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Abstract. This paper deals with the consensus problem in multi-agent systems (MASs)
with fixed and switching interaction topologies. All agents are modeled by identical linear
high-order dynamical systems. Through some coordinate transformation and the aug-
ment of the output matrix, some consensus protocols are provided based on the output
measurements of the adjacent agents. Sufficient conditions for consensus were presented
in terms of coupled linear matrix inequalities (LMIs), the size of which will not increase
according to the number of agents. Some numerical examples are presented to illustrate
the effectiveness of the proposed method.
Keywords: Multi-agent system, Synchronization, Static output feedback, LMI

1. Introduction. In the past several years, consensus problems of multi-agent systems
have been developing very fast and several research topics have been addressed, such as
wireless unmanned system networks (UMSN) [1, 2], swarms and flolcks [3], multi-vehicle
systems [4], distributed sensor networks [5]. Since Vicsek et al. [6] proposed a discrete-
time mode for multi-agent systems, the theoretical framework with fixed or switching
topologies was provided [7], and some of the consensus conditions were further relaxed in
[8]. Readers are referred to the surveys [9, 10] for a relatively complete coverage of the
literature. Recently, the synchronization of complex dynamical networks, such as small
world and scale-free networks, has been widely studied [11-18].

One well-known problem in most existing works is that the agents’ dynamics is often
restricted to be single or double integrators [19]. In some applications, agents of higher
dynamical order are required if consensus of more than two variables is aimed at. Ren et
al. [20] studied a special high-order consensus model, which can be regarded as a special
controllability canonical form. Wang et al. considered a high-order model with fewer
structural limitations, and a sufficient condition for consensus was presented under the
assumption that interaction topologies are undirected [21]. A general high-order model is
studied in Xiao and Wang [22] with a time-invariant consensus function. Generally, for
consensus problems considering general high-order systems, the relevant results are very
limited [4, 23-26].

Another common problem is that most proposed distributed consensus protocols are
based on the state information of the neighboring agents, which is not always available in
practice. Usually, each agent has only access to its adjacent agents’ output measurements.
The consensus problem based on the output information of the agents is called the “output
feedback consensus” problem, which is difficult to be implemented compared with that
of state feedback [27]. The difficulty lies in the fact that the system output matrix is
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always singular, and the conventional robust control theory will no longer apply. The
consensus algorithm based on the static output feedback has started gaining attention in
the literature [24], but the approach always relies on the initial system states, which will
be difficult for large networks. This motivated the present research.

In this paper, we are interested in the synchronization problem for high-order multi-
agent systems with fixed and switching interaction topology. The consensus protocol is
“designed” based on the output measurements of the adjacent agents. Toward this end,
the idea of augmenting the output matrix to be square and invertible is adopted for solving
the consensus problem [28, 29]. Through some coordination transformation, the consensus
problem is converted into the stability issue, and sufficient conditions are given in terms
of a set of LMIs. In contrast to the conditions presented, these conditions are scalable to
large undirected networks because the size of the LMI will not increase according to the
number of agents. Moreover, it can provide more flexibility in circumventing constraint
when compared with a solution that is based on the Riccati equation.

The remainder of this paper is organized as follows: we recall some preliminary results
on the graph theory and the consensus problem of MASs in Section 2. In Section 3, the
main theorems and the approaches are proposed for the fixed and switching interaction
topology. Section 4 is devoted to examples illustrating the efficiency of our proposed
approach. Some conclusions and open research topics are presented in Section 5.

A. Notation and Preliminaries. The following notations will be used throughout this
paper. A−1 and AT denote the inverse and the transpose of matrix A. A ≥ 0(> 0) denotes
that matrix A is positive semi-definite (positive definite). λ(A) denotes the eigenvalue set
of matrix A; Re(λ(A)) and Im(λ(A)) denote the real part and imaginary part of the matrix
eigenvalue. Matrix A is a Hurwitz (or stable) matrix if all its eigenvalues have strictly
negative real parts. ⊗ denotes the Kronecker product. 1n refers to an n-dimensional
column vector with the same components 1, In is the n× n identity matrix.

