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Abstract. In this paper, a novel fault-tolerant control scheme is proposed for a class
of uncertain multiple-input-multiple-output (MIMO) nonlinear systems based on online
fuzzy clustering and identification. The unknown nonlinear function of the system is
identified online using an evolving Takagi-Sugeno (T-S) fuzzy model and the fault-tolerant
control law is designed based on the identified fuzzy model. The proposed method has the
following features: (i) both the structure and the parameters of the T-S fuzzy model can
evolve online, which makes it capable of representing more parameter and structure un-
certainties of the nonlinear system; (ii) an online fuzzy clustering algorithm is employed
to determine the generation of a new cluster center (new rule), which also serves as
a warning signal of detecting a fault; (iii) a self-structuring fault-tolerant controller is
constructed based on the online identified fuzzy model, together with a compensation con-
troller, to guarantee the closed-loop stability under parameter variations and faults. The
proposed fault-tolerant control scheme does not rely on a specially designed fault diagnosis
module. Simulation studies on an inverted pendulum example have verified the effective-
ness of the proposed control scheme and demonstrated the proposed control scheme has
the capability to achieve desired tracking performance when there exist parameter changes
or faults and the generation of new rules can alert the occurrence of faults in the system.
Keywords: Fault-tolerant control, Online fuzzy identification, Fuzzy clustering, Fault-
detection

1. Introduction. In recent two decades, fault diagnosis and fault-tolerant control have
attracted more and more attention due to increasing demand for reliability and safety of
systems. There have been rapidly growing researches in this area and fruitful results have
been achieved to protect the system from the effects of system faults, ensuring system
stability and regaining desired system performance [1].

Fault-tolerant control design is not an independent control design branch and it utilizes
various advanced control theory and techniques, such as robust control, adaptive control,
sliding-mode control. Some faults can be treated as some kinds of system uncertainties.
Robust control theory can be applied to make the system achieve robustness to faults,
which are also called reliable control designs [2]. However, the magnitude of faults is
usually higher than disturbances and other system uncertainties. With fixed structure
and parameters, the ability of such fault-tolerant controllers is limited especially when
it encounters complex fault situations. A fault-tolerant controller that has the ability to
adjust its parameters and/or structures is called a reconfigurable controller which is more
powerful to deal with faults. There are different ways to design a reconfigurable control
system, including employing a fault detection and identification unit in the control system
to provide useful fault information for reconfigurable control [3-5], reshaping the output
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reference and reallocating control [6], sliding-mode control [7, 8], adaptive control [9, 10],
and intelligent control [11].
In recent years, approximation based control design for nonlinear system has become

a very active area for both theoretical and practical reasons [9, 12, 18, 19]. Most plants
are actually nonlinear systems and their nonlinear dynamics are usually unknown or only
partially known. Moreover, the occurrence of faults may often lead to more nonlinearities
and push the plant from a relatively linear operating point to a more nonlinear region
[11]. Neural networks and fuzzy systems have emerged as a powerful tool to represent
system nonlinearities due to their proved universal approximation ability to approximate
any smooth nonlinear functions with arbitrary accuracy [12, 13]. However, there are
relatively fewer researches considering online structure identification in the closed-loop
control. Direct adaptive approximation based control schemes are proposed for MIMO
nonlinear systems [22] and for SISO nonlinear systems [23]. In [24, 25], self-organizing
adaptive fuzzy neural controllers are designed for SISO and MIMO systems, respectively,
together with sliding-mode control, to achieve desired tracking performance.
Motivated by the capability of online identification algorithms to capture the changes

in system dynamics and provide good evolving approximation for control designs, this
paper presents an online identification based reconfigurable control scheme for a class of
MIMO nonlinear systems subject to certain system faults. An online clustering based
fuzzy identification algorithm is used to generate new cluster centers (correspondingly,
new rules) online when it detects significant change happening in the system dynamics.
The controller is reconfigurable in the sense that both the structure and parameters of
fuzzy systems used in constructing the controller are changed online to accommodate
changes in system dynamics due to faults. Such an approach combines the advantages
of data-driven online identification methods and model-based adaptive control designs,
which provides a flexible controller structure and can effectively deal with uncertainties
of large magnitude, including system uncertainties caused by faults.

