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ABSTRACT. Segmenting objects of dynamic shapes and various colors is still challenging
to the computer vision of natural images, because of slow computation, inaccuracy, and
loss of information. In this paper, we propose a novel segmentation algorithm based on
active contour models, to overcome these weaknesses. First, we apply a morphological
gradient-based edge detector to an image, to extract its edge map. Because this step is
performed directly on color images, it helps us avoid losing color characteristics, com-
pared with gray-scale conversion. Second, this edge map will be used as a clue to provide
both good edge information and good region information for an active contour, without
a re-initialization model. As a result, our proposed algorithm allows the contour to be
initialized more flexibly, evolves the contour faster, and segments the boundary of ob-
jects more precisely in color images. Results attained on diverse natural images show
its promising performance, compared with other models, for both accuracy and computa-
tional time.

Keywords: Morphological gradient, Chan-Vese criterion, Level set, Object segmenta-
tion, Color images

1. Introduction. Due to the explosion of digital information, color images have become
one of the most popular data types. From the current viewpoint, they not only portray
simple scenes, but also contain a great deal of useful information described by captured
objects. However, large-size digital images are an obstacle to the performance of most
processing systems. Hence, the demand for good methods of segmenting these objects
in many devices cannot be neglected, especially in small-screen equipment (e.g., mobile
devices). Since most segmentation methods still expect human operators to first initialize
a contour close to the object boundary, they are likely time consuming and ineffective.

Therefore, the subject of segmenting objects of interest in images has gained even more
attention. From the primary benefit of producing simple informative input, object seg-
mentation is a foundational tool in various advanced systems, such as object recognition
[1], image retrieval [2], image editing [3] and scene reconstruction [4]. Due to its signif-
icant role, this crucial step has been of perennial interest to many researchers of image
processing and computer vision [5-10].

Active contour model (ACM) [11] is one of the representative tools for object segmenta-
tion and it finds object boundaries by iterative optimization. It has been used extensively
for shape detection, object segmentation, especially in medical images taken from different
pieces of equipment (i.e., PET, MRI and CT). It solves complicated and ill-posed segmen-
tation problems by combining a priori boundary shape information with the image itself,
and an initial shape given by the user. Generally, the main weaknesses of existing ACM
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based methods are their dependence on the identification of high confidence instructions,
initialization close to the object boundary, and the number of segmented regions. Most
of all, initial contours of the ACMs need to be less complicated and requires exact user
interactions.

The active contour model was first introduced by Kass et al. [11] in 1987, and is called
‘snake’. In snake, a contour is defined by closed curves or surfaces. For segmenting
dynamic shapes of objects in gray-scale images, a contour is first initialized, and then
evolved to the boundary of objects under the influence of constraint forces from the
image, by minimizing a specific user-defined energy functional. Snake models have been
applied to many applications, despite a few problems associated with their initialization,
and poor convergence to boundary concavities. Subsequently, Osher and Sethian [12]
developed a level set method (LSM) to give a new solution of ACMs. Its basic idea
is to represent the active contour as level sets of higher dimensional functions, yielding
seamless treatment of topological changes. Various external forces, such as the gradient,
or gradient vector flow embedded in the speed function, can be found in [13-18]. There
are two expected properties of segmentation methods implemented through the level set
framework. The first property is its suitability for handling complex and changeable
topology, such as splitting and merging a contour. The other is its ability to perform
numerical computations on a Cartesian grid, without concerning the parameterization of
points on a contour.

ACMs are roughly divided into two categories, based on edge information and region
information. For edge-driven models, edge descriptors are usually computed by using
various types of gradient information to attract the active contour toward the object
boundaries, which have a strong edge response. Due to local minimization and image
noise, this type of approach is sensitive, and dependent on the initial front. For region-
driven models, one establishes a certain region descriptor to take global information into
account, and guides the movement of the active contour. Its information can be collected
as the mean of partitioned regions [17], the weighted mean of the constrained or scal-
able neighboring regions [19], statistical information of the partitioned regions [20]. In
comparison with edge-based approaches, region-based active contours are robust against
initial curve placement, and have no need for a priori noise removal.

