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Abstract. This paper presents a methodology for the design of proportional-derivative-
type anti-windup compensators (PDAWCs) for linear time-invariant systems with input
and output saturation nonlinearities. A linear matrix inequality (LMI) condition for a
closed-loop control system representation is given to take into account the nonlinearities
and disturbance. A PDAWC is designed by solving the LMI problem. A numerical ex-
ample is shown to confirm the effectiveness of the proposed design method.
Keywords: Anti-windup compensator, Input saturation, Output saturation, PD con-
trol, Linear matrix inequality

1. Introduction. Over the past few decades, several studies have been made on the
design of anti-windup control systems, and various kinds of design methods have been
proposed as in [1, 2, 3, 4, 5] and references therein.

In [1], one of the authors proposed a method of designing a proportional-derivative-
type anti-windup compensators (PDAWCs) for linear time-invariant plant with input
saturation as a strategy of the avoidance of a difficulty in the generation of control input.
Although, in [2, 3], the problems of designing anti-windup control systems for input
saturation were considered, constructive strategies for the problem about the difficulty in
the generation of control input were not dealt with. Furthermore, in [1, 2, 3], the input
saturation was only investigated as the nonlinearity. On the other hand, the analysis and
design of control systems with output saturation have also been studied [4, 5] as another
important issue. From the practical point of view, design methods for systems with input
and output saturation nonlinearities can be applied to the consideration of actuator and
sensor saturations in actual control systems, respectively.

In this paper, the authors provide a method of designing PDAWCs for linear time-
invariant systems with not only input saturation but also output saturation. A linear
matrix inequality (LMI) condition to formulate the design problem is derived. It is well-
known that LMI problems can be solved efficiently by the interior-point method [6]. A
numerical example is given to check the effectiveness of the proposed design method via
the comparison with the conventional one.

The notation used in this paper is as follows: R` is the set of all `-dimensional real
vectors, Rq×r is the set of all q × r real matrices and Iq indicates the q-dimensional
identity matrix, where the subscript q is sometimes omitted for notational simplicity. For
a matrix A (or a vector x), AT (or xT) means the transpose. For a symmetric matrix A,
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A > 0 (A ≥ 0) means that A is positive (positive-semi) definite. For a symmetric matrix
A, A < 0 (A ≤ 0) indicates −A > 0 (−A ≥ 0). ‖w‖L2 is the L2-norm of a signal w(t).

2. Problem Statement. Consider a linear time-invariant plant ẋp(t)

z(t)

y(t)

 =

 Ap Bw Bu

Cz Dzw Dzu

Cy 0 0

 xp(t)

w(t)

us(t)

 , (1)

where xp(t) ∈ Rn is the plant state, w(t) ∈ Rk is the exogenous disturbance, us(t) ∈ R`

is the control input, z(t) ∈ Rm is the controlled output and y(t) ∈ Rr is the measured
output.
The control input us(t) is subjected to the following saturation nonlinearity:

us = Φc(u), (2)

where

Φc(u) =

 Φc,1(u1)
...

Φc,`(u`)

 , Φc,i(ui) =


σc,i (ui ≥ σc,i)

ui (|ui| ≤ σc,i)

−σc,i , (ui ≤ −σc,i)

(i = 1, 2, . . . , `)

and σc,i(> 0) (i = 1, 2, . . . , `) are given constants which represent the limitation on the
amplitude of control input us(t).
The signal u(t) in (2) is generated by a dynamic controller[

ẋc(t)

u(t)

]
=

[
Ac Bc

Cc Dc

] [
xc(t)

ys(t)

]
, (3)

where xc(t) ∈ Rq is the controller state.
The input ys(t) in (3) is subjected to the following saturation nonlinearity:

ys = Φm(y), (4)

where

Φm(y) =

 Φm,1(y1)
...

Φm,r(yr)

 , Φm,i(yi) =


σm,i (yi ≥ σm,i)

yi (|yi| ≤ σm,i)

−σm,i , (yi ≤ −σm,i)