2. System Description and Problem Formulation. In this section, we describe a ba-
sic general architecture of the proposed fault detection and reconfigurable control scheme
under consideration in this work. It consists of three parts: the plant, the online identifi-
cation module and the reconfigurable control module.
Nominal Plant Dynamics. To present the main idea without undue complication,

we consider the following n-th order nonlinear MIMO plant dynamics [19]:

ẋri1 = xri2

...

ẋri(ri−1) = xriri

ẋriri = fi(x) +
m∑
j=1

gij(x)uj + di

yi = xrii (1)

where ri, i = 1, 2, . . . ,m are relative degrees, r1+r2+ · · ·+rm = n, y = [y1, y2, . . . , ym]
T ∈

Rm is a vector of system outputs, x = [xr11, · · · , xr1r1 , · · · , xrm1, · · · , xrmrm ]
T ∈ Rn, is a

vector of system states, u = [u1, u2, . . . , um]
T ∈ Rm is a vector of system inputs, and di,

i = 1, 2, . . . ,m, are external disturbances. fi(x) and gij(x), i, j = 1, 2, . . . ,m, are smooth
functions representing the nonlinear dynamics of the plant.

Remark 2.1. The model (1) we consider here is a canonical nonlinear MIMO model
which is capable of representing a wide class of real nonlinear MIMO plants such as a
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mass-spring-damper system [21], two inverted pendulums connected by a moving spring
mounted on two carts [20], a two-link robot manipulator [22].

Introducing F0(x) = [f1(x), · · · , fm(x)]T ∈ Rm and G(x) = {G1(x), · · · , Gm(x)} ∈
Rm×m with Gi(x) = [g1i(x), · · · , gmi(x)]

T ∈ Rm, the system (1) can be formulated into
the following form:

ẋ=Ax+B[F0(x) +G(x)u+ d]

y =Cx, (2)

where d = [d1, d2, · · · , dm]T ∈ Rm, A = diag{A1, · · · , Am} ∈ Rn×n, B = diag{B1, · · · ,
Bm} ∈ Rn×m, C = diag{C1, · · · , Cm} ∈ Rm×n, and

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


ri×ri

, Bi =


0
0
...
0
1


ri×1

, Ci = [ 1 0 0 · · · 0 ]1×ri . (3)

Plant Dynamics under Faults. When a fault occurs at uncertain time t = tf ,
consider the following change of plant dynamics:

ẋ=Ax+B[F0(x) +G(x)u+ β(t− tf )ρ(x) + d]

y =Cx, (4)

where β(t−tf ) is a step function representing the time profile of faults and ρ(x) represents
the abrupt system fault.

Design Objectives. In this work, for the system described by (4), we try to achieve
two design objectives using both the model-based approach and data-driven approach: (1)
develop a reconfigurable control law which can ensure the closed-loop stability and system
performance without explicitly knowing the occurrence time and value of the fault; (2)
develop a fault detection scheme using the online data collected in the closed-loop system,
which can detect the abnormality in the system.

In the above two design objectives, the first one is the most important one since the
closed-loop system stability is crucial for safety-critical and performance-critical systems.

3. Online Fuzzy Identification Based Fault-Tolerant Control Design. In this
section, we firstly propose the nominal control law for the nominal system (1). Then
a fuzzy approximation-based reconfigurable controller is proposed for the system under
faults (4).

For the nominal system (1), to ensure its controllability, G(x) is assumed to be nonsin-
gular. Given a bounded smooth reference signal vector yr = [yr1 , yr2 , · · · , yrm ]T , we can
choose the control law as

u = G−1(x)
[
−F0(x) + y(r)r +Ke

]
(5)

where e = [e1, ė1, · · · , e(r1−1)
1 , · · · , em, ėm, · · · , e(rm−1)

m ]T , e1 = yr1 − y1, . . . , em = yrm − ym,
K = diag[K1, K2, · · · , Km], Ki = [ki1, ki2, · · · , kiri ]. K is chosen to make the matrix
A−BK be a Hurwitz matrix.