Many studies have concentrated on the disadvantages of ACMs. First, to overcome the
problem of cognitive edges in gray-scale images, Chan and Vese [17] proposed a model
named active contour without edges. Its solution was simple but effective among region-
driven models in the level set framework. Their idea, named the Chan-Vese minimal
variance criterion, has become a useful contribution to the inheritance of later segmen-
tation methods. Second, by initializing the contour as a signed distance function (SDF),
there are difficulties of keeping its main property |V¢| = 1. Due to the periodically
complex re-initialization process, expensive computation is required, and undesirable side
effects of moving the zero level set away from initial location of the contour occur [21].
Li et al. [22,23] introduced a distance regularized level set evolution (DRLSE) algorithm
to represent a new variational formulation, which completely eliminated the need for a
costly re-initialization procedure.

According to the nature of color images, it is worthwhile to inherit strong points of
edge-based models, with different region-based information cues. In this paper, we ex-
plore good characteristics of both the Chan-Vese method, and the DRLSE approach.
We use the geometric active contour model which provides flexible abilities for complex
and changeable topology. Moreover, direct handling of color images helps us to avoid
time-consuming gray-scale conversion steps, and the loss of color characteristics.

Major contributions of our work include the following.
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e We can model effectively both edge information and adaptive region information to
the energy functional of LSM.

e The need for a gray-scale conversion step can be removed.

e The boundary of the object of interest can be fitted accurately, despite the users’
flexible initialization.

e We can balance the accuracy and computational time of the algorithm.

The paper is organized as follows. In Section 2, we describe our novel active contour
model, and additional concepts. After that, Section 3 provides experimental results to
illustrate the performance on a public database. Finally, we give detailed analysis and
conclusions, as well as discuss our further works, in Section 4.

2. A Novel Morphological Gradient-Based Active Contour Model. In this paper,
we concentrate on solving the problem of object segmentation for color images. Although
there are a lot of researches, this process has still been a considerable task, because of
difficulties related to not only the computational cost, but also the identification of object
boundaries, due to both color characteristics, and contour initialization. Since promising
results have been shown, DRLSE is adapted to the basic requirements of our model.

This approach was originally developed to suit gray-scale images. Normally most of
edge-based segmentation methods convert color images to gray-scale, before detecting
edge information. Consequently, the model spends much time on the conversion, as well
as substantial edge information being lost (see Figure 1). To reduce these limitations, we
calculate the gradient value directly in the original input (i.e., natural images), to take
full advantage of color characteristics.

(a) Color image (b) Gray-scale (c) Incorrect result (d) Segmented object
conversion with a red caused by lost real
mitial contour edge information

Ficure 1. Color object segmentation by DRLSE in the case of using gray-
scale conversion

In natural images, object boundaries may be weak to distinguish, because there are
various colors that are nearly the same in the RGB space. Furthermore, colors of both
objects and background may be non-homogeneous. Normal gradient-based edge detectors
may not adequately exploit boundary characteristics, or control the effect of colors. In this
paper, to increase the confidence of the supplied edge information, we calculate a precise

edge map by using morphological gradient, combined with the squared local contrast
(SLC) method.

2.1. Morphological gradient-based edge detector. To detect edges, the gradient
value of an image is usually computed. Among current edge detectors, the morphological
gradient is a simple and effective method that calculates the difference between maximum
and minimum values over neighborhoods of pixels, by dilation and erosion operators. To
build this edge map, morphological operators require scalar, or gray-scale, inputs only.
In this case, color images are our obstacle. Cumani [25] proposed the squared local
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contrast (SLC) method whose result has become a good input for morphological gradient
computation and even enhances the value of real object boundaries.

