ROUGH SETS AND GENETIC ALGORITHMS 3543

5.2. The experiments. We investigated the experimental results in terms of the compu-
tational convergence and solution quality. Our computational convergence was measured
using the mean number of iterations required to both terminate the algorithm and reach
the maximal solution for 50 experiments. The mean number of iterations was calculated
by adding the number of iterations for each experiment and dividing by 50. For the max-
imal solution, consider an experiment that terminates with a final solution of 4300 after
126 iterations. However, before termination, the experiment obtained a solution of 4382
by the 17th iteration. In this case, the maximal solution is 4382. The reason we measure
the number of iterations needed to reach the maximal solution is to determine when the
algorithm generated better solutions. Note that the algorithm reports a solution of 4300
instead of 4381, primarily due to not satisfying the stopping criterion, which is an inherent
problem for GAs as the following solution is not guaranteed to be better than the present
one to prevent being trapped into a local solution during the early stages. Knowing the
maximal solution can help provide information supporting the relaxation of the stopping
criterion to find a better final solution.

The solution quality is measured from the mean value and standard deviation of the final
feasible solutions. In other words, experiments terminating with infeasible solutions are
excluded from the mean and standard deviation calculations. Again, each experiment may
terminate with an infeasible solution or at the predefined maximum number of iterations

Table 1. The mean number of iterations required for termination, and the
mean number of iterations required to reach the maximal solution

Instance n×m
GA CRGA SRGA

MIT MIMS NOS MIT MIMS NOS MIT MIMS NOS
Petersen1 6 × 10 110 1.3 48 111 6.7 45 129 4.7 50
Petersen2 10 × 10 116 9.5 21 116 7.89 22 128 31.2 44
Petersen3 15 × 10 119 8.4 8 119 7 1 127 52.3 13
Petersen4 20 × 10 121 12.7 1 127 8.2 0 117 65.5 0
Petersen5 28 × 10 129 20.9 0 129 7.2 0 128 73.3 0
Petersen6 39 × 5 276 33.8 0 138 53.1 0 129 77.9 0
Petersen7 50 × 5 141 58.1 0 139 59.7 0 120 63.2 0

HP1 28 × 4 132 35.3 0 130 36.4 0 138 79 0
HP2 35 × 4 133 41.1 0 134 42.4 0 111 71.7 0

Weing1 28 × 2 132 36.8 0 132 8.1 0 117 58.1 0
Weing2 28 × 2 129 28.4 0 128 37.3 0 118 67.4 0
Weing4 28 × 2 138 53.2 0 139 51.5 0 114 68.5 0
Weing5 28 × 2 128 28.8 0 131 37.9 0 120 58.2 0
Weing6 28 × 2 130 34.2 0 129 28.9 0 119 64 0
Weing7 105 × 2 163 88.7 0 157 83.6 0 147 44.5 0
PB1 27 × 4 130 35.8 0 130 7.8 0 141 78.1 0
PB2 34 × 4 130 34.4 0 133 10.2 0 130 73.2 0
PB4 29 × 2 127 20.3 0 129 29.2 0 113 70.4 0
PB5 20 × 10 122 6.8 0 120 8.9 0 127 58.8 0

Weish1 30 × 5 127 27.2 0 128 10.2 0 116 59.6 0
MIT = mean number of iterations to terminate.
MIMS = mean number of iterations to reach the maximal solution.

NOS = the number of optimal solutions obtained.

3544 H.-H. YANG, M.-T. WANG AND C.-H. YANG

(a)

(b)

(c)

Figure 3. (a) The number of iterations required to terminate each ex-
periment given Weingartner1. (b) The number of iterations required to
terminate each experiment given Weish1. (c) The number of iterations
required to terminate each experiment given Petersen5.

even if an optimal solution appeared. This outcome is due to the nature of GAs as
described above.
We compare the algorithm performances using 20 test instances listed in Table 1 of [1],

who stated that “these problems are small real-world problems (p.77)”. The best known
solutions are also given in [1].

