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Abstract. This paper addresses the problem of designing an optimal modified repetitive
controller for a strictly proper plant with time-varying uncertainties to reject position-
dependent disturbances. A modified repetitive controller with time-varying delay struc-
ture, inserted by a low-pass filter and an adjustable parameter, is developed for this class
of system. Two linear matrix inequalities (LMIs)-based robust stability conditions of the
closed-loop system with time-varying state delay are derived for fixed parameters. One
is a delay-dependent robust stability condition that is derived based on the free-weight
matrix. The other robust stability condition is obtained based on the H∞ control problem
by introducing a linear unitary operator. To obtain the desired controller, the design
problems are converted to two LMI-constrained optimization problems by reformulating
the LMIs given in the robust stability conditions. The validity of the proposed method is
verified through a numerical example.
Keywords: Modified repetitive controller, Low-pass filter, Position-dependent distur-
bance, Time-varying period-time, Linear matrix inequality (LMI), Uncertainty

1. Introduction. In practical applications, many control systems must deal with peri-
odic reference and/or disturbance signals, for example industrial robots, computer disk
drives, CD player tracking control, machine tool motion control, and vibration attenua-
tion of engineering structures. One control system that can deal with periodic reference
and/or disturbance signals is a repetitive control system, as proposed by Hara et al. [1].
This system is based on the internal model principle (IMP) proposed by Francis and Won-
ham [2], and has proved to be a very efficient scheme for tracking periodic reference signals
or rejecting periodic disturbances. A disadvantage of typical repetitive controllers is that
they are based on the constant period of the external signal. This means that in practical
applications, either the period must be constant (±0.1%) or an accurate measurement of
the periodicity is necessary.

However, in practice, rotary motion systems have found applications in various industry
products. For most applications, the systems are required to operate at variable speeds
while following repetitive trajectories and/or rejecting disturbances, such as the brushless
DC electric motor in a typical laser printer described by Chen et al. [3]. In general,
the periods of reference signals and/or disturbances are mostly time varying in such
systems. For instance, consider the flat cam grinding system in Figure 1, which requires
the control system to track a time-varying periodic reference signal. This system uses
noncircular grinding and the cam is machined by utilizing a profile copier controlled by a
linear servomotor. In the traditional grinding system, the cam rotates at a constant speed,
which means the cam is machined at a varying tangent velocity. This leads to different
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Figure 1. Flat cam grinding system

metal-removal rates and the cam may not meet the requirements. Therefore, to achieve
the required machining conditions, the cam is controlled by a servomotor that is required
to rotate at a varying speed ω(t), as shown in Figure 2, and this means that the reference
input signal, the distance d(θ) between the circle centers of the grinder and flat cam,
is a time-varying periodic signal, i.e., a position-dependent periodic signal. Hence, it is
necessary to design a controller for the linear servomotor to track the position-dependent
reference input signal d(θ). Because it is periodic with respect to angular position, but
not necessarily with respect to time, the conventional repetitive control technique is not
directly applicable in this case. A very common design method for this class of system is
to transform a linear system from the time domain into a spatial domain.

t
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o

Figure 2. Rotation speed of servomotor

Recently, several studies have considered the problem of rejecting and/or tracking spa-
tially periodic disturbances and/or reference inputs for rotary motion systems using a
spatial-based repetitive controller [4, 5, 6, 7, 8, 9]. Nakano et al. [4] eliminated the
angular position-dependent disturbances in constant-speed rotation control systems by
transforming all signals defined in the time domain to the spatial domain, and obtained
a stabilizing controller using coprime factorization. To track spatially periodic refer-
ence inputs, Mahawan and Luo [5] proposed a repetitive controller design method using
operator-theoretic approaches. Sun [6] addressed the tracking or rejecting problem for
position-dependent signals by converting the continuous-time system into a discrete spa-
tial system. A more advanced design based on linearization using H∞ robust control was
proposed by Chen and Allebach [7]. Chen and Chiu [8] proved that the reformulated
nonlinear plant model could be cast into a quasilinear parameter-varying system that can
be used to address spatially periodic disturbances. In particular, a method of designing
a spatial-based repetitive control system for rotary motion systems subject to position-
dependent disturbances based on adaptive feedback linearization was presented by Chen
and Yang [9].
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With the domain transformation, the linear system in the time domain is cast into
a nonlinear system in the spatial domain. Before designing the repetitive controller,
it is necessary to linearize the nonlinear control system, which makes the design of the
repetitive controller more complicated and difficult. In particular, for the control of plants
with uncertainties or time-varying state delay, there exists a trade-off problem between
robust stability and control performance in the design of repetitive control systems, and
spatial-based design methods do not provide a satisfactory solution to this trade-off.
Hence, there is a clear need to develop an efficient design method for repetitive control
systems that track or reject the position-dependent signals.