We start by considering a color image as a two-dimensional vector field I(z,y) with
each element containing three values in proportion to the R, G and B channels. In this
case, the squared local contrast S(P;a) of a point P(x,y) defines the squared norm of
the directional derivative of I in the direction of the unit vector @ = (ay,az). This is
expressed as below:

(P ) ol oI 49 oI oI +6[ oI
Q) =— - — a1 Qa c— e —— 1 A — e —— A9+ Q
’ oxr ox or ay 0y oy (1)
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The eigenvalues Ay of the following matrix M = F o) or metric tensor in the

notation of Riemannian geometry [26], coincide with the extreme values of S(P;a@). These
extreme values have the forms of

E+G  [(E—qG)y
Ay — ‘g :I:\/( - iy (3)

Values of A, and A_ describe the maximal and minimal rate of change in images, re-
spectively. In gray-scale images, the “strength” of edges is the magnitude of the maximum
gradient. However, in color images, as in [26], its “strength” should be the comparison
between A, and A_. So the edge map can be given as

fedge_map = f()‘-i-a )‘—) = )‘-i- — A (4)

We then calculate its gradient value Vg( fedge.map) by applying the morphological gra-
dient method as

VB (fedge_map) = 5B (fedge_map) —EB (fedge_map) (5)

where ¢ and ¢ are the morphological dilation and erosion respectively, and B is a flat
structuring element.

In the given result the value of each pixel indicates the strength of its contrast to its
close neighborhood. It is important to emphasize that gradient peaks are located on edges.
For this reason, we use the above morphological gradient map to compute a stopping term

as
1

color = 6
Jeol 1 + vB(fedge_moap) ( )

In traditional active contour methods (e.g., DRLSE), initial contours should be close
enough to the boundary of desired objects. If contours are initialized that are intersecting
or quite far from real boundaries, edge-based models cannot control their evolution to the
correct edge pixels despite their gradient value being high. A common piecewise constant
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(a) Original image (b) fedge_map (€) VB(fedge_map) (d) Gradient image

FIGURE 2. Morphological gradient-based method for edge detection

F(C)>0,F(C)=0 F(C)=0,F(C)>0
F(C)>0,F(C)>0 F(C)=0,F(C)=0

A

Ficure 3. All possible cases of the Chan-Vese minimal variance criterion

minimal variance criterion based on the Mumford-Shah function [27] was proposed by
Chan and Vese [17] to deal with this issue.

2.2. A modified Chan-Vese minimal variance criterion. The Chan-Vese model uses
regional statistic information, and has the advantage of a regional model. When adding
regional information into an energy function, the convergence space can expand and the
initialization can be more flexible [20]. This idea is shown briefly in Figure 3.

The Chan-Vese minimal variance criterion, sometimes called the fitting term, is given
by

Fi(C) + F(C) = w /

inside C

(I, — ¢1)*dxdy + wg/ (I, — c2)?dzdy (7)
outside C

where C' is any variable curve, and the optimal ¢;, ¢ depending on C' are the averages of

a gray-scale I, inside and outside C, respectively. If C' is exactly on the object boundary,

then Fi(C) =~ 0, F»(C) = 0, and the fitting term is minimized. w;, ws > 0 are weights

which control the evolving speed of the curve.

Compared with the color input, the stopping term g¢..,, can depict object boundaries
more precisely and reliably in the range of [0, 255]. So, in this whole paper, we replace
the gray-scale image I, in Equation (7) with geeor, to improve performance of our model.
By taking the derivative of Equation (7) with respect to the curve C, the first variation
is

oF, 0F,

% + % - [_wl (gcolor - C1)2 + w2(gcolor - 62)2] (8)
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Here ¢, ¢, are the average intensities of g, inside and outside the contour and are
computed as

o fQ gcolorH(d))df
62(¢) _ fQ gcolor(1 - H(¢))df

Jo(1— H(¢))dZ

1 if¢p>0 . .. . . )
where H(¢) = { 0 ;f z ~p Isa Heaviside step function. It is commonly difficult to
correctly tune weight parameters in Equation (8). They are usually fixed by experiments
for separate datasets. To let them adapt to each image, a measure of information content,
which is image entropy is defined as

Eipn=— Zpk log, pr (k€ inside(C))
Eout = — Zpk log, pr (K € outside(C'))
k=1

where pj, is the probability of the k' color level. These values reflect the diversity of
the intensity of the image. To help the Chan-Vese criterion provide more adaptive region
information, we assume that

w, = E;

11

Wy = Eout ( )
2.3. A novel morphological gradient-based active contour model. As mentioned
before, DRLSE is chosen as the fundamental energy functional. In this paper, we try
enhancing its two limitations, related to color images and flexible contour initialization.

