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Abstract. We present a switching approach for the stabilization of the strongly damped
inverted pendulum cart system, provided that the pendulum is initialized inside of the
upper-half plane, and the linear viscous force is known. The control strategy uses two
stabilizing controllers. The first is a nonlinear controller, devoted to bringing the pendu-
lum very close to its unstable equilibrium point. Then, this controller switches to a second
linear controller in charge of asymptotically and exponentially renders the pendulum to
the origin. The stability analysis and the estimation of the attraction domain were made
using Lyapunov related tools. Convincing numerical experiments were included, where
some comparison among others well-known strategies were performed.
Keywords: Inverted pendulum system, Direct Lyapunov method, Flatness approach,
Switched system

1. Introduction. One of the most important mechanical systems studied in Control
Theory is the inverted pendulum mounted on a cart. This system is formed by a cart
that moves backwards and forwards horizontally along a track, and a pendulum hinged to
the cart at the bottom of its length, such that it can freely rotate in the same plane as the
cart. This system is inherently unstable and it is almost impossible to keep the pendulum
balanced in its inverted position without using an external force applied to the cart. As
the external force is only applied to the cart, we do not have any control of the pendulum
angular acceleration. That is why the inverted pendulum is an underactuated system
and a well-established challenge in Control Theory. As this system is not input-output
linearizable by means of static state feedback [1, 2], many control strategies developed
for fully actuated systems are useless to control this class of system. Moreover, when
the pendulum passes through the horizontal plane, it cannot be controlled and loses
some geometric properties [3, 4]. On the other hand, the inverted pendulum is locally
controllable around the unstable equilibrium point, and by using the direct pole placement
procedure it can be stabilized [2, 5].

Related to the inverted pendulum there are two important issues. One is devoted to
swinging the pendulum from the hanging position to the upright position. To this end,
the pendulum is brought to a homoclinic orbit; then, once the system is close enough to
the desired upright position, with a conveniently slow velocity, a simple change from a
non-linear to a linear controller allows keeping the pendulum at this position [6, 7, 8, 9,
10, 11, 12, 13, 14]. The second issue consists of stabilizing the system around its unstable
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equilibrium point, assuming that the pendulum is initially above the horizontal plane, or
lies inside an open vicinity of zero, which is related to the attraction region of the closed-
loop system [10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22]. This work is devoted to solving the
upward pendulum stabilization problem with the cart at the origin, tacking into account
the undesirable effects of the damping forces presented in both coordinates, the actuated
and non actuated. The proposed control strategy, which is based on two control laws,
assumes that the pendulum is initialized in the upper-half plane and that contact friction
is available. The first control law is nonlinear and is devoted to bringing the position
pendulum, the linear cart velocity and the angular pendulum velocity close enough to the
origin. Then, the strategy switches to a linear controller, which renders all the system
variables to the origin. The nonlinear control law is based on the direct Lyapunov function
[23] in conjunction with a suitable change of coordinate, while the linear controller uses a
simple linear feedback stabilization controller. Note that when the friction compensation
is omitted, the pendulum could not reach the top rest position and the steady-state error
in the horizontal cart position can appear. We underscore that the stabilization of the
damped inverted pendulum system (DIPC) cannot be completely solved by using shaping
energy control as pointed out in [24, 25]. For this reason, the undesired damping effect has
been neglected in most of the previous works related to controlling the inverted pendulum.
As far as we know this problem has only been partially solved in two different manners.
The first uses the sliding mode method and the robust linear control method, with the
disadvantage of being impossible to compute the attraction domain [26, 27, 28, 29, 30].
The second partial solution is based on the Linear Control Theory, and uses a linearized
version of the system.
The following sections are organized as follows. The nonlinear model of the system is

presented in Section 2. Our proposed control strategy is developed in Section 3. The
numerical simulations to show the effectiveness of our control strategy, by means of some
numerical comparisons among three well-known control methods, are shown in Section 4,
and the conclusions are in Section 5.

