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ABSTRACT. An obstacles detection method is proposed which employs a camera mounted
on a vehicle. Although various methods of obstacles detection have already been reported,
they normally detect only moving obstacles and not static obstacles, and o detected ob-
stacle is represented by a rectangular frame that surrounds this obstacle, which does not
provide shape of the obstacle. In this paper, a method is proposed for detecting obstacles
on a road, irrespective of moving or static, by use of background modeling and road re-
gion detection. The output of the proposed method is the shape of obstacles. Background
modeling is often used to detect moving objects when a camera is static. In this paper,
we apply it to a moving camera case in order to obtain foreground images. Then we
extract the road region using SVM. In this road region, we carry out region classification.
We can delete all the objects which are not obstacles in the foreground images based on
the result of the region classification. In the performed experiments, it is shown that the
proposed method is able to extract the shape of both static and moving obstacles when a
car s driving.

Keywords: Obstacle detection, Monocular vision, GMM, Road region detection, SVM

1. Introduction. In recent years, autonomous collision avoidance systems have been
developed for realizing safe driving to prevent car accidents. These systems should warn
the drivers of the presence of obstacles and help them to take action in advance. In these
systems, the ability to detect obstacles is essential. We know that safe driving of a car
depends heavily on vision. The vision of a driver can be improved by the systems that
give information on the environment around the vehicle that cannot be seen or hardly
seen by human eyes. Therefore, a vision-based obstacle detection system is the current
research focus and the mainstream in intelligent vehicle technology.

The existing obstacles detection methods are separated into three categories [1]: (i) The
first method uses a monocular static camera. This method detects obstacles based on the
optical flows which are inconsistent with the main movement direction of vehicles [2,3].
This method needs huge calculation and it is sensitive to vehicle motion. It cannot detect
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static obstacles. It can only be used to detect moving obstacles. (ii) The second method
uses a monocular moving camera. This method detects obstacles based on searching for
such features as shape [4,5] or symmetry [6]. This method can only be used to detect
one kind of specific object, such as pedestrian detection or vehicle detection. (iii) The
last method is based on stereo vision [7,8]. Scene images are captured using two or more
cameras from different angles simultaneously, and then the obstacles are detected through
matching. This method requires a great deal of time in order to make the necessary
calculations and is sensible to vehicle motion.

These existing methods have some inadequacies. In the first place, although the third
method uses two or more cameras, it is generally accepted that the method which uses
a monocular camera is much better because of economic aspect and of processing time.
Actually the method using a monocular camera is easier to achieve real-time processing.
In the second place, unlike the first method which detects only moving obstacles, a method
which can detect both moving and static objects simultaneously is necessary. It is because
static objects such as boxes fallen on the road from a car are also dangerous for drivers. In
the third place, most of the existing methods cannot extract the shape of obstacles. They
only use a rectangular frame that surrounds an obstacle to represent a detected obstacle.
However, this shape information is important for obstacles recognition and classification.
If the detected obstacles are judged as a pedestrian, for example, we can recognize his/her
motion and may predict his/her next action, if necessary.

In order to make up for these inadequacies, in this paper, we propose an obstacles de-
tection method using a vehicle-mounted monocular camera. This camera records the road
environment in front of a vehicle when the vehicle is moving, and the computer analyzes
the captured images to realize obstacles detection. The output of the proposed method
is the shape of moving as well as static obstacles. After having obtained the obstacle
information, drivers can react quickly and make the corresponding actions accurately to
prevent car accidents. Here true obstacles are defined as arbitrary objects which protrude
from the ground plane in the road region, including static and moving objects. Road
marks in the road region (e.g., zebra crossings) and objects outside the road region are
considered as false obstacles.

The advantages of the proposed method over the existing obstacles detection methods
are that the proposed method employs a monocular camera to detect both static and
moving obstacles on the road, and that it outputs the shape of an obstacle and not a
rectangular frame containing the detected obstacle. It should be added that the proposed
method can be applied for speed up to 40 km/h which is usually the speed limit within
a city.

Outline of the paper is given in the following: Given a video image sequence taken by
a moving camera, in Section 3, we employ Gaussian Mixture Model for reconstructing
the background. In Section 4, we detect the road region using Support Vector Machines.
Section 5 describes region classification using the result of road region detection and
extraction of obstacles on the road. Experimental results are shown in Section 6. Finally,
the paper is concluded in Section 7.