In this approach, its energy functional was introduced as the following:

e(¢) = nlty(9) + eat(9) (12)

where R,(¢) is the level set regularization term to characterize how close the LSF ¢ is to
an SDF, p is a constant controlling this deviation, and £.,4(¢) is a certain external term,
depending on the desired image features.

The regularization term has the meaning of an internal energy term, which penalizes
the deviation of ¢ from an SDF during its evolution. This term was defined as

R,(9) = / p(V6)d7 (13)

where p is a potential function. In this paper, we choose a double-well potential function

as follows:

g27r)2 )

5(s — 1) if s>1
The external energy term in Equation (12) derives the zero level set toward the object

boundaries. Different from the original formula in [22,23] for helping DRLSE to detect

real object boundaries accurately and quickly in color images, we use the edge map geolor

defined in Equation (6) rather than its normal edge indicator g, as below

gext(qs) — )‘/Qgcolor(s(qs)|vd)|df+v/QgcolorH(_d))df (15)

where A > 0, and v € R. Here, 0 is the univariate Dirac function defined by §(¢) = H'(¢).
In the right-hand side term, the first component computes the length of the zero level

(14)

p(s) = { —=5(1 —cos(27s)) if s <1
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(b) (d)

FIGURE 4. Segmentation in the case that the energy functional does not
add regional information

contour of ¢. This energy is minimized, when the zero level contour of ¢ is located at
the object boundaries. The second component computes the weighted area of the region
inside the contour ¢, as well as allowing speeding up the motion of the zero level contour
of ¢.

In the case that the initial contours are inside, or enclose the object of interest com-
pletely, this approach seems good enough. The contour just needs to deform, by either
shrinking or expanding, in only the one direction. However, for cases in which a con-
tour is initialized arbitrarily, users may not know where the contour should move, to fix
its deformable direction. Illustrations of these restrictions are shown in Figure 4. The
original image with an arbitrary initial contour is represented in Figure 4(a). When the
energy functional of DRLSE does not include regional information, segmentation results
after 140 iterations are demonstrated in Figures 4(b) and 4(c). In the case of Figure 4(b),
the closed curve will shrink, when the speed function propagates in the normal direction.
Otherwise, the contour will expand and disappear in Figure 4(c). They show that the
model cannot achieve our expected result, as in Figure 4(d).

To let DRLSE in Equation (15) control the deformation of the contour better and
with more precision, regional information should be added to its energy functional as the
second constraint. According to the Chan-Vese minimal variance criterion in Section 2.2,
our novel segmentation algorithm is proposed, that integrates both types of information.
Finally, for a level set function ¢, we define a new energy functional £(¢) as

S(6) = uRy(6) + A / Geoton8(9) |V | + v / Gootor H ()T

+ w1 / (gcolor - Cl)2df+ Wa / (gcolor - 02)2d£\
Q Q

Lastly, to minimize the energy functional £(¢) in Equation (16) the derivative of the
LSF with respect to ¢ is taken. Using the calculus of variations [16], the steepest descent
process for the minimization of Equation (16) can be written as

09 _ (Vo . Vo
E =W <A¢ — dw <W>> + )\5(¢)d“] (gcolorw> + Ugcolor5(¢)

— w1 (gcolor — C1)2 + W2(gcolor — 62)2

(17)

where A is the Laplacian operator.

This new model can shorten computational time and give more accurate performance.
We call it the morphological gradient-based active contour model for color image segmen-
tation.

In practice, to discretize Equation (17) for numerical implementation, the univariate
Dirac function and Heaviside function in the external energy term are approximated by
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smoothing functions as

_f £ [1+cos()] |z|<e
58(1‘) - { 2 0 |IL’| > ¢ (18)
s+ 2+ osin(Z)] Jz|<e
H.(z) = (1) x>e (19)
r < —¢

where ¢ is a constant chosen by experiments.
More flexibly, the initial contour ¢y can be defined as an SDF or even a simple binary

step function
| —co ifxER,
do(x) = { co otherwise (20)
where Ry is a particular region in the image domain, and ¢y > 0 is constant. Then the
discretization of evolution Equation (17) is followed by the forward difference scheme, and
expressed by the differential equation below

k+1 _ ik k
i i,j+7'L( zg) (21)

where L(¢y;) is an approximation of the right hand side in Equation (17) using the
spatial difference scheme, including central difference for partial derivatives, and forward
difference for the temporal derivative.