Substituting (5) into (1) yields the closed-loop system dynamics:

ė = (A−BK)e, (6)

which ensures the boundedness of all the closed-loop signals and the asymptotical con-
vergence of the tracking error: limt→∞ e(t) = 0.
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Figure 1. Block diagram of the overall control scheme

When faults occur in the plant and the plant dynamics become (4), the nominal control
law (5) cannot guarantee the stability and performance of the closed-loop system. Some
fault-tolerant mechanisms need to be added.
In this paper, we propose an online fuzzy identification based fault-tolerant control

scheme whose overall structure is demonstrated in Figure 1.
In the following sections, we will present the detailed designs for each part in Figure 1.

3.1. Online fuzzy identification. In this section, the T-S fuzzy modeling technique
with online learning ability is employed to approximate the uncertain nonlinear function
of the system. Both the structure and the parameters of the T-S fuzzy model are identified
online to accommodate the changes in the system dynamics due to faults.
Defining F (x) = F0(x) + β(t− tf )ρ(x), the system (4) can be written as

ẋ=Ax+B[F (x) +G(x)u+ d]

y =Cx. (7)

Since there exist uncertain parameters in F (x) and an unexpected fault may also affect
F (x), F (x) cannot be directly used for control design. To capture the changing dynamics
of F (x), we employ T-S fuzzy modeling technique to identify F (x) online.
Fuzzy Approximation. For the m uncertain nonlinear functions fj(x), j = 1, 2, . . . ,

m, the following T-S fuzzy model is used with its i -th rule represented by:

Ri : IF ξ1 is ℵi
1 and ξ2 is ℵi

2 and . . . and ξL is ℵi
L

THEN f̂ i
j(x) = πT

ijxe, j = 1, 2, . . . ,m, (8)



FAULT-TOLERANT RECONFIGURABLE CONTROL FOR MIMO SYSTEMS 3919

where Ri, i = 1, 2, . . . ,M , denotes the ith fuzzy rule defining the ith subsystem, M
is the number of fuzzy rules, xe = [1, xT ]T ∈ Rn+1, πij = [θij0, θij1, . . . , θijn]

T ∈ Rn+1,
j = 1, 2, . . . ,m, are parameters of the ith subsystem, and “ξl is ℵi

l”, l = 1, 2, . . . , L,
is a part of the ith fuzzy rule, with the premise variables ξ = [ξ1, . . . , ξL] being some
measurable system signals or their functions and ℵi

l being a fuzzy set associated with
which there is a membership function N i

l (ξk) to indicate the degree of membership of ξl
in N i

l . In our paper, we use Gaussian functions as the membership functions:

N i
l (ξj) = exp

{
−(ξl − cil)

2

σi2
l

}
. (9)

Following a standard T-S fuzzy modeling procedure [14], the overall T-S fuzzy model
is constructed as

f̂j(x) =
M∑
i=1

µiπ
T
ijxe, (10)

where µi is the normalized membership function:

µi(ξ) =
λi(ξ)∑M
i=1 λi(ξ)

, λi(ξ) =
L∏
l=1

N i
l (ξl), (11)

such that µi(ξ) ≥ 0 and
∑M

i=1 µi(ξ) = 1.
Let

Θj =
[
πT
1j, π

T
2j, . . . , π

T
Mj

]T ∈ R(n+1)M

Θ =
[
ΘT

1 ,Θ
T
2 , . . . ,Θ

T
m

]T ∈ R(n+1)Mm

φj(x) =
[
µ1x

T
e , µ2x

T
e , . . . , µMxT

e

]T ∈ R(n+1)M

Φ(x) = diag{φ1(x), φ2(x), . . . , φm(x)} ∈ R(n+1)Mm×m, (12)

and we have the following approximation function F̂ (x) = [f̂1(x), f̂2(x), . . . , f̂m(x)]
T for

F (x):

F̂ (x) = Φ(x)Θ. (13)

In the literature, usually adaptive laws for parameter learning can be developed to tun-
ing the parameters in (13) online with the basis functions Φ(x) fixed. The basis functions
are assumed known or identified through offline training [11]. For a normal system, it
is feasible to determine the basis functions in advance. However, when a fault occurs in
the system, not only the system parameters but also the system structure may undergo
changes. In such a case, it is not adequate to adjust only the parameters of the approxi-
mators. In a T-S fuzzy model, each rule represents locally the system dynamics defined in
a local operating region. When a fault occurs, it may be necessary to add some new rules
to describe some new system dynamics caused by the fault. Therefore, different from most
adaptive approximation based control design for normal systems without changing the
basis functions, we update both the structure (i.e., the number of fuzzy rules and member-
ship functions which determines the basis function) and the parameters of the T-S fuzzy
model to accommodate the effects of the fault on the system dynamics.