In this paper, the position-dependent signal will be converted into a time-varying pe-
riodic signal. Inspired by the structure of the repetitive controller [1] and the structure
of the optimal repetitive controller [10], we propose a new modified repetitive controller
for position-dependent signals. Compared with the conventional modified repetitive con-
troller, the constant time-delay element is replaced by a time-varying operator in our
new controller. Moreover, an adjustable parameter is introduced in the new structure to
adjust the convergence rate of the closed-loop system and improve the control precision.
This controller is plugged into the closed-loop system for a strictly proper plant with
uncertainties to reject position-dependent disturbances. The control performance of this
repetitive control system then depends heavily on the cutoff frequency of the low-pass
filter and the adjustable parameter that represent the trade-off between system robust
stability and rejection performance. To achieve the optimal performance and guarantee
robust stability, the design problem considered in this paper is converted into a robustly
stabilizing problem based on linear matrix inequalities (LMIs). Two LMI-based robust
stability conditions of the closed-loop system with time-varying state delay are derived
for fixed parameters. One is a delay-dependent robust stability condition that is derived
based on the free-weight matrix. The other robust stability condition is based on the
H∞ control approach and introduces a linear unitary operator. The optimal values of the
cutoff frequency of the low-pass filter and the adjustable parameter can be obtained by
solving the optimization problems with LMI-constrained conditions. Finally, a numerical
example is provided to demonstrate the effectiveness of the proposed design method.

Throughout this paper, Rn denotes the n-dimensional Euclidean space; Rn×n is the set
of all n × n real matrices; I is the identity matrix; a function f(t) ∈ L2[0, tf ] satisfies∫ tf
0

f(t)f(t)dt < ∞; ‖G(s)‖∞ := sup0≤ω≤∞|G(jω)| is the H∞ norm of a transfer function
G(s); the superscript T stands for the transposition of a matrix and the symmetric terms

in a symmetric matrix are denoted by ∗, for example:

[
A B
∗ C

]
=

[
A B
BT C

]
.

2. Problem Statement and Preliminaries. In this paper, we convert the position-
dependent reference into a time-varying periodic signal, in contrast with the conventional
processing method, which transforms a linear system in the time domain into a nonlinear
system in the spatial domain. The position-dependent disturbance d(t) is given by

d(t) := d̃(θ) = d̃(θ − Tθ), (1)

where d̃(θ) is the position-dependent disturbance, Tθ is the period, and the rotational
angle θ(t) is defined as: {

θ(t) := f(t) =
∫ t

0
ω(s)ds

ω(t) = dθ
dt

> 0 ∀ t > 0
, (2)

where ω(t) is the rotational speed and guarantees that θ(t) is strictly monotonic such
that t = f−1(θ) exists. Thus, for a large enough t, there exist a tθ > 0 such that
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f(tθ) = f(t)− Tθ. We define a time-varying function τ(t) as

τ(t) :=

{
t0 0 < t < t0
t− f−1(f(t)− Tθ) = t− tθ t ≥ t0

, (3)

where t0 = f−1(Tθ) satisfies Tθ = f(t0)− f(0). Then by Lagrange’s mean value theorem,
there exists at least one point ξ ∈ (tθ, t) such that

Tθ = f(t)− f(tθ) = f ′(ξ)τ(t) = ω(ξ)τ(t). (4)

Then

τ(t) =
Tθ

ω(ξ)
≤ Tθ

ωmin

. (5)

From the inverse function theorem, the derivative of function τ(t) is

τ̇(t) =

0 0 < t < t0

1− ω(t)
ω(tθ)

≤ 1− ωmin
ωmax

t ≥ t0
. (6)

From the Equations (5) and (6), there exist positive scalars τ̄ and µ such that τ(t)
satisfies

0 < τ(t) ≤ τ̄ , τ̇(t) ≤ µ, 0 ≤ µ < 1. (7)

Then, the position-dependent disturbance signal can be transformed into a time-varying
periodic signal as

d(t) =

{
d̃(θ(t)) 0 < t < t0

d(t− τ(t)) t ≥ t0
, (8)

where τ(t) is the period defined in (3) and satisfying (7).