(i = 1, 2, . . . , r)

and σm,i(> 0) (i = 1, 2, . . . , r) are given constants which represent the limitation on the
amplitude of output ys(t).
The coefficient matrices (Ac, Bc, Cc, Dc) in (3) are assumed to be determined in advance

using one of appropriate linear control system theories without considering the saturation
nonlinearities (2) and (4) (i.e., us(t) ≡ u(t) and ys(t) ≡ y(t)).
Therefore, the nonlinearities (2) and (4) may deteriorate the performance of overall

control system.
In order to cope with the adverse effect, in this paper, we propose the compensation

by a proportional-derivative-type anti-windup compensator (PDAWC):

v(t) = ΛPd(t) + ΛDḋ(t), (5)

where

ΛP =
[
ΛPc ΛPm

]
∈ Rq×(`+r), ΛD =

[
ΛDc ΛDm

]
∈ Rq×(`+r),

and the signal d(t) in (5) is defined as the output of a nonlinearity defined by

d = Ψ(ζ) (6)
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Figure 1. Anti-windup control system

with

d =

[
dc

dm

]
∈ R`+r, ζ =

[
u

y

]
∈ R`+r

Ψ(ζ) =

[
Ψc(u)

Ψm(y)

]
=

[
u− Φc(u)

y − Φm(y)

]

Ψc(u) =

 Ψc,1(u1)
...

Ψc,`(u`)

 , Ψm(y) =

 Ψm,1(y1)
...

Ψm,r(yr)

 .

Then, by the PDAWC (5), the controller (3) is compensated as follows:[
ẋc(t)

u(t)

]
=

[
Ac Bc

Cc Dc

] [
xc(t)

ys(t)

]
+

[
v(t)

0

]
. (7)

The block diagram of overall anti-windup control system is illustrated in Figure 1.
Our problem is to design a PDAWC (5) (or equivalently, to determine coefficient ma-

trices (ΛP,ΛD)) by taking into account the nonlinearities and the disturbance.

3. Design of PDAWC. In this section, we derive an LMI condition to determine coef-
ficient matrices (ΛP,ΛD) of PDAWC.

3.1. Analysis condition. The following lemma gives an analysis condition of the per-
formance for systems with a class of nonlinearities.

Lemma 3.1. Assume that a scalar γa(> 0), a diagonal matrix Ra (0 ≤ Ra < I) and
coefficient matrices of a system

ẋa(t)

ζa(t)

ζ̇a(t)

za(t)

 =


Aa Ba1 Ba2 Ba3

Ca1 Da11 Da12 Da13

Ca2 Da21 Da22 Da23

Ca3 Da31 Da32 Da33




xa(t)

da(t)

ḋa(t)

wa(t)

 (8)
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are given. If there exists a positive-definite matrix Pa(> 0), a positive-definite diagonal
matrix Wa(> 0) and a nonsingular diagonal matrix Za satisfying a matrix inequality

Θa11 Θa12 Θa13 Θa14 Θa15

Θa12
T Θa22 Θa23 Θa24 Θa25

Θa13
T Θa23

T Θa33 Θa34 Θa35

Θa14
T Θa24

T Θa34
T Θa44 Θa45

Θa15
T Θa25

T Θa35
T Θa45

T Θa55

 < 0, (9)

then for all Ψ̃a in

∆a = {Ψ̃a : da = Ψ̃a(ζa), da
TWa(da −Raζa) ≤ 0, ḋa

TZa(ḋa − ζ̇a) = 0}, (10)

the system consisting of (8) and da = Ψ̃a(ζa) (for all Ψ̃a ∈ ∆a) satisfies the condition
‖za‖L2 ≤ γa‖wa‖L2 for xa(0) = 0. The matrices in the matrix inequality (9) are given by

Θa11 = PaAa + Aa
TPa, Θa12 = PaBa1 + Ca1

TRaWa

Θa13 = PaBa2 + Ca2
TZa, Θa14 = PaBa3, Θa15 = Ca3

T

Θa22 = WaRaDa11 +Da11
TRaWa − 2Wa

Θa23 = WaRaDa12 +Da21
TZa, Θa24 = WaRaDa13, Θa25 = Da31

T

Θa33 = ZaDa22 +Da22
TZa − 2Za, Θa34 = ZaDa23, Θa35 = Da32

T

Θa44 = −γaI, Θa45 = Da33
T, Θa55 = −γaI.

Proof: It follows from the Schur complement formula [7] that the matrix inequality
(9) is equivalent to

Θa11 Θa12 Θa13 Θa14

Θa12
T Θa22 Θa23 Θa24

Θa13
T Θa23

T Θa33 Θa34

Θa14
T Θa24

T Θa34
T Θa44

+
1

γa


Θa15

Θa25

Θa35

Θa45

 [
Θa15

T Θa25
T Θa35

T Θa45
T
]
< 0.