Online Structure Identification and Fault Detection. Our online structure mech-
anism serves for two purposes. The main purpose is to identify the structure of the
approximation model (10) and the second purpose is to detect the occurrence of faults.

Due to the limitation of offline training data and designers’ knowledge and experience,
it is difficult to determine an optimal number of fuzzy rules. It is pointed out in [26] that in
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reality many regimes and process states cannot be practically included into the training
data set (such as faulty process behavior), but states close to them could well appear
during the process run. Hence, the online data can provide us with more information about
the actual system dynamics and behavior. In a T-S fuzzy model, each rule represents the
local system dynamics in a subregion. When there is no significant change in the system,
the online data will appear within or close to those local regions. When a significant
change happens to the system, there may appear a new region of data space that has not
been covered by the previous training data.
Next, we will describe the rule generation mechanism. In (8), the premise variables

ξk, k = 1, 2, . . . , L are used to define the subregion of each fuzzy rule. The premise
variables can be selected from system states which play a key role in reflecting system
behavior. There are numerous ways for selecting the premise variables, including using
expert knowledge and learning from system generated data using a search tree or genetic
algorithm [17]. Once the premise variables are determined, the next task is to deter-
mine the number of fuzzy rules and the locations of the membership functions. Various
approaches have been proposed to identify the number of fuzzy rules, such as mosaic
methods, genetic algorithm-based approaches and fuzzy clustering. Compared with other
approaches, fuzzy clustering based fuzzy rule identification methods have the advantages
that the information of the cluster centers can be directly used to form fuzzy rules. For
a particular system to be modeled, each IF-THEN rule specifies an area exemplified by
a typical point in the graph of control function that can be identified with the Cartesian
product of the membership functions modeling the linguistic terms [16]. Other points
around the typical point are less representative and have decreasing membership degrees
in that area with increasing distance from the typical point. Similarly, a cluster proto-
type represents the center of a fuzzy cluster and the data neighboring the prototype have
decreasing membership degree with increasing distance to the prototype.
In our approach to identifying the T-S fuzzy model online, the number of fuzzy rules and

the parameters of membership functions are determined through online fuzzy clustering
algorithms [27] while the consequent parameters are updated through adaptive laws (see
Section 3.2) derived from stability analysis using a Lyapunov function to ensure the closed-
loop boundedness.

Remark 3.1. The appearance of a cluster center (a new rule) can be viewed as a reaction
to a dramatic change of the system behavior. Such a dramatic change could be caused by
a new operating mode of the system or the occurrence of a fault. Usually, it can be judged
by operators whether the system enters a new operating mode which can be identified
by observing the system behavior and some key system states. If it is not the case, the
generation of a new rule can be seen as a sign of detecting a fault, at least a warning of
abnormal system behavior.

3.2. Reconfigurable control design. Based on the online identified T-S fuzzy model
which approximates of the system dynamics under faults, the nominal control law (5) can
be replaced by the fault-tolerant reconfigurable control law:

u = G−1(x)(−F̂ (x) + y(r)r + kT e− ucom), (14)

where y
(r)
r = [y

(r1)
r1 , y

(r2)
r2 , · · · , y(rm)

rm ]T , ucom is a compensation signal which will be designed
later.
Substituting (14) into (7) yields

ė = (A−BK)e+B[F̂ (x)− F (x)] + Bucom −Bd. (15)
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We assume there exist optimal parameters Θ∗ and the optimal number of rules N∗

satisfying

{Θ∗, N∗} ∆
= arg min

Θ∈ΩΘ,N∈ΩN

[
sup
x∈U

∥∥∥F̂ (x|Θ, N)− F (x)
∥∥∥] , (16)

where

ΩΘ = {Θ| ‖Θ‖ ≤ MΘ} , ΩN = {N |N ≤ Nrule} (17)

are the constraint sets for Θ and ΩN , respectively. Nrule is the upper bound of the required
number of rules that can achieve the desired approximation accuracy. In practice, it can be
estimated through experience or fuzzy clustering algorithms. A most conservative choice
is the number that does not make the control signal calculation exceed the hardware
computation capability. With the definition on Θ∗ and N∗, we have the minimum fuzzy
approximation error:

we = F̂ (x|Θ∗, N∗)− F (x). (18)