+

−

r(t) e(t)
+

+

Dτ Q(s)

aI G(s)
y(t)CRM(s)

Figure 3. The new repetitive control system

Given the time-varying period and inspired by the structure of repetitive controllers
[1] and optimal repetitive controllers [10], we establish a new repetitive controller, shown
in Figure 3, for time-varying periodic signals. Compared with the conventional repetitive
controller, the constant time-delay element is replaced by the time-varying operator Dτ

defined as
Dτ (v(t)) := v(t− τ(t)), (9)

where τ(t) is the period of the disturbance d(t) in (8).
It is well known that the performance of a repetitive control system depends strongly

on the cutoff frequency of the included low-pass filter, which represents the trade-off
between system stability and control precision. However, it is hard to determine the
optimal bandwidth in practice because of the plant uncertainty and system stability. To
overcome this problem, we modify the system gain by introducing an adjustable parameter
a into the repetitive controller. From the structure of the repetitive controller in Figure
3, the gain of CRM(s) is always proportional to the adjustable parameter a; thus, the
performance of the repetitive control system is strongly dependent on both the cutoff
frequency ωc and the adjustable parameter a. Hence, it is clear that the cutoff frequency
ωc and the adjustable parameter a should be as high as possible to obtain good rejection.
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Figure 4. The repetitive control system with uncertainties

We consider the design problem of the modified repetitive control system shown in
Figure 4 that rejects signals that are periodic in the spatial domain while the rotational
speed varies in real-time. The strictly proper plant with uncertainties is described as{

ẋp(t) = Ap(t)xp(t) + Bp(t)u(t) +Dwd(t)
y(t) = Cpxp(t)

, (10)

where xp(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are the state, input, and output signals,
respectively, Ap(t) ∈ Rn×n, Bp(t) ∈ Rn×m, Cp ∈ Rm×n, and Dw ∈ Rn×m. d(t) ∈ Rm is an
input disturbance that is periodic in the spatial domain and belongs to L2[0, tf ]. Assume
that the uncertainties of the plant are given by{ [

Ap(t) Bp(t)
]

=
[
Ap +∆Ap(t) Bp +∆Bp(t)

][
∆Ap(t) ∆Bp(t)

]
= ΦpΓ(t)

[
ΨA ΨB

] , (11)

where Ap ∈ Rn×n, Bp ∈ Rn×m, Φp, ΨA, and ΨB are known constant matrices, and Γ(t) ∈
Rn×n is an unknown real and possibly time-varying matrix with Lebesgue-measurable
entries satisfying

ΓT (t)Γ(t) ≤ I, ∀t ≥ 0. (12)

Q(s), given by

Q(s) =
ωc

s+ ωc

I ∈ Rm×m, (13)

is the low-pass filter of the repetitive controller CRM(s), where ωc is the cutoff frequency
of the low-pass filter Q(s), and a is an adjustable parameter.

The problem that should be addressed first is to design a feedback controller of the
form

u(t) = Fpxp(t) + e(t) (14)

such that the closed-loop system, without the modified repetitive controller, is stabilized.
Applying the control law (14) to (10) with r(t) ≡ 0 yields the closed-loop system{

ẋ(t) = {Ap(t)−Bp(t)Cp +Bp(t)Fp}xp(t) +Dwd(t)

y(t) = Cpxp(t)
. (15)

The following lemma presents a rate-dependent state-feedback controller to stabilize
(15) robustly with a prescribed H∞ norm-bound specification.