2. The Damped Inverted Pendulum Cart System. Consider the inverted pendulum
mounted on a cart (see Figure 1). This system is described by a set of normalized
differential equations [2]:

cos θẍ+ θ̈ − sin θ + λ1θ̇ = 0,

(1 + δ)ẍ+ cos θθ̈ − θ̇2 sin θ + λ2ẋ = f ;
(1)

where x is the normalized cart displacement, θ is the angle that the pendulum forms with
the vertical, and f the normalized force applied to the cart, which is the input of the
system, and δ > 0 is a constant which directly depends on both the cart and pendulum
masses. The cart and pendulum viscous frictions are λ1θ̇ and λ2q̇ respectively, with their
corresponding viscous friction coefficients, λ1 ≥ 0 and λ2 ≥ 0. Now, if the following
feedback:

f = u(δ + sin2 θ) + λ2ẋ− λ1 cos θθ̇ − θ̇2 sin θ + cos θ sin θ, (2)

is introduced into the second equation of (1), we have:

θ̈ = sin θ − cos θu− λθ̇
ẍ = u;

(3)

where λ = λ1.
Motivation: It is well-known that damping in the unactuated directions does tend to
enhance stability. However, damping in the controlled directions must be “reversed”
through feedback ([24]). That is to say, damping in the actuated coordinated can always
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Figure 1. The inverted pendulum mounted on a cart

be compensated, which is not the case in the non-actuated coordinate. Besides, damping
in the non-actuated coordinated can destroy the stability of the whole system as happened
in the Furuta pendulum, the cart pendulum system and the ball and the beam system,
to mention a few. It is worth mentioning that all the stability schemes based on shaping
energy function, like Lagrange or Hamiltonian approaches, cannot in general assure sta-
bility. Roughly speaking these methods consist of shaping a locally strictly positive and
proper energy function, with a minimum at the origin. Simultaneously, the controller is
proposed such that, the time derivative of the energy function is semi-definite negative.
Particularly, the obtained time derivative is semi-definite negative with respect to a mani-
fold (which depends on the velocities and the positions). Afterwards, the stability analysis
based on the theorem of LaSalle, has to be applied to analyze the mentioned manifold,
and assure that the largest invariant set inside of the manifold is the origin. Unfortu-
nately, these methods are useless when applied to the Furuta Pendulum and the Inverted
Pendulum Cart system, because it is not possible to guarantee that the corresponding
energy function is a non-increasing function. Consequently, we cannot use the theorem
of LaSalle, nor assure convergence. A trick often used to assure asymptotic stability,
consists of linearizing the system in closed-loop and proposing the gains of the energy
based controller, such that this is locally and exponentially stable. Also, the methods
based on saturation function, and bounded control ([17, 20]) neither assures asymptotic
stability; only, as already mentioned, we can only assure local exponential stability by
using simple linearized models. There are several works where this problem is tackled us-
ing the linear quadratic regulator method applied to the linearized control model. As far
as is known, this problem has been partially solved using the second order sliding modes
method, having the inconvenient of show chattering and discontinuities in the control.
The main motivation of this work is introducing a novel control strategy, which allows
controlling the Damped Inverted Cart System (DICS) by means of an almost continuous
and smooth controller, with a conveniently large attraction domain. In our opinion, the
innovation of our control strategy consists in a virtual compensation of the dissipative
force using a coordinates change in the non-actuated coordinate. This coordinates change
permits managing the system as if it were a traditional, non-linear cart pendulum system.
This transformed model, allows us to design a control law, based on the Direct Lyapunov
method, obtaining a continuous and smooth controller, which renders the pendulum to
its upper-right position while both the pendulum and the cart almost stop. Afterwards,
a switch to a linear controller brings the cart to the origin while keeping the pendulum in
its upper-right position.

Remark 2.1. To simplify the stabilization problem, the unmatched physical damping
term, λθ̇, is not considered in the model. However, the damping force can make the
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DIPC system unstable, specially when the pendulum is moving inside the upper-half-
plane [24, 31].

Problem formulation: Consider the dampened inverted pendulum on the cart system
(DIPC), described in (3). The goal is to stabilize the pendulum around its upright posi-
tion, while simultaneously rendering the cart to the origin, provided that the pendulum is
initially located inside the upper-half plane and the damping viscous force is presented.
The following comment is for clarification: The problem will be solved assuming that

all the state variables and the system parameters are given. Also, we assume that the
pendulum is initialized in the upper-half plane. In order to simplify the development of
this work, we assume that λ2 is given; if not, it can be estimated using an adaptive control
low.