B. Graph Theory. Let G = (V, E ,A) be a diagraph (directed graph) with the set of
vertices V = {1, 2, · · · , N} and the set of edges E ⊆ V×V. The set of neighbors of the ith
agent is denoted by Ni = {j ∈ V | (j, i) ∈ E}. A = (aij) ∈ RN×N is called the adjacency
matrix with non-negative elements, aij > 0 ⇔ j ∈ Ni and aii = 0. The Laplacian matrix
of the weighted graph is defined as LG = [lij ]N×N , where lii =

∑

j aij and lij = −aij ,
i 6= j. A diagraph is called strongly connected if there is a directed path from every node
to every other node. An undirected graph is called connected if there is a path between
any distinct pair of nodes.

2. Problem Statement. Assuming a set of agents indexed by i = 1, 2, · · · , N , suppose
that the dynamical representation of each agent be governed by

ẋi(t) = Axi(t) +Bui(t)
yi(t) = Cxi(t), i = 1, 2, · · · , N

(1)

where xi(t) ∈ Rn, ui(t) ∈ Rm and yi(t) ∈ Rp denote the state vector, the input vector and
the output vector of agents, respectively. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are constant
matrices, where C is assumed to be full-row rank.

With regarding the above N agents as vertices, the topology relationships among them
can be conveniently described by a diagraph (undirected graph) with G = (V, E ,A) and
A = [aij ] ∈ RN×N . We assume that (A,B) is stabilizable and (A,C) is detectable. The
consensus protocol for each agent in MASs is distributed and only relies on the information
of the agent itself and its neighbors, since each agent has limited capability of collecting
information [3].
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It should be pointed out that the agents’ dynamics (1) is excluded from having poles in
the open right-half plane, otherwise, the consensus value achieved by the agents will tend
to infinity exponentially. Therefore, it is assumed that matrix A has no eigenvalues with
positive real parts. Typical examples of this case include the single and double integrators
considered in the existing literature [4, 8, 10, 11].

The consensus protocol adopted in this paper is

ui(t) = K
∑

j∈Ni

aij(yj(t) − yi(t)), i = 1, 2, · · · , N (2)

where Ni denotes the set of neighbors for agent i, aij is an adjacent element of A in the
graph G = (V, E ,A), and K is the consensus gain of the protocol.

Let x(t) ∈ RnN , u(t) ∈ RmN , y(t) ∈ RpN be the vectors which collect the states and
inputs of the N systems at time t, together with (2), System (1) can be written in a more
compact form

ẋ(t) = A1x(t) (3)

where
A1 = IN ⊗A− LG ⊗BKC.

The synchronization is achieved if there is a feedback gain K such that

lim
t→∞

‖xj(t) − xi(t)‖ = 0, i, j = 1, 2, · · · , N (4)

for any initial value x(0). Let

δi(t) = x1(t) − xi(t), i = 2, 3, · · · , N (5)

synchronization is achieved if and only if δi(t) → 0 as t→ 0 (i = 2, 3, · · · , N).

Consider an affine transformation, x(t) 7−→ (P ⊗ In) =

[

x1(t)
δ(t)

]

, where

P =

[

1 01N−1 −IN−1

]

, δ =
[

δT
2 , · · · , δ

N
N

]T

Suppose that the Laplacian matrix LG is partitioned as

LG =

[

l11 αT

β L22

]

(6)

where
α =

[

−a12 −a13 · · · −a1N

]T

and
β =

[

l21 l31 · · · lN1

]T

We have

PLGP
−1 =

[

0 αT

0 L22 + 1αT

]

(7)

In the new coordinates, System (3) is transformed into
[

ẋ1(t)

δ̇(t)

]

=
(

IN ⊗A −PLGP
−1 ⊗BKC

)

x(t) (8)

which yields
δ̇(t) = Âx(t) (9)

where
Â =

[

IN−1 ⊗ A− (L22 + 1αT ) ⊗ BKC
]
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3. Main Results.

3.1. Network with fixed topology. In this section, we will design the consensus pro-
tocol based on the output measurements of the adjacent agents. Sufficient conditions are
established in terms of LMIs with the complex eigenvalues of the Laplacian matrix as the
coefficients.

Lemma 3.1. [8] The Laplacian matrix LG of a graph G = (V, E ,A) has at least one zero
eigenvalue and all the nonzero eigenvalues are in open right half plane. Moreover, LG has
a simple zero eigenvalue with eigenvector 1n if and only if G has a spanning tree.