Lemma 2.1. [11] For a prescribed scalar γ > 0, the closed-loop system (15) is robustly
stable and satisfies ‖y(t)‖2 < γ‖d(t)‖2, if there exists a matrix P T = P > 0, a scalar
λ > 0, and an arbitrary matrix W with appropriate dimensions satisfying

Λ1 Dw PCT
p Λ2 λΦ

∗ −I 0 0 0
∗ ∗ −γ2I 0 0
∗ ∗ ∗ −λI 0
∗ ∗ ∗ ∗ −λI

 < 0, (16)
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Λ1 := (Ap −BpCp)P +BpW +W TBT
p + P (Ap −BpCp)

T , (17)

and
Λ2 := PΨT

A − PCT
p Ψ

T
B +W TΨT

B. (18)

Then the H∞ state-feedback controller is given by Fp = WP−1.

The scalar γ can be regarded as a disturbance performance index. The problem of
robust stabilization, to find a state-feedback controller such that the closed-loop system
is stable with disturbance attenuation γ, can easily be obtained by solving the above
feasible problem for the given γ.
We next present an efficient method to find the optimal values of the cutoff frequency

ωc and the adjustable parameter a.

3. Robust Stability Conditions. In this section, we describe a design method to find
the optimal values of the cutoff frequency of the low-pass filter and the adjustable param-
eter.
As shown in Figure 4, the state-space description of the repetitive controller is{

ẋr(t) = −ωcxr(t) + ωcxr(t− τ(t)) + ωce(t)

yr(t) = ae(t) + axr(t− τ(t))
. (19)

By using the augmented state vector x := [xT
p , x

T
r ]

T , we combine (19) and (10) with
r(t) ≡ 0, d(t) ≡ 0 and

u(t) = Fpxp + yr(t) (20)

to yield the closed-loop system

ẋ(t) = (A+∆A(t))x(t) + (A1 +∆A1(t))x(t− τ(t)), (21)

where A =

[
Ap +BpFp − aBpCp 0

−ωcCp −ωcI

]
, A1 =

[
0 aBp

0 ωcI

]
, ∆A(t) = ΦΓ(t)E1, ∆A1(t) =

ΦΓ(t)E2, Φ =
[
ΦT

p 0
]T
, E1 =

[
ΨA +ΨBFp − aΨBCp 0

]
, and E2 =

[
0 aΨB

]
.

To establish the design method, the following lemmas are required.

Lemma 3.1 (Schur complement [12]). For a real matrix Σ = ΣT , the following assertions
are equivalent:

1. Σ :=

[
Σ11 Σ12

∗ Σ22

]
> 0.

2. Σ11 > 0, and Σ22 − ΣT
12Σ

−1
11 Σ12 > 0.

3. Σ22 > 0, and Σ11 − Σ12Σ
−1
22 Σ

T
12 > 0.

Lemma 3.2 (BRL [13]). For the system{
ẋ(t) = Ax(t) +Bw(t)

z(t) = Cx(t) +Dw(t)
, (22)

the following assertions are equivalent:

1. A is stable; and the H∞ norm of the transfer function, Gzw(s), from w(t) to z(t)
satisfying ‖Gzw‖∞ < 1.

2. There exists a symmetric matrix P > 0 such thatPA+ ATP PB CT

∗ −I DT

∗ ∗ −I

 < 0 (23)

holds.
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Lemma 3.3. [14] Given the matrices Q = QT , H, E, and R = RT > 0 of appropriate
dimensions,

Q+HFE + ETF THT < 0

for all F satisfying F TF ≤ R, if and only if there exists some λ > 0 such that

Q+ λHHT + λ−1ETRE < 0.

Lemma 3.4. [15] Consider a nominal system with time-varying delay given by{
ẋ(t) = Ax(t) + A1x(t− τ(t)), t > 0
x(t) = φ(t), t ∈ [τ̄ , 0]

, (24)

where the initial condition, φ(t), is a continuous vector-valued initial function of t ∈ [τ̄ , 0].
Then, for given scalars τ̄ and µ, the system (24) is globally asymptotically stable for any
time delay satisfying (7), if there exist symmetric positive definite matrices P , Q, and Z,
symmetric matrices X11 and X22, and arbitrary matrices X12, Y , and T with appropriate
dimensions such that the following LMIs are true.[

X11 X12

∗ X22

]
≥ 0, (25)X11 X12 Y

∗ X22 T
∗ ∗ Z

 ≥ 0, (26)

and

Σ :=

Σ11 Σ12 τ̄ATZ
∗ Σ22 τ̄AT

1Z
∗ ∗ −τ̄Z

 < 0, (27)

where

Σ11 = PA+ ATP + Y T + Y +Q+ τ̄X11,

Σ12 = PA1 − Y + T T + τ̄X12,

and

Σ22 = −T T − T − (1− µ)Q+ τ̄X22.