Since the fuzzy rule base is not fixed in our proposed control scheme, both the num-
ber of rules and parameters change during the system operation. Let N , N ≤ Nrule, be
the final rule number, Θj = [πT

j1, π
T
j2, · · · , πT

jN ]
T the final parameter vector, and φj(x) =

[µ1x
T
e , µ2x

T
e , · · · , µNx

T
e ]

T the final regressor. When the number of ruleM ≤ N , the param-

eters in Θj can be divided into two groups Θj = [ΘjT
ac ,Θ

jT
in ]

T , where Θj
ac = [πT

j1, π
T
j2, · · · ,

πT
jM ]T ∈ RM(n+1) is the activated parameter vector and Θj

in = [πT
j(M+1), π

T
j(M+2), · · · , πT

jN ]
T

∈ R(N−M)(n+1) is the inactivated parameter vector. Similarly, the regressor φj(x) can be
divided into two parts:

φj
ac(x) = [µ1x

T
e , µ2x

T
e , · · · , µMxT

e ]
T , φj

in(x) = [µM+1x
T
e , µM+2x

T
e , · · · , µNx

T
e ]

T . (19)

With the above definition, we have

F̂ (x|Θ, N) = Φac(x)Θac + Φin(x)Θin, (20)

where

Φac(x) = diag{φ1
ac(x), φ

2
ac(x), . . . , φ

m
ac(x)}, Θac = [Θ1T

ac ,Θ
2T
ac , . . . ,Θ

mT
ac ]T

Φin(x) = diag{φ1
in(x), φ

2
in(x), . . . , φ

m
in(x)}, Θin = [Θ1T

in ,Θ
2T
in , . . . ,Θ

mT
in ]T . (21)

Let F̂ (x|Θ∗
ac,M) = Φac(x)Θ

∗
ac, where Θ

∗
ac = [Θ1∗T

ac ,Θ2∗T
ac , . . . ,Θm∗T

ac ]T , the error Equation
(15) can be formulated as

ė= (A−BK)e+B[F̂ (x|Θac,M)− F̂ (x|Θ∗
ac,M) + F̂ (x|Θ∗

ac,M)− F̂ (x|Θ∗, N∗)

+F̂ (x|Θ∗, N∗)− F (x)] + Bucom −Bd

= (A−BK)e+B[F̂ (x|Θac,M)− F̂ (x|Θ∗
ac,M) + w′

e + we] +Bucom −Bd

= (A−BK)e+B[F̂ (x|Θac,M)− F̂ (x|Θ∗
ac,M)] + Bucom +B(w′

e + we − d)

= (A−BK)e+B[Φac(x)(Θac −Θ∗
ac)] +Bucom +Bw

= (A−BK)e+BΦac(x)Θ̃ac +Bucom +Bw (22)

where w′
e = F̂ (x|Θ∗

ac,M)− F̂ (x|Θ∗, N∗), Θ̃ac = Θac −Θ∗
ac and w = w′

e + we − d.
To ensure the closed-loop stability and desired tracking performance, we design the

compensation signal ucom as

ucom = − 1

α
BTPe (23)
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and the parameter adaptive law as

Θ̇ac = −ηΦac(x)B
TPe, (24)

where η > 0 is a design parameter and the symmetrical positive definite matrix P is given
by the following Riccati equation:

(A−BK)TP + P (A−BK) +Q− 2

α
PBBTP +

1

ρ2
PBBTP = 0 (25)

with 2ρ2 ≥ α > 0 and Q being a symmetrical positive definite matrix.
To prevent parameter drift due to disturbance and approximation error and ensure

the boundedness of parameters, a parameter projection algorithm is applied. With the
parameter constraint ΩΘ defined in (17), the adaptive law (24) can be modified as follows:

Θ̇ac =


−ηΦac(x)B

TPe if ‖Θac‖ < MΘ

or ‖Θac‖ = MΘ and ΘT
acΦac(x)B

TPe ≥ 0

−η
(
I − ΘacΘT

ac

‖Θac‖2

)
Φac(x)B

TPe if ‖Θac‖ = MΘ and ΘT
acΦac(x)B

TPe < 0.
(26)

Lemma 3.1. The adaptive law (26) ensures the boundedness of Θac (Θac ∈ ΩΘ) under
the condition Θac(0) ∈ ΩΘ.