3. Nonlinear Control Strategy. The control strategy presented here consists of two
control laws. The first law, which is nonlinear, brings the pendulum to its upright and
its velocity and the cart’s are taken to zero. Then, this law is switched to a linear law,
which is in charge of setting the whole state to the origin.

3.1. Bringing the states θ, θ̇ and ẋ to some close vicinity at the origin. The first
step consists of designing a nonlinear law to bring the system very close to its unstable
equilibrium point. To this end, we propose a change of variables in the following manner.
We introduce the following coordinates.

y = x+ 2lc
∫
arctanh

(
tan

(
θ
2

))
; lc > 0

ẏ = ẋ+ 2lc arctanh
(
tan

(
θ
2

)) (4)

For simplicity, we denote the quantity,
∫ t

0
φ(θ(s))ds, by

∫
φ(θ). Then we split the

control action, u, as:

u = us − lc sec θθ̇ (5)

Thus, after substituting the new coordinates and the new controller, (4) and (5), into
the system (3), we obtain:

θ̈ = sin θ − cos θus + (lc − λ).̇θ,
ÿ = us.

(6)

From the above equation, it can be seen that, if the vector positions variables, q =
(θ, y)T , and the vector velocity, p = (θ̇, ẏ)T , are brought close enough to the origin, we

can assure from (4) that variables, {θ, θ̇, ẋ}, are also close to zero with q bounded. Hence,
our control strategy consists of bringing variables, q and p, to zero. Then we switch the
proposed control law (5) to a linear controller, uL, as shown below.
To bring variables, q and p, to the origin, we use the Direct Lyapunov Method. To do

this, we propose the following Lyapunov function:

E(q, p) = Φ(q) +
1

2
pTKp; (7)

where the constant matrix, K, fulfills K = KT > 0, and Φ is selected in such a way that
∇qΦ(0)|q=0 = 0 and ∇2

qΦ(0)
∣∣
q=0

> 0; therefore, this function is strictly convex locally

with a local minimum at the origin.
Now we will find the unknown variables, K, Φ and us. To this end, we split the

controller us, as:

us(q, p) = up(z) + ud(θ, p), (8)
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where up is used to simultaneously shape the potential and kinetic energies, while ud
introduces the necessary damping to the closed-loop system. Hence, from (6) and (8), we
have that:

q̇ = p,
ṗ = Gd(q, up) + F (θ)ud +Dp;

(9)

where

Gd(q, up) =

[
s1 − c1up

up

]
; F (θ) =

[
−c1
1

]
; D =

[
lc − λ 0
0 0

]
(10)

Now, computing the time derivative of E along the system trajectories (9), we easily
have:

Ė = pT (∇qΦ(q) +KGd(q, up)) + pTKF (q1)ud + pTKDp. (11)

We should remark that, if the following conditions are satisfied:
A) K, Φ(q) and up(q) satisfy the following equation:

∇qΦ(q) +KGd(q, up) = 0, (12)

and,

ud = −γF T (q1)Kp; γ > 0. (13)

B) For some γ > 0 and lc > 0, there is a symmetric matrix, M(q1) < 0, q1 ∈ Iγ, such
that:

pTM(q1)p = −γpTKF (q1)F T (q1)Kp+ pTKDp. (14)

Then, Ė ≤ 0. Summarizing we present the following proposition.

Proposition 3.1. Consider the nonlinear system (9), with q1 = θ ∈ I0 ⊂ (−π/2, π/2);
and, K and Φ, as already described. If the set of unknown variables, {K,Φ, ud, up}, are
selected according to the above conditions, A and B, then the system (9) is locally stable.

Proof: After substituting (12) and (14) in (11), we have:

Ė = pTM(q1)p ≤ 0; ∀q1 ∈ I0. (15)

Since E(q, p) is locally defined strictly positive and a non increasing function for the above
relation, then the closed-loop system (9) is at least stable in the Lyapunov sense. Besides,
from (15), we can easily assure that, p → 0, as long as, t → ∞. Remember that the
proposed Lyapunov function has a locally minimum at the origin.