Now, applying these lemmas to system (21) yields the following theorem.

Theorem 3.1. For given scalars τ̄ and µ satisfying (7), the system (21) is robustly stable
if there exist symmetric positive definite matrices P , Q, and Z, symmetric matrices X11

and X22, a positive scalar λ, and arbitrary matrices X12, Y , and T with appropriate
dimensions such that (25) ∼ (26) and the following LMI are true.

Σ11 Σ12 τ̄ATZ PΦ λET
1

∗ Σ22 τ̄AT
1Z 0 λET

2

∗ ∗ −τ̄Z τ̄ZΦ 0
∗ ∗ ∗ −λI 0
∗ ∗ ∗ ∗ −λI

 < 0, (28)

where Σ11, Σ12, and Σ22 are defined in (27).

Proof: The proof follows from Lemma 3.4. Let us reconsider the matrix inequality
Σ < 0 defined in (27). We shall replace A and A1 with A(t) = A + ΦΓ(t)E1 and
A1(t) = A1 + ΦΓ(t)E2, respectively, in (27) and rewrite the resulting inequality in the
form of nominal and uncertain parts as

Σ + Σu + ΣT
u < 0, (29)
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where Σ is defined in (27) and

Σu :=

P∆A(t) P∆A1(t) 0
0 0 0

Z∆A(t) τ̄Z∆A1(t) 0

 . (30)

We can decompose Σu and express it as

Σu = HΓ(t)E, (31)

where H =
[
ΦTP 0 ΦTZ

]T
and E =

[
E1 E2 0

]
. For λ > 0, applying Lemma 3.3 to

(29) results in

Σ + λ−1HHT + λETE = Σ+ λ−1HHT + λ−1(λET )(λE) < 0. (32)

By employing the Schur complement Lemma 3.1, the LMI given in (27) is obtained. Thus,
system (21) with admissible uncertainties (11) satisfying (12) is robustly asymptotically
stable.
We have thus proved this theorem. �
Because the system matrices A and A1 contain the design parameters ωc and a, Theorem

3.1 cannot be used directly to obtain the optimal values of the cutoff frequency and
adjustable parameter. However, as we now show, (28) can be converted into LMIs that
can be used to calculate the optimal cutoff frequency for given a.
For convenience, we represent ωc as the sum of ω̂c and δωc that is:

ωc = ω̂c + δωc, (33)

where ω̂c is a roughly estimated value and δωc is an unknown value to be found. The
matrices A and A1 can then be represented in the following form:

A = Ā+ Â× δωc (34)

and

A1 = Ā1 + Â1 × δωc, (35)

where

Ā =

[
Ap +BpFp − aBpCp 0

−ω̂cCp −ω̂cI

]
,

Â =

[
0 0

−Cp −I

]
,

Ā1 =

[
0 aBp

0 ω̂cI

]
,

and

Â1 =

[
0 0
0 I

]
.

Denote

Q := Q̄− Q̂× δωc > 0 (36)

and

λ := λ̄− λ̂× δωc > 0, (37)

where Q̄T = Q̄, Q̂T = Q̂, and λ̄, λ̂ ∈ R. Then, the LMI (28) can be described by

Ξ + Ξ̂× δωc < 0. (38)
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Figure 5. Equivalent diagram of Figure 4

Ξ and Ξ̂ are represented as

Ξ :=


Ξ11 Ξ12 τ̄ ĀTZ PΦ λ̄ET

1

∗ Ξ22 τ̄ ĀT
1Z 0 λ̄ET

2

∗ ∗ −τ̄Z τ̄ZΦ 0
∗ ∗ ∗ −λ̄I 0
∗ ∗ ∗ ∗ −λ̄I

 (39)

and

Ξ̂ :=


Ξ̂11 PÂ1 τ̄ ÂTZ 0 −λ̂ET

1

∗ (1− µ)Q̂ τ̄ ÂT
1Z 0 −λ̂ET

2

∗ ∗ 0 0 0

∗ ∗ ∗ λ̂I 0

∗ ∗ ∗ ∗ λ̂I

 , (40)

where

Ξ11 = PĀ+ ĀTP + Y T + Y + Q̄+ τ̄X11,

Ξ12 = PĀ1 − Y + T T + τ̄X12,

Ξ22 = −T T − T − (1− µ)Q̄+ τ̄X22,

and

Ξ̂11 = PÂ+ ÂTP − Q̂.