Proof: Consider the following Lyapunov function candidate:

VΘ =
1

2
ΘT

acΘac. (27)

Differentiating VΘ with respect to time, we have

V̇Θ = ΘT
acΘ̇ac. (28)

With (26), when ‖Θac‖ = MΘ and ΘT
acΦac(x)B

TPe ≥ 0, we have

V̇Θ = −ηΘT
acΦac(x)B

TPe ≤ 0, (29)

which guarantees ‖Θac‖ ≤ ‖Θac(0)‖.
When ‖Θac‖ = MΘ and ΘT

acΦac(x)B
TPe < 0, we have

V̇Θ = −ηΘT
ac

(
I − ΘacΘ

T
ac

‖Θac‖2

)
Φac(x)B

TPe = 0, (30)

which also guarantees ‖Θac‖ ≤ ‖Θac(0)‖.
Since the initial values of Θac are set satisfying Θac(0) ∈ ΩΘ by our online identification

algorithm, we can conclude Θac ∈ ΩΘ from the above analysis. �
Remark 3.2. Due to the online identification mechanism, the size of the parameter vector
Θac is not fixed. When a new rule is generated at t = t1, the parameter vector is expanded
from Θac(t

−
1 ) to Θac(t

+
1 ). Since the initial parameter values of the new rule are set to be

zero, ‖Θac(t
−
1 )‖ = ‖Θac(t

+
1 )‖. Then all the activated parameters will be tuned by (26),

which guarantees the boundedness of the newly expanded Θac.

3.3. Stability analysis. The closed-loop system stability is summarized in the following
theorem.

Theorem 3.1. Consider the MIMO system (7), the control law (14) with the compensa-
tion signal (23) and the parameter adaptive law (26) ensures the closed-loop system has
the following properties:

1. all the signals in the closed-loop system are bounded;

2. there exist positive constants a1 and a2 such that
∫ T

0
‖e‖2dt ≤ a1 + a2

∫ T

0
‖w‖2dt;

3. if w ∈ L2, lim
t→∞

‖e(t)‖ = 0.
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Proof: Consider the following Lyapunov candidate:

V = V (e, Θ̃) =
1

2
eTPe+

1

2η
Θ̃T Θ̃

=
1

2
eTPe+

1

2η
Θ̃T

acΘ̃ac +
1

2η
Θ̃T

inΘ̃in, (31)

where η is a positive constant.
The derivative of (31) is

V̇ =
1

2
ėTPe+

1

2
eTP ė+

1

η
Θ̃T

ac
˙̃Θac +

1

η
Θ̃T

in
˙̃Θin. (32)

Since Θin contains inactivated parameters, whose values are fixed before they are acti-
vated (we do not need to know their exact values and just use them here for theoretical

analysis), we have Θ̇in = 0. Hence, ˙̃Θin = Θ̇in − Θ̇∗ = 0.
Applying (22) and (23) into (32), we have

V̇ =
1

2
eT [(A−BK)TP + P (A−BK)]e+ Θ̃T

ac

[
Φac(x)B

TPe+
1

η
˙̃Θac

]
+
1

2
(eTPBw + wTBTPe). (33)

Applying (25) and the first condition of (26) into (33) yields

V̇ =−1

2
eTQe− 1

2ρ2
eTPBBTPe+

1

2
(eTPBw + wTBTPe)

=−1

2
eTQe− 1

2

(
1

ρ
BTPe− ρw

)T (
1

ρ
BTPe− ρw

)
+

1

2
ρ2wTw

≤−1

2
eTQe+

1

2
ρ2wTw

≤−1

2
λmin(Q)‖e‖2 + 1

2
ρ2‖w‖2. (34)

With the second condition of (26), we have

V̇ =
1

2
eT [(A−BK)TP + P (A−BK)]e+

1

2
(eTPBw + wTBTPe)