2. Outline of the Proposed Method. When a car is moving forward, stationary ob-
jects in a frontal scene are considered as the background, and the foreground can be
obtained based on the background model. Because the road has almost no texture, the
road can be considered to be static in the frontal video image and is regarded as the back-
ground. In this condition, the foreground image which is obtained from the background
model contains obstacles on the road and the objects outside of the road. In order to
extract the shape of the obstacles in the foreground image, the following operations are
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FI1GUrE 1. Flowchart of the proposed method

employed. First, the road region is detected using Support Vector Machines. Second,
non-road region in the result of the road region detection is classified as noise region and
obstacles region. After the region classification, we have three kinds of regions, noise
region, obstacles region and road region. All the objects inside the noise region in the
foreground image are considered as noises and deleted. Road marks in the foreground
image are considered as false obstacles inside the road region and deleted using the road
region. Finally, the shape of the obstacles (e.g., pedestrians, boxes) in the foreground im-
age is extracted using the obstacles region. Figure 1 shows the flowchart of the proposed
method.

3. Background Modeling. A typical method of detecting obstacles is background mod-
eling, by which we can get the shape of an object directly. Numerous approaches con-
cerning this problem differ in the types of used background models and the procedures
used to update the model.

There are two kinds of background modeling methods: non-adaptive methods and adap-
tive methods. Most researches have abandoned non-adaptive methods because of the need
of manual initialization. Among adaptive methods, Christopher et al. [9] used a single
Gaussian distribution to model the values of a particular pixel and to get the background
model. When this method is applied in an indoor scene, the output is satisfactory; but
not good for outdoor scenes. Rather than modeling the values of one pixel by one Gauss-
ian distribution, Stauffer et al. [10,11] modeled the values of a particular pixel as mixture
of K Gaussian distributions. This is method is called Gaussian Mixture Model (GMM).
Different Gaussians are assumed to represent different gray values. Based on the mean
value and the variance of each Gaussian in the mixture, they determine which Gaussian
corresponds to the present background. Pixels that do not fit the background distribu-
tions are considered as foreground. To allow the model adapt to change in illumination
and run in real-time, an update algorithm was applied.
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The GMM is robust when employed in a fixed camera case. However, in this research,
the employed camera is moving since it is mounted on a car. In order to employ the GMM
in a moving camera case, we need to construct a virtual scene based on a realistic scene.
We then employ the GMM in this virtual scene in reconstructing the background.

3.1. Virtual scene construction. In this research, since a camera is mounted on a
vehicle, when the vehicle is moving, the camera is moving as well. This is the realistic
situation. However, when we see the frontal scene in the frontal video image, the camera
can be considered to be static, and then buildings, the road and static objects are moving
according to the relative motion. Moreover, since the road has almost no texture, we can
assume that the road is static in the frontal video image. Thus, the virtual scene will be
defined as the frontal scene (in the videotaped image) with the assumption of the road
being static. In this virtual scene, the camera is static; the road area which is classified as
the background is static; objects (including static and moving objects) and pedestrians on
the road, buildings, road marks and zebra crossings which are classified as the foreground
are moving. Then we employ the GMM to reconstruct the background in this moving
camera case.

3.2. Gaussian mixture model. We consider the values of a particular pixel in the
image sequence over time as pizel process. The pixel process is a time series of pixel
values. At any time ¢ (¢t = 1,2,...,T), the history of a particular pixel (zg, o) is given
by

(X1, Xp} = {I(zo,y0,8) : 1 <t < T} (1)

where [ is the gray value of pixel (xg, y).
The recent history of each pixel, {X7,..., X7}, is modeled by a mixture of K Gaussian
distributions. The probability of observing the current pixel value X; is

K
P(Xy) = Zwk,t (Xt ot ai,t) (2)
k=1
where K is the number of Gaussian distributions in the mixture; wy, is the weight of the
k'™ Gaussian in the mixture at time gt is the mean value of the k*h Gaussian in the
mixture at time ¢ a,it is the covariance of the k" Gaussian in the mixture at time ¢ 7 is
a Gaussian probability density function defined by

Okt

1 1 (X} — pgs)?
U(Xtaﬂk,taal%,t) :\/ﬁ exp {—5%} (3)

The first frame in the video is used for the initialization of the GMM. A new distribution
is created for each pixel with the current pixel value as its mean value, an initially high
variance, and a low prior weight.