By introducing a new variable σ := 1/δωc, then (36) ∼ (38) can be rewritten as

Ξ̂ < −σΞ, Q̂ < σQ̄, λ̂ < σλ̄. (41)

This gives the following result.

Theorem 3.2. For given a, and scalars τ̄ and µ satisfying (7), if there exist the symmetric

positive definite matrices P and Z, symmetric matrices, Q̄, Q̂, X11, and X22, scalars λ̄
and λ̂, and arbitrary matrices X12, Y , and T with appropriate dimensions such that (25)
∼ (26) and (41) are true, then the cutoff frequency given by (33) guarantees the robust
stability of the repetitive control system (21).

Proof: From Theorem 3.1 and Equations (33) ∼ (41), this theorem can be obtained
directly. This completes the proof. �

Thus, for the given rough estimate ω̂c, we can obtain the optimal cutoff frequency ωc

by solving the following LMI-constrained optimization problem

min σ > 0 subject to (25), (26) and (41). (42)
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On the other hand, Mahawan and Luo [5] proved that there exists a unitary operator
TD such that the control system shown in Figure 4 is equivalent to the control system
shown in Figure 5 with r(t) ≡ 0 and d(t) ≡ 0. The unitary operator TD satisfies∥∥T−1

D DTD

∥∥
∞ ≤ 1, (43)

where the delay operator D : L2(0, θf ) → L2(0, θf ) is defined as

Dζ(θ) := ζ(θ − Tθ) (44)

and Tθ is the spatial period of the disturbances.
The transfer function Tysus(s) from us to ys is given by

Tysus(s) = Q(s) (I + aG(s))−1 . (45)

Then, from the small-gain theorem, the closed-loop system with the modified repetitive
controller is asymptotically stable if

‖Tysus‖∞ = ‖Q(s)(I + aG(s))−1‖∞ < 1. (46)

Hence, for the given Q(s) and Fp, we can regulate the parameter a to the optimal value
by using the H∞ control method.
From Figure 5, the state space description of Tysus , in general, is given by{

ẋ(t) = (As +∆As(t))x(t) + (Bs +∆Bs(t))us(t)

ys(t) = Csx(t)
, (47)

where x(t) is defined in (21) and As =

[
Ap +BpFp − aBpCp 0

−ωcCp −ωcI

]
, Bs =

[
aBp

ωcI

]
,

Cs =
[
I 0

]
, ∆As(t) = ΦsΓ(t)Es, ∆Bs(t) = ΦsΓ(t)aΨB, Φs =

[
ΦT

p 0
]T

and Es =[
ΨA +ΨBFp − aΨBCp 0

]
.

Applying Lemmas 3.1 ∼ 3.3 to the above system yields the following result.

Theorem 3.3. For the system (47), if a symmetric matrix P > 0 and a positive scalar
λ exist such that the LMI

PAs + AT
s P PBs CT PΦs λET

s

∗ −I 0 0 aλΨT
B

∗ ∗ −I 0 0
∗ ∗ ∗ −λI 0
∗ ∗ ∗ ∗ −λI

 < 0 (48)

holds, then the closed-loop system in (47) is robustly stable.

Proof: According to Lemma 3.2, a necessary and sufficient condition that guarantees
both that the closed-loop system in Figure 5 is robustly stable and also that (46) holds
is that there exists a symmetric matrix P > 0 such that the following linear matrix
inequality is feasible.