+Θ̃T
ac

[
Φac(x)B

TPe−
(
I − ΘacΘ

T
ac

‖Θac‖2

)
Φac(x)B

TPe

]
≤−1

2
eTQe+

1

2
ρ2wTw +

(
1− Θ∗T

ac Θac

‖Θac‖2

)
ΘT

acΦac(x)B
TPe. (35)

Since Θ∗
ac ∈ ΩΘ, recalling ‖Θac‖ = MΘ under the second condition of (26), we have

1− Θ∗T
ac Θac

‖Θac‖2
≥ 0. Thus,

V̇ ≤−1

2
λmin(Q)‖e‖2 + 1

2
ρ2‖w‖2. (36)

Therefore, V̇ ≤ 0 when ‖e‖ ≥ ρ ‖w‖
/√

λmin(Q). For a bounded w, we have bounded

tracking error e and parameter estimates Θac. From (1), we have the boundedness of x.
Hence, all the closed-loop signals are bounded.
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Integrating both sides of (35) on [0, T ] results∫ T

0

‖e‖2dt≤ 2

λmin(Q)
(V (0)− V (T )) +

ρ2

λmin(Q)

∫ T

0

‖w‖2dt

≤ 2

λmin(Q)
V (0) +

ρ2

λmin(Q)

∫ T

0

‖w‖2dt. (37)

Let a1 =
2

λmin(Q)
V (0) and a2 =

ρ2

λmin(Q)
, the equation above can be written into∫ T

0

‖e‖2dt ≤ a1 + a2

∫ T

0

‖w‖2dt. (38)

If w ∈ L2, from (38), we have e ∈ L2. From (22), we have ė ∈ L∞. With e ∈ L2 ∩ L∞
and ė ∈ L∞, we have lim

t→∞
‖e(t)‖ = 0.

When new rules are added to the fuzzy approximator, the size of the activated param-
eter vector Θac grows. The Lyapunov function we choose for stability analysis includes
both activated parameter errors Θ̃ac and inactivated parameter errors Θ̃in. Before the
inactivated parameters Θin are activated, their values are kept constant (that is, Θ̇in = 0)
and would not lead to the increase of V (t). When some of the inactivated parameters
are activated due to the generation of new rules, they become a part of the activated
parameters, which are updated by the parameter adaptive law (24), and used to form the
control law (14). It has been proven that under the control law (14), the adaptive law
(24) and the compensation signal (23), all the closed-loop signals are bounded. �

Remark 3.3. Compared with the control design with fixed rules, our approach does not
require the designers are able to construct a fuzzy rule base that achieves the desired
approximation accuracy offline. The error dynamics (22) is related to three kinds of

errors: Θ̃ac, w
′
e = F̂ (x|Θ∗

ac,M)− F̂ (x|Θ∗, N∗) and w = F̂ (x|Θ∗, N∗)−F (x). Through our
proposed online identification based control scheme, both the structure and the parameters
of the fuzzy approximator are updated online, which has the advantage to reduce Θ̃ac and
w′

e simultaneously. Thus, the effects of F̂ (x)− F (x) on the tracking error can be further
attenuated as compared with the fixed-rule approaches.

4. Simulation Study. In this section, the proposed online fuzzy identification based
control scheme is tested on an inverted pendulum system.
The dynamics of an inverted pendulum system is described by [22]:

q̈ =
g sin q − mlq̇ cos q sin q

mc+m

l
(

4
3
− mcos2q

mc+m

) +

cos q
mc+m

l
(

4
3
− mcos2q

mc+m

) + d, (39)

where q and q̇ are the angular position and angular velocity of the pendulum, respectively,
u is the control input, the mass of the cartmc = 1 kg, the mass of the leverm = 0.1 kg, the
length of the half lever l = 1 m, the acceleration of gravity g = 9.8 m/s2, and the external
disturbance d = 0.05 sin(2πt) N· m. The nonlinear system (39) is first transformed into
the standard form with x = [x1, x2]

T = [q, q̇]T :

ẋ1 = x2

ẋ2 = f(x) + g(x)u+ d,

y = x1 (40)
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where

f(x) =
g sinx1 − mlx2 cosx1 sinx1

mc+m

l
(

4
3
− mcos2x1

mc+m

) , g(x) =
cosx1

mc+m

l
(

4
3
− mcos2x1

mc+m

) . (41)