(11)

Multiplying (11) by a vector [xa
T da

T ḋa
T wa

T] from the left and its transpose from the
right, we have

d

dt

(
xa

TPaxa

)
− γawa

Twa +
1

γa
za

Tza ≤ 2da
TWa(da −Raζa) + 2ḋa

TZa(ḋa − ζ̇a). (12)

Therefore, for all Ψ̃ ∈ ∆, we have

d

dt

(
xa

TPaxa

)
− γawa

Twa +
1

γa
za

Tza ≤ 0. (13)

By integrating both sides of (13) from 0 to t, we obtain

−γa

∫ t

0

wa
T(τ)wa(τ) dτ − 1

γa

∫ t

0

za
T(τ)za(τ) dτ ≤ −xa

T(t)Paxa(t) ≤ 0

or ‖z‖L2 ≤ γa‖w‖L2 , which completes the proof.
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3.2. Derivation of LMI condition for PDAWC design. The closed-loop system
which consists of (1), (2), (4), (5), (6) and (7) is represented as a system

ẋ(t)

ζ(t)

ζ̇(t)

z(t)

 =


A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

C3 D31 D32 D33




x(t)

d(t)

ḋ(t)

w(t)

 (14)

with (6), where

x(t) =

[
xp(t)

xc(t)

]
∈ Rn+q, B1 = B̂1 + B̂2ΛP, B2 = B̂2ΛD

D21 = D̂1 + D̂3ΛP, D22 = D̂2 + D̂3ΛD

B̂1 =

[
−Bu −BuDc

0 −Bc

]
, B̂2 =

[
0

Iq

]
D̂1 =

[
−DcCyBu −CcBc −DcCyBuDc

−CyBu −CyBuDc

]
D̂2 =

[
0 −Dc

0 0

]
, D̂3 =

[
Cc

0

]
, A =

[
Ap +BuDcCy BuCc

BcCy Ac

]
B3 =

[
Bw

0

]
, C1 =

[
DcCy Cc

Cy 0

]
C2 =

[
CcBcCy +DcCyAp +DcCyBuDcCy CcAc +DcCyBuCc

CyAp + CyBuDcCy CyBuCc

]
C3 =

[
Cz +DzuDcCy DzuDc

]
D11 =

[
0 −Dc

0 0

]
, D12 = 0, D13 = 0, D23 =

[
DcCyBw

CyBw

]
D31 =

[
−Dzu −DzuDc

]
, D32 = 0, D33 = Dzw.

The following theorem includes an LMI condition to design a PDAWC satisfying ‖z‖L2

≤ γ‖w‖L2 under some assumptions.

Theorem 3.1. Assume that a diagonal matrix

R = block diag{Rc, Rm} = diag{Rc,1, . . . , Rc,`, Rm,1, . . . , Rm,r}

(0 ≤ R < I`+r), the system matrices in (1) and (3) are given, and

|ui| ≤
σc,i

1−Rc,i

(i = 1, 2, . . . , `) (15)

|yi| ≤
σm,i

1−Rm,i

(i = 1, 2, . . . , r) (16)

dΨc,i(ui)

dt
= 0 (or u̇i) at ui = ±σc,i (i = 1, 2, . . . , `) (17)

dΨm,i(yi)

dt
= 0 (or ẏi) at yi = ±σm,i (i = 1, 2, . . . , r) (18)
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hold. If there exists a positive-definite matrix Q(> 0), a positive-definite diagonal matrix
V , a nonsingular diagonal matrix U , a scalar γ, matrices Λ̃P, Λ̃D satisfying

Θ̃(Q, V, U, Λ̃P, Λ̃D, γ) < 0, (19)

where

Θ̃(Q, V, U, Λ̃P, Λ̃D, γ) =


Θ̃11 Θ̃12 Θ̃13 Θ̃14 Θ̃15

Θ̃12
T Θ̃22 Θ̃23 Θ̃24 Θ̃25

Θ̃13
T Θ̃23

T Θ̃33 Θ̃34 Θ̃35

Θ̃14
T Θ̃24

T Θ̃34
T Θ̃44 Θ̃45

Θ̃15
T Θ̃25

T Θ̃35
T Θ̃45

T Θ̃55


Θ̃11 = AQ+QAT, Θ̃12 = QC1

TR + B̂1V + B̂2Λ̃P

Θ̃13 = QC2
T + B̂2Λ̃D, Θ̃14 = B3, Θ̃15 = QC3

T

Θ̃22 = RD11V + V D11
TR− 2V, Θ̃23 = V D̂1

T +RD12U + Λ̃P
TD̂3

T

Θ̃24 = RD13, Θ̃25 = V D31
T, Θ̃33 = D̂2U + UD̂2

T + D̂3Λ̃D + Λ̃D
TD̂3

T − 2U

Θ̃34 = D23, Θ̃35 = UD32
T, Θ̃44 = −γIk, Θ̃45 = D33

T, Θ̃55 = −γIm,

then there exists a PDAWC (5) which achieves the specification that the system (14) with
(6) satisfies ‖z‖L2 ≤ γ‖w‖L2 for x(0) = 0. The coefficient matrices ΛP and ΛD in (5) can
be determined by

ΛP = Λ̃PV
−1, ΛD = Λ̃DU

−1, (20)

respectively.