To apply the last proposition, we assure condition A, and then we assure condition B.
Solving the condition A: Fixing matrix, K, as:

K =

[
k1 k2
k2 k3

]
, (16)

where k1 > 0 and ∆K = k1k3 − k22 > 0. Substituting Gd and K, given in (10) and (16),
into (12), we have:

k1 (s1 − c1up) + k2up +
∂Φ

∂q1
= 0,

k2 (s1 − c1up) + k3up +
∂Φ

∂q2
= 0.

(17)

From the first equation of (17), the control parameter, up, is given by:

up =

(
k1s1 +

∂Φ
∂q1

)
−k2 + k1c1

, (18)
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where −k2+k1c1 must be different from zero (see below). Substituting up into the second
equation of (17), we have:

∂Φ

∂q2
+
∂Φ

∂q1

ψ(q1)

χ(q1)
=

∆Ks1
χ(q1)

; (19)

where:

χ(q1) = k2 − k1c1; ψ(q1) = −k3 + k2c1. (20)

In order to assure that Equations (18) and (19) are well defined, we select k1, k2 and
k3 provided that χ(q1) 6= 0 and ψ(q1) 6= 0; for all, q1 ∈ I0 ⊂ (−π/2, π/2), where I0 will
be determined below. Now, after using the mathematical program to solve (19), we have
that Φ can be expressed, as:

Φ(q) = −βK log (−ψ(q1)) + S [q2 +Υ(q1)] ; (21)

where

Υ(q1) =
2∆K

k2δK
arctan

(
ηK
δK

tan
(q1
2

))
+
k1
k2
q1, (22)

and the remaining constants, ηK , δK and βK , are given by:

δK =
√
k22 − k23; ηK = k2 + k3; βK =

k1k3−k22
k2

> 0, (23)

where function S(q) is selected such that:

Φ(0) = 0; ∇qΦ(q)|q=0 = 0; ∇2
qΦ(q)

∣∣
q=0

= 0. (24)

Therefore, from (24), we have that the potential energy Φ(q) 1 can be proposed, as:

Φ(q) = βK log

(
ψ(0)

ψ(q1)

)
+
kp
2
(q2 +Υ(q1))

2, (25)

where kp > 0. The above discussion is summarized by the following remarks.

Remark 3.1. Defining the potential energy, as:

Φ(q) = βK log

(
ψ(0)

ψ(q1)

)
+
kp
2
ρ22 (26)

where

ρ2 = q2 +
2∆K

k2δK
arctanh

(
ηK
δK

tan
(q1
2

))
+
k1
k2
q1, (27)

then the function Φ is locally strictly positive with a minimum at the origin, if the positive
constants, k1, k2 and k3, are selected, such that:

k2 − k1 < 0; k2 − k3 > 0; k22 − k23 > 0. (28)

Based on the previous remark, we introduce the following important lemma, which
allows us to estimate the region where Φ is strictly positive and convex.

Lemma 3.1. Defining the constant:

c < βk log

(
ψ(0)

ψ(θ)

)
, (29)

where

θ = min

{
cos−1

(
k2
k1

)
, cos−1

(
k2ε

4γ∆K

+
k3
k2

)}
(30)

1Notice that ∇2
qΦ(q)

∣∣
q=0

=
kp∆K

ψ(0) which implies that kp > 0 and ψ(0) = k2 − k3 > 0.
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being ε = lc − λ ≥ 0 small as we desired. Then, under the assumption in Remark 3.1, we
have that the set:

Wc = {q ∈ (−θ, θ) = I0 ×R : Φ(q) ≤ c < c}, (31)

is bounded and convex. That is, Φ(q) is proper on its sub-level, Wc. The proof of this
Lemma can be found in [32].

Checking the condition (14): From the restriction B, we have that the symmetric
matrix M(q1) = {mij}, is given by:

{mij} =

[
−γχ2(q1) + k1ε γχ(q1)ψ(q1) + k2ε/2

γχ(q1)ψ(q1) + k2ε/2 −γψ2(q1)

]
where, evidently, from Lemma 3.1, we have, m22 < 0; for all, q1 ∈ I0, and:

detM =
1

4
(lc − λ)(−k22(lc − λ) + 4γ∆K(k2c1 − k3)).