HYBRID OF ROUGH SETS AND GENETIC ALGORITHMS 3545

(a)

(b)

(c)

Figure 4. (a) The number of iterations required to reach the maximal
solution for each experiment given Weingartner1. (b) The number of it-
erations required to reach the maximal solution for each experiment given
Weish1. (c) The number of iterations required to reach the maximal solu-
tion for each experiment given Petersen5.

3546 H.-H. YANG, M.-T. WANG AND C.-H. YANG

5.2.1. Computational convergence. Consider Table 1. We discuss with cases in order of
which types of items, n, are present for a given knapsack number, m.
According to Table 1, the SRGA performed the best in 14 out of 20 cases in terms of

the mean number of iterations to terminate (MIT for short); and both the CRGA and
GA appear to have equivalent performance. In terms of the mean number of iterations to
obtain the maximal solution (MIMS for short), the CRGA performed better in 10 cases.
In contrast, the SRGA performed surprisingly poorly.
To gain insight into the two different mean numbers of iterations, we select Wein-

gartner1, Weish1, and Petersen5 shown in Figures 3(a), 3(b) and 3(c), respectively, to
showcase the number of iterations required to terminate the algorithm. Recall that the
SRGA outperformed the GA and CRGA in terms of the MIT in 14 cases. The superiority
of SRGA can be observed in Figures 3(a), 3(b) and 3(c), where several experiments have
unusually high numbers of iterations. Based on this observation, we suggest that the
SRGA has an advantage for terminating the algorithm. Similarly, number of iterations
to reach the maximal solution for the three cases is shown in Figures 4(a), 4(b) and 4(c).
Note that the CRGA consistently performs better when obtaining the maximal solution,
which concurs with the results mentioned above. In summary, either CRGA or SRGA
demonstrates advantages in terms of computational convergence.

5.2.2. Solution quality. After examining the computational convergence, we discuss the
solution quality based on Table 2. According to Table 2 and by jointly considering the
mean values and standard deviations, the SRGA outperforms both the GA and CRGA in
seven cases. Considering the standard deviation alone, the SRGA produces the smallest
value in nine cases. In these cases, a larger mean value represents better solution quality,
and a smaller standard deviation represents more closely clustered solutions. Therefore,
the results suggest that the SRGA can produce better quality and more clustered solu-
tions. The GA performs the best when taking its mean value and standard deviation
together, which demonstrates its continued competitiveness. To our surprise, the CRGA
performed the worst.

5.3. Summary. In this section, we summarize the preceding findings focusing on the
SRGA and CRGA. Overall, the SRGA had the advantage in terms of terminating the
algorithm and producing both better quality and more clustered solutions. Recall that
the SRGA either uses the genes generated from the reduct or mutates directly. These
advantages justify our integration of the reduct into the crossover operator. In contrast,
the performance of the CRGA was not on par with that of the SRGA, which might be
partly due to the frequent crossover operations failing to satisfy the stopping criteria.
However, the CRGA performs relatively well in terms of reaching the maximal solution,
which suggests some form of mechanism, such as relaxing the stopping criteria, could
significantly improve the CRGA performance.
Though this summary is based on moderately sized test instances, according to [1], these

instances did present some challenges for other GA heuristics. Indeed, more convincing
conclusions can be drawn by providing a clear comparison between our work and existing
ones. Al-Shihabi and Ólafsson [12] suggested that a fair comparison needs to consider the
effect of computation time. The solution time was given in [1,12]. However, it is widely
known that the computation or CPU time largely depends on the type of machine or
programming language used. Measurements such as the average value, average gap, and
standard deviation of the solutions are given in [7,13]; however, their test instances are
different from this study. In contrast, our use of the mean number of iterations rarely
appears in the literature.