Proof: The congruence transformation [8] with

block diag{Q−1, V −1, U−1, Ik, Im}
for (19) yields the following equivalent inequality:

Θ(P,W,Z, γ; ΛP,ΛD) < 0, (21)

where

P = Q−1, W = V −1, Z = U−1, ΛP = Λ̃PV
−1, ΛD = Λ̃DU

−1

Θ(P,W,Z, γ; ΛP,ΛD) =


Θ11 Θ12 Θ13 Θ14 Θ15

Θ12
T Θ22 Θ23 Θ24 Θ25

Θ13
T Θ23

T Θ33 Θ34 Θ35

Θ14
T Θ24

T Θ34
T Θ44 Θ45

Θ15
T Θ25

T Θ35
T Θ45

T Θ55


Θ11 = PA+ ATP, Θ12 = PB1 + C1

TRW, Θ13 = PB2 + C2
TZ

Θ14 = PB3, Θ15 = C3
T, Θ22 = WRD11 +D11

TRW − 2W

Θ23 = WRD12 +D21
TZ, Θ24 = WRD13, Θ25 = D31

T

Θ33 = ZD22 +D22
TZ − 2Z, Θ34 = ZD23, Θ35 = D32

T

Θ44 = −γIk, Θ45 = D33
T, Θ55 = −γIm.

If (15) and (16) hold, then, for any Wc,i(> 0) and Wm,i(> 0), we have

dc,iWc,i(dc,i −Rc,iui) ≤ 0 (i = 1, 2, . . . , `) (22)
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and

dm,iWm,i(dm,i −Rm,iyi) ≤ 0 (i = 1, 2, . . . , r) (23)

from the definition of (6). The inequalities (22) and (23) imply∑̀
i=1

dc,iWc,i(dc,i −Rc,iui) +
r∑

i=1

dm,iWm,i(dm,i −Rm,iyi) = dTW (d−Rζ) ≤ 0, (24)

where W = diag{Wc,1, . . . ,Wc,`,Wm,1, . . . ,Wm,r}. On the other hand, if (17) and (18)
hold, then, for any Zc,i and Zm,i, we have

ḋc,iZc,i(ḋc,i − u̇i) = 0 (i = 1, 2, . . . , `) (25)

and

ḋm,iZm,i(ḋm,i − ẏi) = 0 (i = 1, 2, . . . , r) (26)

from the definition of (6). The equalities (25) and (26) imply∑̀
i=1

ḋc,iZc,i(ḋc,i − u̇i) +
r∑

i=1

ḋm,iZm,i(ḋm,i − ẏi) = ḋTZ(ḋ− u̇) = 0, (27)

where Z = diag{Zc,1, . . . , Zc,`, Zm,1, . . . , Zm,r}. Therefore, if (15), (16), (17) and (18) are
met, then the nonlinearity Ψ in (6) belongs to

∆ = {Ψ̃ : d = Ψ̃(ζ), dTW (d−Rζ) ≤ 0, ḋTZ(ḋ− ζ̇) = 0}. (28)

Consequently, Lemma 3.1 shows that if the inequality (21) holds for some P , W , Z,
ΛP, ΛD and γ under the assumptions (15), (16), (17) and (18), then the system (14) with
(6) satisfies ‖z‖L2 ≤ γ‖w‖L2 for x(0) = 0.

3.3. Problem formulation. It is noted that the matrix inequality (19) is an LMI in Q,
V , U , Λ̃P, Λ̃D and γ.

Thus, by virtue of Theorem 3.1, the problem of designing a PDAWC (5) can be formu-
lated as follows:

find Q, V , U , Λ̃P, Λ̃D and γ so as to

minimize γ

subject to LMI (19).

After solving this LMI problem, we can determine coefficient matrices ΛP and ΛD in (5)
by (20).