Therefore, selecting k2 > k and γ >> k2ε
4∆K

, we assure that M(q1) > 0 for all q1 ∈
(−θγ, θγ) ⊂ I0, where θγ is given by:

θγ = cos−1

(
k2ε

4γ∆K

+
k3
k2

)
.

Notice that, from the definition of θ, we have θ ≤ θγ.
Convergence analysis of the states, q and p: Now we show that, q → 0, and, p→ 0,
as long as, t→ ∞, with an attraction domain contained inside of, I0 ×R3. For this end,
we note that, according to Lemma 3.1, Φ(q), is a strictly positive definite and convex
function, for all, q ∈ I0 ×R. Hence, the total energy:

E(q, p) =
1

2
ṗTKṗ+ βK log

(
ψ(0)

ψ(q1)

)
+
kp
2
(q2 +Υ(q1))

2, (32)

is strictly positive definite and proper, through Ωc̃ ⊂ I0 ×R3, where:

Ωc̃ = {(q, p) ∈ Iγ ×R3 : V (q, p) ≤ c}. (33)

Then, for Equation (15), we have that, V̇ ≤ 0, implying that, V (q, p) ≤ V (q0, p0). In
order to avoid the singular points of the proposed, V , it is enough that the initial condition
satisfies the inequity, V (q, p0) ≤ c, because, V (q, p) ≤ c, assuring that, Φ(q) ≤ c, with,
q(t) ∈ I0 × R. That is, all the solutions starting in, Ωc̃, remain inside of, Ωc, implying
that, q, and, p, are bounded, with, q1(t) ∈ I0. Notice that, q1(t) ⊂ I0, assures, ψ(q1) 6= 0,
and, χ(q1) 6= 0; for all, q1 ∈ I0. This fact also assures that, up, (18) is well defined.

In order to assure that the closed-loop system converges asymptotically to zero, we
most invoke the LaSalle theorem [33]. So, we define the set:

S =
{
(q, p) ∈ Ωc̃ : p

TM(q1)p = 0
}

(34)

where, M(q1) > 0; because, q1(t) ∈ I0. From the above we have, p = 0, in S, which
means that, ṗ = 0, and, q = q (where, q, is a constant). Now, from (9) and (10), we
easily have, sin q1 = 0, implying that, q1 = 0, because, q1 ∈ I0. Similarly, we can show
that, q2 = 0. Consequently, the largest invariant set, S0, contained in S, is given by,
S0 = (q = 0, p = 0). According to the theorem of LaSalle, all the closed-loop solutions
starting in, Ωc̃, asymptotically converge toward the largest invariant set, S0 = 0.
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3.2. A linear controller. The nonlinear control law introduced in the previous section
brings the state variables to the origin, except the cart position, which is bounded. Thus,
we need to propose a new controller to render the whole system to the origin. It is well
known that the pendulum system is a flat system when the pendulum is located inside of
an small vicinity of the unstable equilibrium point (see [2]). Therefore, the local regulation
problem around the rest upright position can be solved by the pole placement procedure.
Therefore, in the case when θ, θ̇ and ẋ are inside of an small vicinity of the origin, for

instance: √
θ2 + θ̇2 + ẋ2 ≤ θP ;

where θP < 0.2. Now, according to this condition, we can define the following set:

U0 =
{
z = (θ, x, θ̇, ẋ)T :

√
θ2 + θ̇2 + ẋ2 ≤ θP

}
. (35)

In this case, the solution of the normalized system (3) can be approximately written
as:

θ̈ = θ − uL − λθ̇,
ẍ = uL

(36)

Thus, by inspection we have that the flat output is given by:

y =
(
λ2 + 1

)
θ + λθ̇ + x+ λẋ.