Lemma 3.2. [23] If System (1) is consensable, then (A,B,C) is stabilizable and de-
tectable, and the topology G has a spanning tree.

The following lemma presents necessary and sufficient conditions for the consensus
problem under the static output feedback consensus protocol (2).

Lemma 3.3. [23] For a directed (or undirected) network of agents with communication
topology G that has a direct spanning tree. Protocol (2) solves the consensus problem of
System (1) if and only if the following equivalent statements hold:

(i) There exists a static output feedback gain K such that Â is Hurwitz.
(ii) There exists a static output feedback gain K, such that

A2 = IN−1 ⊗ A− J ⊗BKC (10)

is Hurwitz, where J is the Jordan canonical matrix of L22+1N−1α
T .

(iii) Static output feedback gain K simultaneously stabilizes the N − 1 matrices

A3 = A+ λiBKC, i = 2, 3, · · · , N (11)

where λi (i = 2, 3, · · · , N) are the nonzero eigenvalues of matrix L = −LG.

Proof:

(i) ⇔ (ii) This can be concluded from [23] directly.
(ii) ⇔ (iii) It is noted from (10) that A2 is either block diagonal or block upper triangular,
hence, A2 and A3 have the same pole, e.g., A2 is Hurwitz if and only if theN−1 subsystems

ẋi(t) = (A+ λiBKC)xi(t), i = 2, 3, · · · , N

are asymptotically stable along the trajectories. This ends the proof of Lemma 3.3.
The purpose of this paper is to design the static output feedback consensus protocol

(2) such that System (1) is consensable. Generally, the static output feedback control
problem is difficult in the control community. In what follows, we will take a simpler LTI
system

ż1(t) = Az1(t) +Bu(t)
z2(t) = Cz1(t)

(12)

as a breakthrough point to address this issue, i.e., design the static output feedback
protocol

u(t) = Kz2(t) (13)

such that the resulting closed-loop system

ż1(t) = (A+BKC)z1(t) (14)

is asymptotically stable.
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Lemma 3.4. [28] System (12) is asymptotically stable under the static output feedback

protocol (13) if there exists a positive definite matrix Q =

[

Q1 0
0 Q2

]

∈ Rn×n, M ∈

Rm×m such that

ÃQ+QÃT + B̃MS + STMT B̃T < 0 (15)

where

M =

[

M11 M12

M21 M22

]

, S =

[

Ip 0
0 0

]

Ã = TAT−1, B̃ = TB

and T =
[

CT ∗
]T

is square and full rank. In this case, the feedback gain is given by

K = MSQ−1
[

Ip 0
]T

(16)

where Ip denotes the identity matrix of order p.

Proof: First, let us augment C by adding some rows. In such a way, T is square and
full rank, i.e., choosing a matrix H ∈ R(n−p)×n such that

T =
[

CT HT
]T

(17)

It is simple to see that there are an infinite number of matrices satisfying this condition.
In order to solve the problem, we introduce a change of coordinate z1 7−→ Tz1 = z̃1.

Following the change of coordinates, (A,B,K) 7−→ (Ã, B̃, K̃), where Ã = TAT−1, B̃ =

TB, K̃ = KCT−1 =
[

K 0
]

. System (12) can be further written as

˙̃z1(t) = Ãz̃1(t) + B̃K̃z̃1(t)
z2(t) = [Ip 0]z̃1(t)

(18)

Observe that (18) has the same form with the system that has the state feedback, if
the structure constraint on the feedback gain K̃ is neglected.

As we can see, System (18) is asymptotically stable if there exists positive definite

matrix P =

[

P1 0
0 P2

]

, such that

(Ã + B̃K̃)TP + P (Ã+ B̃K̃) < 0 (19)

Denoting P−1 by Q =

[

Q1 0
0 Q2

]

, we obtain (15). Moreover, the static output feedback

gain K can be obtained via the equation

K̃Q = MS (20)

This completes the proof of Lemma 3.4.

Remark 3.1. In Lemma 3.4, we have some degree of freedom to choose matrix H. This
could be exploited to improve the effectiveness of the proposed output feedback stabilization
method. The problem left for future discussion is the development of an effective procedure
to find an optimal matrix H.