The updating algorithm of GMM goes as follows:

1) Every new pixel value, X, is checked against the existing £ (1 < k < K) Gaussian
distributions to find if it matches one of those distributions. The match is defined by

|Xt - ,U/k,t71|
Ot—1

S Tgauss (4)

Here T}qyss is a threshold.
2) The weights of the k' distributions at time ¢, wy, are adjusted as follows:

Wit = (1 — @)wg 1 + (M) (5)
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where « is the learning rate and M, is 1 for the model which matched and 0 for the
remaining models. After this approximation, the weights are renormalized.

3) If none of the K distributions match the current pixel value X, the least probable
distribution is replaced with a distribution with the current value X; as its mean value,
an initially high variance, and a low prior weight. When k& < K, create a new distribution
with the current value X; as its mean value, an initially high variance, and low prior
weight.

4) If there are distributions which match the current pixel value X; in the K distri-
butions, the Gaussian Model k that matches best with the current pixel value will be
updated as follows:

= (1= p) -1 + pXy (6)
o= =Py + (X — pet) " (Xy — i) (7)

where p &~ a/wg,. The parameters p and o? for unmatched distributions remain un-
changed.

5) The existing Gaussians are ordered by the value of wk,t/az,t. After ordering, the
most likely background distributions remain on the top and the less probable transient
background distributions on the bottom and are eventually replaced by new distributions.
Then the first B distributions are chosen as the background model, where

b
B = arg rnbin <kz_; wy > TB) (8)

where T is a measure of the minimum portion of the data that should be accounted for
by the background.

6) Every pixel value, X, is checked against the B Gaussian distributions; if it matches
one of them, this pixel is a background pixel, otherwise a foreground pixel.

M
2
O

4. Road Region Detection. Because the camera is moving, the foreground which is
obtained from the background modeling often contains a lot of noises. These noises are
caused by the objects outside the road region. In order to delete these noises, we need to
detect the road region. In this paper, we detect a road region using the Support Vector
Machines (SVM) [12-14]. This method includes two steps: a training step and a test step.

In the first frame of the input video, a small sample of pixels is labeled as a road class
or a non-road class. (This is done manually at the moment in experiments.) With each
pixel of these samples, we extract a feature vector by feature extraction (described later).
These feature vectors are considered as the training data of the SVM.

In other frames of the input video, a feature vector is extracted for each pixel using the
same feature extraction method. These feature vectors are considered as the test data.

Then, each pixel in the input video is classified as a road pixel or a non-road pixel using
the trained SVM classifier.

4.1. Feature extraction. In this paper, the features we use are color features and tex-

ture features. For color features, three features in HSV color space are used. For texture
features, five Haralick statistical features [15] are used as follows:

Energy =Y {p(u,v)}* 9)
Entropy = — Z Zp(u, v) log{p(u,v)} (10)
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Ny—1 Ny N,
Contrast = Z nZ{ZZp(u,v)}, lu—v|=n (11)

n=0 u=1 v=1
1

Inverse dif ference moment = Z Z mp(u, v) (12)
u—v

Zu ZU(U’U)p(U, 'U) — Mgy (13)

050y

Correlation =

Here p(u,v) is an element of a Gray Level Co-occurrence Matrix (GLCM). i, f1, and o,
o, are the mean values and covariance values calculated from GLCM, respectively.

The algorithm of texture features calculation goes as follows:

1) The gray levels of original images are 256. We reduce the number of gray levels from
256 to 8.

2) The pixels in the small square window of size 5 x5 centered at the current pixel are
used to calculate a GLCM. The size of the GLCM is the same as the number of gray levels
of the image, so, in the proposed method, the GLCM is an 8 x 8 matrix. The definition
of the GLCM is given below.

The GLCM is a tabulation of how often different combinations of pixel brightness values
(gray levels) occur in an image. GLCM texture considers the relation between two pixels
at a time, called the reference and the neighbor pixel. ps(i,j) (4,5 =0,1,2,...,7) is the
frequency of the reference pixel with the value ¢ and the neighbor pixel with the value j
which satisfy a given offset 6(Dy, Dy ) within the window. ps(i,j) is considered as the
value of element (4,j) in GLCM p;.