HYBRID OF ROUGH SETS AND GENETIC ALGORITHMS 3547

Table 2. The means and standard deviations for the GA, CRGA, and SRGA

Instance n×m Best known
GA CRGA SRGA

Meana Std Mean Std Mean Std
Petersen1 6 × 10 3800 3796 19.6 3782 74 3800 0
Petersen2 10 × 10 8706 8562 159.3 8562 184.9 8662 120
Petersen3 15 × 10 4015 3873 128 3878 92.1 3941 80.5
Petersen4 20 × 10 6120 5455 300.9 5476 371.4 5630 292
Petersen5 28 × 10 12400 11595 404.1 11203 461 12240 413.6
Petersen6 39 × 5 10618 10031 269.1 10107 222.2 9953 222.8
Petersen7 50 × 5 16537 15498 355.6 15184 558.7 14915 352.2

HP1 28 × 4 3418 3273 61.6 3259 55.8 3214 76.3
HP2 35 × 4 3186 29101 213.5 2921 95.1 2864 86.3

Weing1 28 × 2 141278 131512 4946.6 130885 5856 131409 5820.3
Weing2 28 × 2 130883 115069 7990.2 113289 7122.4 116883 5692.7
Weing4 28 × 2 119337 110112 4964.2 107535 5686.6 106950 5365
Weing5 28 × 2 98796 80808 10643.2 79038 10691.4 75109 15618.7
Weing6 28 × 2 130623 117017 4985.1 116773 4815.2 115671 6007.2
Weing7 105 × 2 1095445 969541 37356.7 975269 41559.4 783196 44754.8
PB1 27 × 4 3090 2963 48.1 2953 48.7 2936 69.2
PB2 34 × 4 3186 2979 69.7 29655 71.5 2907 78.7
PB4 29 × 2 95168 84409 3276.7 83483 3530.6 81412 3543.6
PB5 20 × 10 2139 1984 64.9 1984 62.9 2016 51.1

Weish1 30 × 5 4554 3662 471.3 3774 416.7 3777 357.7
a All mean values are rounded off

6. Conclusions. The MKP is a well-known NP-hard combinatorial optimization prob-
lem. This paper uses a methodology that integrates an RS reduct into the crossover of
a GA to solve the MKP. This paper presents two algorithms based on this methodology:
one selecting the crossover points either randomly or using a reduct, the other selecting
the crossover points solely by a reduct. The performance of these two algorithms was
compared with that of a standard GA using test instances from the literature.

According to the experimental results, integration has the advantages of producing
better quality and more clustered solutions and might improve the performance if some
mechanisms such as manipulating the stopping criteria were developed. These advantages
justify the integration and demonstrate an alternative for improving the performance of
GAs.

Even though integrating the reduct into the crossover operator is motivated by solving
the MKP, the major aim of the study was to investigate the integration when solving
combinatorial optimization problems. The proposed approach can be applied to vari-
ous other combinatorial optimization and subset problems. In essence, an appropriate
representation is needed to apply the reduct to other problems.

This paper contains some possible extensions. First, the algorithm frequently produces
infeasible solutions. To deal with this infeasibility, we modified the penalty function
from [23], which primarily penalizes the function based on the number of knapsacks.
Other penalty functions could improve the infeasibility handling and deserve investigation.
Second, one may consider using different elitism strategies. The present elitism strategy
places a proportion of the chromosomes into the offspring, which is likely to only find
local solutions. A dynamic strategy selection for chromosome placement may help reduce
the likelihood of being trapped in a local solution.

3548 H.-H. YANG, M.-T. WANG AND C.-H. YANG

Acknowledgment. This research was supported in part by the National Science Foun-
dation grant number 101-2410-H-167-002. The authors gratefully acknowledge the anony-
mous reviewers’ helpful comments and suggestions for improving the presentation of the
paper.

REFERENCES

[1] P. C. Chu and J. E. Beasley, A genetic algorithm for the multidimensional knapsack problem, J.
Heuristics, vol.4, no.1, pp.63-86, 1998.

[2] A. Fréville, The multidimensional 0-1 knapsack problem: An overview, Eur. J. Oper. Res., vol.155,
no.1, pp.1-21, 2004.