Following the previous considerations, we are interested in evaluating the synchroniza-
tion problem of System (1) according to the different structure of the Laplacian matrix
LG.
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Theorem 3.1. Assuming the undirected communication topology G has a spanning tree.
Consensus is achieved under protocol (2) if there exist a positive definite matrix Q =
[

Q1 0
0 Q2

]

∈ Rm×m, M ∈ Rn×n, such that

ÃQ+QT ÃT + λiB̃MS + λiS
TMT B̃T < 0, i = 2, N (21)

where Ã, B̃, M , S are defined in Lemma 3.4. λ2 ≤ · · · ≤ λN are the nonzero eigenvalues
of L. H ∈ R(n−p)×n is chosen such that T is invertible. In this case, the feedback gain K
is given by

K = MSQ−1
[

Ip 0
]T

(22)

Proof: Following from Lemma 3.3, consensus is achieved if and only if A + λiBKC

(i = 2, 3, · · · , N) are Hurwitz. Namely, there exists matrix P = P T =

[

P1 0
0 P2

]

> 0

such that
ATP + PA+ λiPBK + λi(BK)TP < 0, i = 2, 3, · · · , N

This, together with Lemma 3.4 yields

ÃTQ+QÃ + λiB̃MS + λi(MS)T B̃T < 0, i = 2, 3, · · · , N

where Q = QT =

[

Q1 0
0 Q2

]

. It is noted that the solution space of the above inequality

is convex with respect to λi, which yields (21). Moreover, the structure of the matrix M ,

S and Q guarantees that K̃ has the form

K̃ =MSQ−1

=M

[

Ip 0
0 0

]

·

[

Q−1
1 0
0 Q−1

2

]

=
[

K 0
]

This concludes the proof of Theorem 3.1.

Remark 3.2. The condition that G has a spanning tree is quite general and weak, as it is
intuitively clear that consensus is impossible to reach if G has disconnected components.

Remark 3.3. Theorem 3.1 generalizes the existing results on the consensus problem in at
least two aspects. First, the agents’ dynamics is extended to be of general LTI, which was
not limited to single-integrator as usually assumed in most existing papers [7-9]. Second,
the consensus problem with static output feedback protocol is considered, which can be
converted into solving two LMIs with two eigenvalues of the Laplacian matrix as the
coefficients, thereby significantly reduce the computational complexity. In addition, the
effect of the communication topology on the consensus problem is characterized by the
nonzero eigenvalues λi (i = 2, 3, · · · , N) of the corresponding matrix L, which will be real
in the case of undirected graph, or may be complex in the general case of directed network.
As we know, the LMIs with the complex coefficients cannot be solved directly in Matlab.
The following theorem tries to solve this problem.

Lemma 3.5. Assuming that λi = ui ± vi · j are a pair of conjugate eigenvalues of matrix
L. The following propositions are equivalent:
(i) Ã+λiB̃K̃ is Hurwitz, with eigenvalue sj satisfying Re(sj) < −v, j = 1, 2, . . . , n, where
v is a constant.
(ii) There exists P = P T ∈ Rn×n > 0, such that

ÃTP + PÃT + λiPB̃K̃ + λiK̃
T B̃TP < −2vP (23)
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for the above v > 0.
(iii) There exists Q = QT ∈ Rn×n > 0, M ∈ Rn×n, such that

C0 + Re(λi(L))CR + Im(λi(L))CI < 0 (24)

for the above v > 0, where

C0 =

[

ÃQ+QÃT + 2vQ 0

∗ ÃQ+QÃT + 2vQ

]

CR =

[

B̃MS + (B̃MS)T 0

∗ B̃MS + (B̃MS)T

]

CI =

[

0 (B̃MS)T − B̃MS
∗ 0

]

Proof: Let λ1
i = ui + vi · j, λ2

i = ui − vi · j, where ui 6= 0.
(i) ⇔ (ii)
It is observed that

∣

∣

∣
λI − (Ã + λ1

i B̃K̃)
∣

∣

∣
·
∣

∣

∣
λI − (Ã+ λ2

i B̃K̃)
∣

∣

∣

=

∣

∣

∣

∣

λI − (Ã+ uiB̃K̃) viB̃K̃

−viB̃K̃ λI − (Ã+ uiB̃K̃)