3) According to Equations (9)-(13), we calculate five texture features.

These five texture features and three color features are combined to form an eight-
element feature vector as follows:

Fij = [fr.6g)s Ja(ig)s JtaGig)s FraGiog)s Frs(ig)s JerGing)s Jeatig)s feating)] (14)

where f;, ;) is the n'" Haralick statistical feature at the point (4, j) and fen(iny) 1 the nth
color feature at the point (7, 5) in the HSV color space.

4.2. Training database initialization. The first frame in the input video is used as
the training image of an SVM; the other frames in the input video are used as test images.

In the first frame, the training data is selected and labeled by a human. Two rectangle
windows are used by a supervisor to select the training data on the image as shown in
Figure 2. A lower green window is placed in the road region. The pixels located in this
green window are labeled as positive samples. An upper red window is placed outside
the road region. The pixels located in this green window are labeled as negative samples.
These two samples constitute the training database.

FIGURE 2. Training data selection
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5. Obstacles Extraction. In order to extract the shape of obstacles in the foreground
images, we need to delete two kinds of things: road marks and noises outside the road.
For road marks, we can use the result of the road region detection to delete them. For
the noises outside the road; when we use the result of the road region detection to delete
noises, it also deletes the obstacles outside of the road. In order to solve this problem
(reserving the obstacles and deleting the noise outside the road), we need to divide the
non-road region into obstacles region and noise region. Then we use this noise region to
delete the noise outside the road in the foreground image.

5.1. Region classification. Here we want to divide the non-road region into obstacles
region and noise region. Figure 3(a) and 3(b) show the result of road region detection
and the corresponding road region template image, respectively.

In this road region template image, black pixels are road pixels, whereas white pixels
are non-road pixels. If we check the pixels of one particular row in this image, we get a
curve as shown in Figure 4. Based on this curve, we consider white regions (high values)
which have two adjacent black regions (low values) both on the left and right sides as
the obstacles region. We check each row in the road region template image to carry out
region classification. Figure 3(c) shows the result of the region classification. The obstacle
region is indicated by gray pixels.

5.2. Classification of foreground objects. In the foreground image, black pixels mean
the pixels of foreground objects. These black pixels contain the pixels of obstacles, the
pixels of road marks and the noise. In order to extract the shape of obstacles, we should
change the black pixels which represent the road marks and noise to white. We check
each black pixel’s position in the result of region classification (shown in Figure 3(c)). If
the current black pixel is located in the noise region (white region), this black pixel is
considered as the noise and is changed to white in the foreground image. If the current

(b) (c)

FIGURE 3. (a) The result of road region detection, (b) road region template
image, (c) the result of region classification
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FIGURE 4. Pixel values distribution of the 120*" row in the road region image
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black pixel is located in the road region (black region), this black pixel is considered as
the road mark and is changed to white in the foreground image. If the current black pixel
exists in the obstacle region, it is left unchanged. By this operation, road marks and other
noises are deleted. Then we carry out erosion operation and regional expansion as the
post-processing.

6. Experimental Results.

6.1. Detection of foreground images. The camera, which is fixed in front of the vice
driver’s seat, records the road images in front of the car when the car moves forward.
Obstacles are defined as arbitrary objects that protrude from the ground plane in the
road region, including static and moving objects. Road marks in the road region (e.g.,
zebra crossings) are considered as false obstacles and objects outside the road region is
noise. According to this definition, correct objects in video 1 is two pedestrians and a box;
a correct object in video 2 is a pedestrian; correct objects in video 3 are two pedestrians
and a box.

In the first place, we reconstruct the background model using a Gaussian mixture model
in the input images. Figure 5 shows the input images and the corresponding foreground
images. Because the camera is moving, the foreground images as shown in Figure 5
contain a lot of noise. This noise is mostly caused by the objects outside the road region.
In order to delete these noises, we need to detect the road region.

In the second place, we detect the road region in the input images using the Support
Vector Machines. Figure 6 shows the results of two road region detection methods: the
method using SVM (described in Section 3) and the method using motion compensation
[16-19]. In these resultant images, the purple color region means the road region. The
detection method using motion compensation needs camera calibration [20] and must
calculate the motion parameters of the car. Due to the error of these calculations, the
detection results are worse than the detection method using SVM.