[3] H.-H. Yang, M.-T. Wang, Y.-J. Chen, Y.-S. Huang and C.-J. Kao, Crossover based on rough sets
– A case of multidimensional knapsack problem, IEEE Int. Conf. Ind. Eng. Eng. Manage, Macao,
China, vol.489, no.89, 2010.

[4] Z. Pawlak, Rough set, Int. J. Inform. Comput. Sci., vol.11, pp.341-356, 1982.
[5] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann

Arbor, MI, USA, 1975.
[6] J. Tavares, F. B. Pereira and E. Costa, Multidimensional knapsack problem: A fitness landscape

analysis, IEEE T. Syst. Man Cy. B, vol.38, no.3, pp.604-616, 2008.
[7] G. R. Raidl and J. Gottlieb, Empirical analysis of locality, heritability and heuristic bias in evolu-

tionary algorithms: A case study for the multidimensional knapsack problem, Evol. Comput., vol.13,
no.4, pp.441-475, 2005.

[8] M. J. Varnamkhasti and L. S. Lee, A fuzzy genetic algorithm based on binary encoding for solving
multidimensional knapsack problems, J. Appl. Math., 2012.

[9] H.-H. Yang, S.-W. Wang, H.-T. Ko and J.-C. Lin, A novel approach for crossover based on attribute
reduction – A case of 0/1 knapsack problem, IEEE Int. Conf. Ind. Eng. Eng. Manage, Hong Kong,
China, vol.352, no.273, 2009.

[10] S. Khuri, T. Bäck and J. Heitkötter, The zero/one multiple knapsack problem and genetic algorithms,
ACM SAC’94, pp.188-193, 1994.

[11] J. Thiel and S. Voss, Some experiences on solving multiconstraint zero-one knapsack problems with
genetic algorithms, INFOR, vol.32, pp.226-242, 1994.

[12] S. Al-Shihabi and S. Ólafsson, A hybrid of nested partition, binary ant system, and linear program-
ming for the multidimensional knapsack problem, Comput. Oper. Res., vol.37, no.2, pp.247-255,
2010.

[13] L. Ke, Z. Feng, Z. Ren and X. Wei, An ant colony optimization approach for the multidimensional
knapsack problem, J. Heuristics, vol.16, no.1, pp.65-83, 2010.

[14] E. Angelelli, R. Mansini and M. G. Speranza, Kernel search: A general heuristic for the multi-
dimensional knapsack problem, Comput. Oper. Res., vol.37, no.11, pp.2017-2026, 2010.

[15] V. Boyer, D. El Baz and M. Elkihel, Solution of multidimensional knapsack problems via cooperation
of dynamic programming and branch and bound, Eur. J. Ind. Eng., vol.4, no.4, pp.434-449, 2010.

[16] V. Boyer, M. Elkihel and D. El Baz, Heuristics for the 0–1 multidimensional knapsack problem, Eur.
J. Oper. Res., vol.199, no.3, pp.658-664, 2009.

[17] J. Puchinger, G. R. Raidl and U. Pferschy, The multidimensional knapsack problem: Structure and
algorithms, Informs J. Comput., vol.22, no.2, pp.250-265, 2009.

[18] Y. Akcay, H. Li and S. H. Xu, Greedy algorithm for the general multidimensional knapsack problem,
Ann. Oper. Res., vol.150, no.1, pp.17-29, 2007.

[19] D. Bertsimas and R. Demir, An approximate dynamic programming approach to multidimensional
knapsack problems, Manage Sci., vol.48, no.4, pp.550-565, 2002.

[20] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley-
Interscience, New York, NY, 1990.

[21] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer-Verlag, New York, NY, 2004.
[22] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, Wiley-Interscience, New York,

NY, 1997.
[23] A. L. Olsen, Penalty functions and the knapsack problem, Proc. of the 1st IEEE Conf. Evol. Comput.,

Orlando, FL, USA, pp.554-558, 1994.