3. Experimental Results. To demonstrate performance of our proposed algorithm for
natural color images, we have carried out different evaluations on a public database pro-
vided by Achanta et al. [29]. This program runs on a PC equipped with Intel(R) Core™?2
CPU 6700 @2.66GHz 2.67GHz and 2GB RAM in the environment of Matlab 2011a. For
all experiments in this paper, we fixed the value of parameters as = 0.02, A =5, v = 3,
¢ = 1.5 and the time step 7 = 10.

Average precision, recall, and F-measure are used to measure the performance of results
over their ground truth among them, and F-measure is defined as

(1 + %) (Precision x Recall)

F-measure =
[B?Precision + Recall

(22)

The relative weight between the precision and recall controlled by /2 is set to 0.5 to give
an equal weight to these metrics.

3.1. Experiment 1: Flexible contour initialization. In this case, an illustration of
the effectiveness of our proposed ACM is studied by using regional information.

There are three common positions to locate initial contours relative to objects of in-
terest in images. As shown in Figures 6(a)-6(c), the contours are sequentially initialized
completely outside, completely inside, or partly intersecting the desired object respec-
tively. Despite their placements in the image, applying our novel ACM can control their

(a) Initial contour (b) Segmentation result  (c¢) Extracted objects (d) Ground truth

FIGURE 5. Flower segmentation result by our proposed method
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Initial contour Final result l Segmented object

\ i
LI
Gradient image

(h)

Case 2: Initial contour is located completely inside the object

Ground truth ©) 6] (9]

Case 3: Initial contour 1s located partly intersecting the object

FIGURE 6. Segmentation results of different initial locations of the active contour

evolution towards the exact object boundary. From comparing segmented objects in the
third column to its ground truth, they are almost similar in all of the cases.

Additionally, this case study is helpful in depicting the relationship of the running time
to the size and position of initial curves. The original input is a 400 x 290 image captured
in RGB color space. When the contour starts from bounding the whole object (i.e., case
1), our program will take both a lesser number of iterations and a shorter period time
than the other two cases (i.e., cases 2 and 3). In detail, the final result in Figure 6(g)
was caught after 85 iterations in only 34 seconds. Conversely, to achieve Figures 6(h) and
6(k), the contour stopped after 200 steps of evolution in more than 80 seconds.

3.2. Experiment 2: Efficient edge map computation. In this case, a practical ex-
ample is studied to illustrate our good performance achieved by a new combination of two
simple methods for edge detection.

First, we show a step-by-step experiment of the segmentation performed by our novel
ACM to a 400 x 265 color image (see Figure 7(a)). The initial contour is represented
as a yellow rectangle in Figure 7(b). At first, the SLC method is used to keep good
characteristics in the input while reducing its number of color channels (see Figure 7(c)).
After that, we apply the morphological gradient method to compute its edge map, as
shown in Figure 7(d). Next, Figures 7(e)-7(g) are evolution of the contour of the order
of 60, 120'" and 180" iterations at 5.1, 10.1 and 15.2 seconds, respectively. Finally,
Figure 7(h) demonstrates that the obtained object is accurate and looks quite smooth at
its boundary.

As mentioned before, this improvement in our proposed ACM can help avoid the fol-
lowing weaknesses:

e Waste of time and loss of edge characteristics caused by gray-scale conversion

e Weak distinction of boundary between object and background

e Non-homogeneity coloring inside objects and background
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(a) Original image  (b) Initial contour (c) SLC-based (d) Morphological
edge map gradient image

(e) Contour (f) Contour (g) Contour (h) Segmented object
movement at 60"  movement at 120"  movement at 180"
iteration iteration iteration