In fact, the whole system variables can be expressed in terms of, F , and a finite number
of its time derivative, as follows:

z =


θ
x

θ̇
ẋ

 =


0 0 1 0
1 −λ −1 0
0 0 0 1
0 1 −λ −1



y
ẏ
ÿ
y(3)

 = ΞY

where Y = [y, ẏ, ÿ, y(3)]T . Hence, the state dependent input-coordinate transformation:

uL = ÿ − λy(3) − y(4), (37)

shows that the system (36), is an equivalent approximation of the following chain of
integrations:

y(4) = −uL + ÿ − λy(3) = v. (38)

A stabilizing feedback controller may be readily obtained by setting:

v = −
(
k0Ly + k1Lẏ + k2Lÿ + k3Ly

(3)
)
; (39)

where the set of coefficients, {k0L, k1L, k2L, k3L}, is chosen such that the closed loop char-
acteristic polynomial of the linearized system, defined as:

p(s) = s4 + k3Ls
3 + k2Ls

2 + k1Ls+ k0L

is a Hurwitz polynomial. Observe that, [y, ẏ, ÿ,y(3)], can be expressed in terms of actual

coordinates, by, Y = Ξ−1z, because, det(Ξ) 6= 0. Therefore, if z(ti) = (xi, ẋi, θi, θ̇i) ∈ U0,
with ti > 0, then we can always propose a simple linear control, which asymptotically
brings the whole system variables to zero:

v = −k0L(y − yr)− k1L(ẏ − ẏr)− k2L(ÿ − ÿr)− k3L(y
(3) − y(3)r ) + y(4)r ; (40)

where yr is an auxiliary reference proposed such that the cart asymptotically and expo-
nentially goes to zero, from some position and velocity, xi and ẋi, given by:

yr(t) = −
(
α2xi + ẋi
α1 − α2

)
e−α1(t−ti) +

(
α1xi + ẋi
α1 − α2

)
e−α2(t−ti).
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Notice that yr(ti) = xi and ẏr(ti) = ẋi, where α1 > 0 and α2 > 0, selected small enough
to make the second, third and fourth time derivatives almost zero.

Remark 3.2. Notice that once, z(ti), is inside the set, U0, the system is practically
converted to a linear system, with the respective pendulum angular position and angular
velocity being almost zero. Then, it is always possible to accomplish a rest-to-rest maneu-
ver. Moreover, this maneuver can be done in a desired finite time by using an eight grade
spline ([2]). Note that, for practical purposes, it is useful fixing, θp ≤ 0.2, because the
functional error is in the order of:∫ θp

0

|sin s− s| ds ' 7× 10−5.

3.3. A switching based control strategy. In the following proposition, we introduce
our control strategy, based on the two already defined control laws.

Proposition 3.2. Considers the damped DIPC system (3), under the assumption that
the system is initialized inside the attraction region (33) in closed-loop with:

u =

{
uL, if

√
θ2 + θ̇2 + ẋ2 < θp;

up(z) + ud(θ, p)− lcθ̇ sec θ, otherwise
(41)

then the whole state asymptotically converges to the origin. Where, uL, is defined by
Equations (37) to (40), while, u, p(z) and, ud(θ, p), are previously defined in (18) and
(13), respectively.

Proof: Let us suppose that the state variables, z0 = (θ0, x0, θ̇0, ẋ0), are initialized, such
that, E(z0) < c. Then, E(z(t)) < c, with θ(t) ∈ I0. In other words, z(t) ∈ Ωc̃. Under
these circumstances, we have two possibilities: z(t) ∈ U0, or, z(t) ∈ U c

0 ∩ Ωc̃. In the first
possibility, the system behaves as a linear system, and the solution, as expected, converges
exponentially almost always to zero. In the second possibility, the state variables, (θ̇, θ, ẋ),
asymptotically converge to zero, while state variable, x, converges to a constant, not
necessarily the origin. That is, in the second case, for some finite time, we expect that
z enters into U0, where the closed-loop system behaves as a linear system. Evidently,
the solution may be trapped inside U0, making that z converges to zero. Now, in the
case that the solution escapes from U0, we have, once again, that z ∈ U c

0 ∩ Ωc̃ and uN
lead the solution to come into the set U0, where z is forced to converge exponentially and
asymptotically to zero. This procedure will occur until x reaches the origin.