∣

∣

∣

∣

(25)

Hence, if there exists a matrix K̃, such that Ã + λ1
i B̃K̃ and Ã + λ2

i B̃K̃ are Hurwitz
simultaneously, then

[

Ã+ uiB̃K̃ −viB̃K̃

viB̃K̃ Ã + uiB̃K̃

]

(26)

are Hurwitz. The principle also works in reverse. Moreover, (26) can also be rewritten as
[

Ã 0

0 Ã

]

.
= ¯̄A

+

[

B̃ 0

0 B̃

]

.
= ¯̄B

[

uiK̃ −viK̃

viK̃ uiK̃

]

.
= ¯̄K

which are Hurwitz if and only if there is a matrix P̃ = P̃ T =

[

P 0
0 P

]

> 0, such that

¯̄AT P̃ + P̃ ¯̄A+ P̃ ¯̄B ¯̄K + ¯̄KT ¯̄BT P̃ < −2vP̃ (27)

This, after simple computation yields (24). Assuming that the characteristic polynomial
of (27) is given by P 2

i (s) (if λi = ui, vi = 0) or Pi+(s) · Pi−(s) (if λi = ui ± vi · j, vj 6= 0).

If there exist a constant v > 0 and P̃ = P̃ T such that (27) is satisfied, polynomials
P 2

i (s) as well as Pi+(s) · Pi−(s) are both Hurwitz, with roots sj satisfying Re(sj) < −v,
j = 1, 2, · · · , n.
(ii) ⇔ (iii)

The equivalence of (ii) and (iii) is easily obtained if we let Q̃ = P̃−1 and K̃Q = MS.
This ends the proof of Lemma 3.5.

Theorem 3.2. Assuming the Laplacian matrix LG of System (1) has P nonzero real
eigenvalues and (N − P )/2 conjugate complex eigenvalues. Consensus is achieved under
the distributed protocol (2) if the directed graph has a spanning tree and there exists a

positive definite matrices Q =

[

Q1 0
0 Q2

]

∈ Rn×n, M ∈ Rm×m, such that

ÃQ+QT ÃT + λiB̃MS + λiS
TMT B̃T < 0, i = 2, P (28)
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and

C0 + Re(λi(L))CR + Im(λi(L))CI < 0, i = P + 1, P + 2, · · · , (N − P )/2 (29)

where C0, CR, CI are defined in Lemma 3.5. In this case, the feedback gain is given by

K = MSQ−1
[

Ip 0
]T

Proof: The proof of Theorem 3.2 is easily obtained based on Lemma 3.5 and Theorem
3.1.

Remark 3.4. It is noted that Theorem 3.2 degenerates to Theorem 3.1 when all the
eigenvalues of the Laplacian Matrix LG are real, i.e., vi = 0 (i = P + 1, P + 2, · · · , (N −
P )/2).

3.2. Network with switching topology. Consider a network of mobile agents that
communicate with each other and need to agree upon performing synchronization. Since
the nodes of the network are moving, some of the existing communication links may fail
due to the existence of an obstacle between two agents, and some new links, on the other
hand may create in terms of the network topology. Here, we are interest in designing
of the feedback gain K for the network with the switching topology and considering the
possibility of reaching a consensus.

Suppose the continuous-state of the switching system evolve according to the following
dynamics

ẋ(t) = (IN ⊗ A+ Ls ⊗BKC)x(t) (30)

where x(t) ∈ Rn. The discrete-state {s : s = σ(t) ∈ ψ0} belongs to a finite collection of
directed graphs, ψ0 ⊂ Z is a finite index set, σ(t) is a switching signal that determines
the network topology, Ls = −LGs. The topology of LGs is assumed to be connected for
each s ∈ ϕ0.