FIGURE 7. Segmentation results performed by our morphological gradient-
based ACM

i I
(a) Gray-scale (b) Gradient image  (c) Contour stops  (d) Segmented object

conversion at 350" iteration

FIGURE 8. Segmentation results performed by a normal gradient-based
ACM with gray-scale conversion

To further clarify the significance of our novel technique, we visually compare the
performance between our model and normal segmentation approaches. Figure 8 describes
the corresponding process of segmentation based on normal gradient-based edge detection.
The original input in Figure 7(a) is first converted to gray-scale as in Figure 8(a). In Figure
8(b), the derivatives of the gray-scale image with respect to x- and y-coordinates are then
taken to compute the gradient value. To achieve a fair comparison, our g...- in Equation
(17) is replaced by the gradient image in Figure 8(b) to control movement of the initial
contour. To attain the segmented object in Figure 8(d), it finally takes over 350 steps
of evolution for 53.8 seconds. By comparison, it is easy to observe that the contour in
Figure 8(c) is more coarse and does not bound the car more precisely than ours in Figure

7(g).

3.3. Experiment 3: Comparison between the current work and existing ones.
In this case, we compare the performance of our morphological gradient-based ACM with
four other segmentation methods for both accuracy and computational time. The chosen
approaches are

e The RGAC model [30]

e The vector-valued Chan-Vese model [31]
e The Fixation-based active model [32]

e The Marker-based watershed [33]
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By applying these methods to the entire public Achanta database, the performance is
summarized in Table 1. Overall our model provides a much superior balance of accuracy
and computational time. Compared with the two chosen deformable models [30,31],
our model shows much better effectiveness as well as faster manipulation. Although
two other segmentation models [32,33] spend much less processing time than our model,
their segmenting performance heavily depends on user-specified seed locations. With the
fixation-based active model, different initial points inside the object of interest will give

Ll

(=) Drigmsl mzgs (b)) Ground truth mask

ok P Y
= '\-\.d‘-'

i - i
o [m) (n)

Chur noval zctive contour BEGAC modsl Vactor-valusd Chan-Vess

maods]

(p) (q)
(1)
Fixation-bzzad zctive medsl with Mhztker-bazed watsrzhed modsl with diffzrent
diffzrent z22d locations mitizlizations

FIGURE 9. Visual segmentation comparison between our proposed method
and various segmentation models
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TABLE 1. Performance of various segmentation methods on the public
database [29]

Average

Method Precision|Recall| F-measure| processing Pr;)grammmg
. anguage
time (seconds)

Our proposed method 0.79 0.81 0.80 15.7 Matlab

RGAC 0.50 0.77 0.57 25.1 Matlab

C-V model for 0.58 | 0.58 0.58 35.8 Matlab

vector-valued image

Fixation-based active model|  0.80 0.72 2.1 C
Marker-based watershed 0.66 0.84 0.71 0.15 C

different results. So it cannot perform really stable segmentation. With the marker-
based watershed method, its performance depends on how users draw the background
and foreground markers. If a foreground marker includes a small part of the background,
it will produce a wrong result, and vice versa.

To clarify the comparison more clearly, a visual example is given in Figure 9. With each
model, user interactions generate initial seeds, as shown in Figures 9(c)-9(k) respectively.
Then, segmenting results are reached in turn, corresponding to their initialization in
Figures 9(h)-9(r). In this figure, we also show two results of the fixation-based active
model and marker-based watershed achieved by two different initializations. Compared
with all chosen methods, our result finally obtains a smoother, more exact contour (84%
of accuracy) and in less computing time (during 14 seconds) in Figure 9(1).

4. Conclusions. In this paper, we presented a novel active contour model to solve this
problem without the need of a gray-scale conversion step or hard initial contours. By
combining the morphological gradient of a squared local contrast image and the DRLSE
method both edge information and regional information is used to propagate an initial
curve that finds the desired object boundaries smoothly and exactly. The experiments
have shown that it achieves more convincing and encouraging results than the other de-
formable models in terms of effectiveness and efficiency. Even though these are worthwhile
improvements, our algorithm still has some limitations. In the future, we will investigate:

e Decreasing the adverse effect of the size of initial contours on processing time;
e Extracting more effective information from color images (e.g., texture) to achieve
more precise results.
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