4. Numerical Simulations. To show the effectiveness of the proposed nonlinear control
strategy, we carried out some numerical simulations. To this end the following setup was
used for the nonlinear part of our controller:

k1 = 7.8; k2 = 2.1; k3 = 0.7; kp = 0.35; γ = 0.9; δ = 1; lc = 0.6;

while the corresponding setup of the linear part was fixed, such that the corresponding
characteristic polynomial were:

p(s) = 1 + 3.8s+ 5.7s2 + 12.16s3 + s4; (42)

with, θp = 0.2. The parameters of the exponential reference trajectory were set such that
α1 = 0.75 and α2 = 0.8. The hypothesized initial condition was: z = (θ = 1.1, x =

0.1, θ̇ = 0, ẋ = 0). We pointed out that z belongs to the already computed attraction
domain, given by c̃ = 1.12.
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Figure 2. Closed-loop response of the DIPC to the proposed control strategy

Figure 2 shows the corresponding response of the system (3) in closed-loop with the
switching control strategy (41). From this figure, we can see that our control strategy
effectively renders the system to the origin in about 40 time units.
In order to provide an intuitive idea of how good our nonlinear control strategy (OCL)

is, we ran two numerical experiments. The first experiment comperes (OCL) with the
control techniques proposed by Woolsey et al. in [24] and by Olfati-Saber in [17], here
respectively referred to as (WCL) and (OSCL). The experiment setup was the same as

in the previous experiment, with the new initial condition, z = (θ = −0.9, x = 0.2, θ̇ =
0, ẋ = 0). The corresponding control law parameters of the linearized WCL and OSCL,
were tuned such that the obtained characteristic polynomial coincides with (42). The
simulation results are shown in Figure 3. There, we can see that our control strategy is
able to render asymptotically the system to the origin, while the others two need more
time. In fact, it seems that these strategies maintain the system oscillating close to the
origin. The other experiment comperes once again (OCL) with a control law introduced
by Riachy et al. in [30] (RCL), based on sliding modes, by whose form of construction is
well known that is robust. This control law consists of proposing a sliding surface, as:

s = tan(θ) + λ1(x+ φ(θ)) + λ2(
.
x+ φ′(θ)

.

θ),

φ(θ) = log

(
1 + tan(θ/2)

1− tan(θ/2)

)
;

where, λ1 > 0 and λ2 > 0, and from which a control law is proposed, such that the
surfaces, (s,

.
s,

..
s), are brought to zero in a finite time, and having the characteristic of set

the whole state to zero, when s = 0.
For this second experiment, the initial conditions were z = (θ = −0.9, x = 0.2, θ̇ =

0, ẋ = 0); the control parameters for (RCL) were λ1 = 0.1 and λ2 = 0.2; for our control
strategy we used the same control parameters as in the previous experiments. The initial
conditions for the results of this second experiment are shown in Figure 4, where we can
see that our control strategy, as before, renders the pendulum and the cart to the origin,
while the RCL presents chattering in the cart position coordinate, because the sliding
mode based control action acts directly to it.
A formal comparative study between our control strategy and others found in literature

is beyond the scope of this work.

5. Conclusions. In this work we presented a control strategy for the stabilization of the
strongly damped inverted pendulum cart system, provided that the pendulum is initial-
ized inside the upper-half plane and the viscosity coefficients are known. The proposed
strategy consists of switching from a nonlinear to a linear controller. The first controller
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Figure 3. Comparison between our control strategy (OCL) and the
strategies WCL and OSCL

Figure 4. Comparison between our control strategy (OCL) and the strat-
egy RCL

brings the pendulum position, its angular velocity and the cart velocity very close to zero.
Afterwards, the second controller exponentially renders the whole state to the origin. The
first controller included a nonlinear integrator of the pendulum angular position, which
allowed us to translate the pendulum damping destabilize force to the force that directly
acts over the cart movement controller. This means that the cart displacements were
increased. The first controller is in charge of bringing the system variables inside the
attraction domain of the second linear controller; then, the second controller renders the
system to the origin. Numerical simulations were presented to assess the performance of
the designed control law. Finally, we believe that our control law can also be used to
stabilize the Furuta pendulum.
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