Πn +Πu +ΠT
u < 0, (49)

where

Πn :=

PAs + AT
s P PBs CT

∗ −I 0
∗ ∗ −I

 (50)

and

Πu :=

PΦs

0
0

Γ(t)
[
Es aΨB 0

]
. (51)



REPETITIVE CONTROLLER FOR POSITION-DEPENDENT DISTURBANCES 3251

For a positive scalar, λ > 0, employing Lemma 3.3, we obtain

Πu +ΠT
u ≤ λ−1

PΦs

0
0

 [
PΦs 0 0

]
+ λ−1

 λET
s

aλΨT
B

0

 [
λEs aλΨB 0

]
. (52)

Substituting (52) into (49) appropriately and applying the Schur complement Lemma 3.1,
the LMI given in (48) is obtained.

We have thus proved this theorem. �
Hence, the problem of regulating the parameter a satisfying (46) is converted into the

problem of regulating the parameter a satisfying the LMI condition (48). We now find
the largest parameter amax to guarantee the system stability using the result of Theorem
3.3.

Without loss of generality, represent amax as the sum of a0 and δ̄a

amax = a0 + δ̄a, (53)

where a0 is given in the Theorem 3.2 and δ̄a is an unknown value to be decided. Then,
As, Bs and Es are affinities dependent on the free parameter δ̄a and are represented as
the following form:

As = Ās + Âs × δ̄a, (54)

Bs = B̄s + B̂s × δ̄a (55)

and

Es = Ēs + Ês × δ̄a, (56)

where

Ās =

[
Ap +BpFp − a0BpCp 0

−ωcCp −ωcI

]
,

Âs =

[
−BpCp 0

0 0

]
,

B̄s =

[
a0Bp

ωcI

]
,

B̂s =

[
Bp

0

]
,

Ēs =
[
ΨA +ΨBFp − a0ΨBCp 0

]
and

Ês =
[
−ΨBCp 0

]
.

In the following theorem, a modified stability condition is proposed, which is represented
as an LMI.

Theorem 3.4. For given ωc and Fp, the adjustable parameter given by (53) guarantees
the robust stability of the repetitive control system (47), if there is a symmetric positive
definite matrix P , and positive scalars λ and ρ := δ̄a−1such that

Θ̂ < −ρΘ (57)
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holds with the shorthand

Θ :=


PĀs + ĀT

s P PB̄s CT PΦs λĒT
s

∗ −I 0 0 a0λΨ
T
B

∗ ∗ −I 0 0
∗ ∗ ∗ −λI 0
∗ ∗ ∗ ∗ −λI

 (58)

and

Θ̂ :=


PÂs + ÂT

s P PB̂s 0 0 λÊT
s

∗ 0 0 0 λΨT
B

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

 . (59)

Proof: Replacing a, As, Bs and Es by (54) ∼ (56) in (48), we have:

Θ + Θ̂× δ̄a < 0. (60)

By introducing the new variable ρ := δ̄a−1 and applying it to (60), the LMI condition
(57) can be obtained.
We have thus proved this theorem. �
We observe that for a given optimal cutoff frequency and a, the maximum δ̄a can be

obtained by solving the optimization problem

min ρ > 0 subject to (57). (61)

The constraints in the optimization problems (42) and (61) have the standard forms
of generalized eigenvalue minimization problems (GEVP) with semipositive conditions.
Hence, they can be solved numerically using the bisection algorithm in YALMIP [16] or
the GEVP solver in the LMI-toolbox [17].

4. Design Procedure. In this section, we present a design procedure for a robust sta-
bilizing modified repetitive controller with optimal performance for position-dependent
disturbances.

Procedure

Step 1: Select a solution precision, ε, for the optimization problems and positive real
scalars, γ, a, and ω̂c that are small enough.

Step 2: Solve the feasible problem (16) to obtain the state-feedback controller Fp with
given γ for position-dependent disturbances without a repetitive controller.

Step 3: Check the feasibility of Theorem 3.1.
Step 4: If feasible, go to the next step. Otherwise, select new values for a and ω̂c, and

return to step 2.
Step 5: Solve the optimization problem (42) using a, ω̂c, and Fp. If a solution exists, then

set ωc = ω̂c + 1/σ and go to the next step. Otherwise, set ωc = ω̂c and go to the
next step.

Step 6: Solve the optimization problem (61) using a, Fp and ωc. If a solution exists, set
amax = a+ 1/ρ and stop. Otherwise, set amax = a and stop.