Theorem 3.3. Assuming the undirected switching topology G of System (30) has a span-

ning tree. Consensus is achieved if there exists a positive definite matrices Q =

[

Q1 0
0 Q2

]

∈ Rn×n, M ∈ Rm×m such that

ÃQ+QT ÃT + λisB̃MS + λisS
TMT B̃T < 0, i = 2, P (31)

and

C0 + Re(λis(L))CR + Im(λis(L))CI < 0, i = P + 1, P + 2, · · · , (N − P )/2 (32)

the consensus gain is given by

K = MSQ−1
[

Ip 0
]T

where C0, CR and CI are defined in Lemma 3.5, λis are the non zero real (i = 2, · · · , P )
and conjugate complex (i = P + 1, · · · , (N − P )/2) eigenvalues of matrix Ls (s ∈ ψ0),
respectively.

Proof: Let
V (t) = xT (t)Px(t)

be a common Lyapunov function. Assume that the sth subsystem is achieved at time t,
i.e., σ(t) = s. Taking the derivative of V (t) along the trajectories of (30) implies that

there exist βs > 0, such that ˙V (t) ≤ −βs‖x(t)‖2.

Let β = min{βs : s ∈ ϕ0}, we have V̇ (t) ≤ −β‖x(t)‖2 for any switching signal σ(t),
and hence the zero solution of (30) is asymptotically stable for any switching signal. The
proof of Theorem 3.3 is completed.
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4. Numerical Examples. In this section, the distributed protocol is designed using the
approaches sketched above.

Example 4.1. For an earthquake damage-preventing building, when an earthquake oc-
curs, each agent in this system tries to keep the building horizontal. After the earthquake,
the system should recover to be static and horizontal. It is clear that the consensus func-
tion of an earthquake damage-preventing building is time-invariant, that is, the velocity
and position of each agent converge to zero and a constant respectively. In this and the fol-
lowing examples, we always assume that the dynamic of each agent is LTI and be depicted
by

ẋi(t) =

[

1 3
−1 −1

]

xi(t) +

[

−1
1

]

ui(t)

yi(t) =
[

2 1
]

xi(t)
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Figure 1. (a) x-component of the position profiles, (b) y-component of
the velocity profiles
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It is easy to check that (A,B) is completely controllable. Here xi represents the states
of the ith agent, which consists of two components, i.e., x (position) and y (velocity). As
a first step, a matrix H is chosen to be H =

[

−0.1 10
]

. It is always possible to obtain

T so that the transformation can be employed. In the transformed coordinates, (Ã, B̃, K̃)
is created which is exploited in the second step of the design procedure.

A cyclic nearest neighbor interconnection is assumed among the three agents, e.g., the
edge set is given by {ε12, ε21, ε23}. Obviously, the graph has a spanning tree. A distributed
control law as in (2) is designed using the LMIs provided in (21), and the control gain is
obtained as K = 0.4696. The initial values of the agents are selected as x1(0) = [5 2]T ,
x2(0) = [3 − 1]T , x3(0) = [−2 − 6]T . In Figure 1(a) and Figure 1(b), we have confirmed
that the designed distributed protocol performs very well. One can see that the MASs
can recover to be static and horizontal asymptotically.
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Figure 2. (a) x-component corresponding to the solution of LMIs, (b)
y-component corresponding to the solution of LMIs
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Example 4.2. Consider the network with the switching topology {G1,G2,G3}, which is
described by the Laplacian matrix









3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1









,









6 −1 −2 −3
−3 4 −1 0
0 0 2 −2
−1 −2 −3 −6









,









1.3590 0 0 −1.3590
−1.8243 1.8243 0 0

0 −1.1319 1.9736 −0.8417
0 0 0 0









In this case, some of the existing communication links fail and some of them are created
due to the moving of the agents. We can easily see that topologies {G1,G2,G3} are all
connected, the state of such network starts at G1 and then switches every 0.01s to the next
state G2 and then G3. By using the LMI Toolbox in Matlab, it can be solved that exist
S and M such that the (31) and (32) holds. Figure 2(a) and Figure 2(b) demonstrate
the convergence of the states to the consensus when the network is running the consensus
protocol with different rates of convergence.

5. Conclusions. This paper investigates the consensus problem of the multi-agent sys-
tem under the fixed and switching interaction topology. A distributed protocol based on
relative output measurements of adjacent agents has been proposed and analyzed. The
consensus problem has been converted to the feasibility of a set of LMIs. Finally, nu-
merical examples are presented to illustrate the effectiveness of the proposed methods.
Further research includes extensions to MIMO heterogeneous multi-agent systems, and
takes the uncertainties into account.
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