Input Foreground Input Foreground Input Foreground
Video 1 Video 2 Video 3

FiGURE 5. The results of background modeling with three scenes
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Motion

SVM Motion Motion
Compensation Compensation Compensation
Video 1 Video 2 Video 3

FIGURE 6. The results of road region detection

)

Video 2

F1GURE 7. The results of obstacles detection

In the third place, we carry out region classification in the road region template image,
and then delete road marks and noises in the foreground image using the result of the
region classification. In Figure 7, (a) shows the results of obstacles detection in which
SVM is used for the road detection, whereas (b) gives the results of obstacles detection
in which motion compensation is employed for the road detection. Since the accuracy
of the road region detection has been improved by the employment of the SVM, results
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y § 1)

(a) Ground truth (b) Obstacles (c) Resultant image

FiGurE 8. Images employed for evaluation

of the obstacles detection are improved. It is noted that, in these resultant images, the
obstacles are represented by shape.

6.2. Detection of obstacles. In order to evaluate the effectiveness of the proposed
obstacles detection method, we compare the result of obstacles detection with the Ground
Truth (shown in Figure 8(a) and 8(b)). In the resultant image of comparison (shown in
Figure 8(c)), the red area means the overlap part of 8(a) and 8(b), and this part is called
True Positive; blue means the part which is included in 8(b) but not in 8(a), and this part
is called False Positive; green means the part which is included in 8(a) but not in 8(b),
and this part is called False Negative. We calculate recall using the following formula:

TP
recall = o7 > 100[%] (15)

Here TP is the number of pixels in the True Positive area; GT is the number of black
pixels in the Ground Truth image.

If recall is larger than 0.5, we consider this object has been extracted. Then we calculate
Recall and Precision using the following formulas:

N
Recall = =2 x 100[%] (16)
Ner
Precision = _ Nre x 100[%] (17)
Nrp + Npp

where N7p is the number of correct objects in the resultant images; Ngr is the number of
objects in the ground truth images; Ngp is the number of incorrect objects in the resultant
images. The results of evaluation are shown in Figures 9-11. (a) is the evaluation of the
results of obstacles detection in the case of using SVM, whereas (b) is the evaluation of
the results of obstacles detection in the case of using motion compensation.

7. Discussion and Conclusion. In this paper, we proposed an obstacles detection
method using a video taken by a vehicle-mounted monocular camera.

In the part of background modeling, we applied GMM to a moving camera scene.
The GMM is an effective background modeling method normally used in a static camera
case. However, we expanded so that it can be applied to a moving camera case. This
expansion is important to industrial applications of an obstacle detection system based
on a vehicle-mounted camera.

In the part of road region detection, we compared two road region detection methods.
According to the result of the detection, the detection method using the SVM works better
than the method using motion compensation. This was shown by the experiments (shown
in Figures 9-11). The drawback of the method using motion compensation may have been
caused by low precision of camera calibration and motion parameters calculation.

In the road region detection method using the SVM, we extracted a feature vector for
each pixel in the input image. This feature vector is combined by five texture features and
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FIGURE 11. The result of evaluation (video 3)

three color features. According to experiments, this composite feature vector contributed
sufficiently to detecting a road region from a video. It is noted that the composite feature
vector was better than the feature vector which only uses texture features or only uses
color features.

The proposed method has some advantages over the existing obstacles detection meth-
ods. In the first place, the proposed method uses a monocular camera. This realizes an
economic system and smaller computation time. It is also advantageous for achieving
real-time processing. In the second place, the proposed method can detect arbitrary ob-
jects including both static objects and moving object. To the best of our knowledge, no
researches have ever proposed a method which detects both static and moving objects
simultaneously. This is helpful because static objects such as boxes fallen on the road
from a car are dangerous for drivers. Most of the existent methods concentrate only on
detecting moving objects such as pedestrians, bicycles and cars. In the third place, the
output of the proposed method is the shape of obstacles. Most of the existing obstacles
detection methods only indicate the location of an obstacle by a rectangle frame which
surrounds it. We understand that extraction of the shape of an obstacle is important for
obstacle recognition. If the detected obstacle is recognized as a pedestrian from its shape,
we can foresee his/her next action.

The proposed method is now under improvement so that it may be applicable to a
slightly curved road.
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