The control objective is to make the output y(t) track a trajectory command ym(t) =
0.2 sin(2t). The initial conditions are x1(0) = 0.2 rad and x2(0) = 0.2 rad/s. Other
parameters in the simulation are set as follows: the parameter defining the influence area
of a fuzzy rule r = 0.4, the learning rate of adaptive law (24) η = 0.1, the parameters
used in solving the Riccati Equation (25) α = 0.08 and ρ = 0.2, the controller parameters

k1 = 2 and k2 = 1. With Q =

[
10 0
0 10

]
, solving (25) yields P =

[
15 5
5 5

]
.

Consider the following two cases:
Case 1: the cart mass mc changes from 1 kg to 2 kg at t = 8 sec.
The tracking results are shown in Figure 2, including the tracking response, the control

input and the number of rules. It can be observed that the proposed control scheme is
capable of tracking the desired trajectory, even with unknown system dynamics, approx-
imation error, or external disturbance. The online clustering algorithm with parameter
adaptive laws is capable of online estimation of system dynamics satisfactorily. The online
identification based controller works together with the compensation controller to achieve
the boundedness of all the closed-loop signals and desired tracking performance. It can be
seen that when the plant parameter mc changes from 1 kg to 2 kg at t = 8 sec, there is no
new rule generated. That means the exiting rules have covered all the needed operating
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Figure 2. Tracking response under parameter change
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Figure 3. Adaptive fault-tolerant control with online rule generation

0 5 10 15 20
−0.2

0
0.2
0.4

time (sec)

po
si

tio
n,

 y
 (

ra
d) tracking response

 

 
actual trajectory
trajectory command

0 5 10 15 20
−200

0

200
control input

time (sec)co
nt

ro
l i

np
ut

, u
 (

N
m

)

0 5 10 15 20
0

5
online rule generation

time (sec)

nu
m

be
r 

of
 r

ul
es

Figure 4. Adaptive fault-tolerant control without online rule generation

regions and it is enough to regain satisfactory control performance just by tuning the
parameters of the controller.
Case 2: the structure of the nonlinear function f(x) changes at t = 8 sec.
The tracking results are shown in Figure 3. In this case, there is a dramatic change

happening in f(x) which is replaced by another nonlinear function at t = 8 sec. This
can be viewed as a serious fault occurred in the system to change both the structure and
parameters of f(x). With the proposed online identification based fault-tolerant control
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scheme, satisfactory tracking performance still can be achieved after some transients due
to the dramatic change of f(x). It can be seen that the number of rule increases from
2 to 3 at t = 8 sec, which helps achieve better approximation accuracy and issue a
warning of a serious change in the system (detecting a fault). To illustrate the advantages
of our approach, we have compared the fault-tolerant control performance between our
approach and the method in [28], where only the model parameters are adapted online
to accommodate the system changes. Figure 4 shows the adaptive fault-tolerant tracking
control results without online rule generation and we can observe a big tracking error
after the occurrence of a fault after 8 sec, which means that the model without adding
new rules cannot approximate the changed system dynamics well. Compared with Figure
4, the tracking results in Figure 3 are much more desirable with adding a new rule.

5. Conclusions. In this paper, we propose an online fuzzy identification based adap-
tive fault-tolerant control scheme for a class of nonlinear systems. The rule base of the
fuzzy systems evolves online to provide a more flexible structure and bigger capability
to approximate more uncertainties in the system dynamics, not only the parameter vari-
ation, but also structure change due to a fault. An online clustering algorithm is used
to generate new rules based on online data and the cluster centers are used to build the
membership functions. With the online clustering algorithm, a new rule will be added to
the fuzzy rule base only when significant change happens in the system dynamics. At the
same time, the parameters of both old and new rules are updated online using adaptive
laws derived in the sense of Lyanpunov stability theory. Both detailed design procedures
and closed-loop stability proof are provided in this paper. Finally, the proposed scheme
is applied to an inverted pendulum system under different scenarios including parame-
ter variations and function changes due to a fault. Simulation results show satisfactory
tracking performance can be achieved with the proposed control scheme.
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