The design procedure proposed in this section is applicable for both single-input/single-
output (SISO) linear systems and multiple-input/multiple-output (MIMO) linear systems
by simply modifying the dimensions of some matrices.
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5. Numerical Example. In this section, a numerical example is shown to illustrate the
effectiveness of the proposed design method.

Consider the SISO system (10) with Ap =

[
−8 −10
1 0

]
, Bp =

[
3
1

]
, Cp =

[
1 1

]
, Dw =[

0.4
0.3

]
, Γ(t) =

[
sin (0.1πt) 0

0 cos (0.1πt)

]
, Φp =

[
0 0
1 0.1

]
, ΨA =

[
1 0
0 0.1

]
, and ΨB =

[
0.1
0

]
.

We set γ = 0.1. Then, the state-feedback controller Fp obtained by solving the feasible
problem (16) is

Fp =
[
−1.308 −21.621

]
. (62)

Choose ε = 10−3, a = 1, ω̂c = 30[rad/s] and suppose that the disturbance signal, as shown
in Figure 6, is given by

d(t) = sin

(
2π

5
θ

)
+ sin

(
4π

5
θ

)
(63)

and
dθ

dt
= ω(t) = 10 + 5 cos(t). (64)
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−2
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0

1

2

d
(t

)

Time [s]

Figure 6. Disturbance signal used in simulations
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Figure 7. Time-varying period, τ(t)

Then the position-dependent disturbance is converted into a time-varying periodic sig-
nal with period τ(t), shown in Figure 7 and its derivative is shown in Figure 8. From
Figures 7 and 8, the time-varying period satisfies (7) and we set

τ̄ = 1, µ = 0.4. (65)
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0 2 4 6 8 10 12 14 16 18 20
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Figure 8. Derivative of τ(t), τ̇(t)

According to the design procedures in Section 3 and using the above parameters, the
minimum σ is obtained by solving the optimization problem (42) as σ = 7.755 × 10−4.
Therefore, the maximum cutoff frequency ωc of the low-pass filter Q(s) is

ωc = ω̂c +
1

σ
= 1319.490 [rad/s]. (66)

After obtaining the optimal cutoff frequency ωc, we solve the optimization problem (61)
to obtain the largest adjustable parameter amax as

amax = 1 +
1

ρ
= 12.628 (67)

with the minimum ρ = 0.086.
The simulation results in Figure 9 show that the system enters the steady state in

the second period and that the output is 0.68% of the disturbance when considering the
amplitude of the disturbance and the output after the application of the new repetitive
controller. For comparison, we also simulated this control system without the repeti-
tive controller. The simulation results in Figure 10 show that, without the repetitive
controller, the disturbance is attenuated to about 4.00%. Clearly, better disturbance
attenuation is obtained with the proposed repetitive control system than without the
repetitive controller. This design procedure demonstrates that the control performance
can be improved by optimizing the parameters of the new modified repetitive controller
from a general disturbance attenuation control system and that robust stability can also
be guaranteed. In contrast, the design methods proposed in [4, 9] achieve robust stability
without considering the control precision and are required to deal with a nonlinear sys-
tem in the spatial domain. Thus, an optimal modified repetitive controller can easily be
designed as shown here for position-dependent disturbances.

6. Conclusions. In this paper, position-dependent disturbances are converted into time-
varying periodic signals and a new modified repetitive controller structure is presented.
To obtain good disturbance attenuation, we proposed a design method for the optimal
modified repetitive control system based on LMIs, which can be applied to rotary mo-
tion systems. We also gave a complete proof of the theorems for the design method
that were omitted previously [18]. By reformulating the LMI-constrained robust stability
conditions, an optimal modified repetitive control system can be obtained by solving the
resulting optimization problems. A numerical example was presented to demonstrate the
effectiveness of the proposed design method. The results in this paper extend the appli-
cation of the repetitive control technique to systems with time-varying uncertainties, and
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Figure 9. Response of the output y(t) for the disturbance d(t) with our
repetitive controller
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Figure 10. Response of the output y(t) for the disturbance d(t) without
our repetitive controller

can also be potentially applied to the systems with time-varying state delay and input
delay [19].
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