4. Numerical Example. Consider a two-mass-spring-damper system illustrated in Fig-
ure 2 as the plant (1), where x1 and x2 are the displacements of masses m1 and m2,
respectively, w is the displacement disturbance, us is the control force, k1 and k2 are
the spring constants, and c2 is the damping coefficient. Such a model can be applied
to the vibration control of suspensions. The values of the physical parameters are given
by m1 = 15.8 [kg], m2 = 12.6 [kg], k1 = 5.2 [N/m], k2 = 5.8 [N/m], c2 = 0.05 [Ns/m],
σc = 0.25 [N] and σm = 0.026 [m]. The plant state xp(t), the controlled output z(t) and
the measured output y(t) are selected as

xp(t) =


x1(t)

x2(t)

ẋ1(t)

ẋ2(t)

 , z(t) =

 x1(t)

x2(t)

0.1us(t)

 , y(t) = x1(t)− x2(t),
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Figure 2. A plant model for numerical example

respectively.
The dynamic controller (3) was constructed by not considering the nonlinearities (2) and

(4). The coefficient matrices (Ac, Bc, Cc, Dc) of the controller (3) were obtained by solving
a problem of minimizing the upper bound of an H∞-norm ‖C3(sIn+q −A)−1B3 +D33‖∞.
As is well-known, the H∞ control problem for q = n can be reduced to LMI one by using
some appropriate techniques such as the elimination of variables [9]. By solving the LMI
problem [6], the coefficient matrices were obtained as follows:

Ac =


3.2454 0.4251 3.8343 1.9577

17.6131 −1.9059 13.1615 0.5400

−8.8843 0.9485 −5.8152 0.5995

1.8223 −0.6524 1.1524 −276.8294

 , Bc =


13.8014

76.0085

−34.9302

6.9049


Cc =

[
25.8701 −2.6556 19.0254 1.6743

]
, Dc = 104.5199.

By setting Rc = 0.75, Rm = 0.5, and solving the LMI problem formulated in the
previous section, we have

W = diag{0.2741, 488.2579}, Z = diag{0.0007, 4.1861}, γ = 567.3658

ΛP =


−0.0004 −0.0086

−0.0006 0.0074

0.0001 −0.0081

0.0377 1.3981

× 103, ΛD =


0.0050 −0.4546

−0.0025 0.1127

0.0036 −0.2648

−0.7624 71.6831

 .

To demonstrate the effectiveness and efficiency of design method proposed in this paper,
a simulation was conducted. Figures 4-7 are the response for a disturbance w depicted
in Figure 3, where, in these figures, without sat. (dash-dotted line) is the response with-
out any saturation nonlinearities (i.e., us(t) ≡ u(t) and ys(t) ≡ y(t)), with sat. without
comp. (broken line) is the response with input and output saturations but without any
compensation, with sat. with comp. (proposed) (solid line) is the response with input and
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Figure 3. Disturbance w

Figure 4. Output u of controller

output saturations and PDAWC designed in this paper, and with sat. with comp. (con-
ventional) is the response with input and output saturations and PDAWC proposed in
[1].

The performances evaluated by ‖z‖L2/‖w‖L2 were calculated for saturated cases:

‖z‖L2

‖w‖L2

= 2.8812 (with sat. without comp.)

‖z‖L2

‖w‖L2

= 1.7177 (with sat. with comp. (proposed))

‖z‖L2

‖w‖L2

= 2.4025. (with sat. with comp. (conventional))
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Figure 5. Output y of plant

Figure 6. Plant state x1

5. Discussion. The anti-windup compensation by (5) proposed in this paper includes
the strategy in [1] as a special case. Indeed, by setting ΛPm ≡ 0 and ΛDm ≡ 0, we have a
PDAWC for the plant (1) with input saturation but without output saturation.
Furthermore, the theoretical property in the conventional PDAWC strategy of [1] for

the avoidance of the difficulty in the generation of control input us is still maintained.
The difficulty arises in the anti-windup control system with the control mechanism[

ẋc(t)

u(t)

]
=

[
Ac Bc

Cc Dc

] [
xc(t)

ys(t)

]
+

[
vc1(t)

vc2(t)

]
(29)
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Figure 7. Plant state x2

compensated by a static anti-windup compensator[
vc1(t)

vc2(t)

]
=

[
Λc1

Λc2

]
d(t). (30)

For (29) and (30), since we can represent the output u of controller as

u = ξ +Gus, (31)

where

ξ = (I − Λc21)
−1(Ccxc +Dcys + Λc22dm)

G = −(I − Λc21)
−1Λc21, Λc2 =

[
Λc21 Λc22

]
∈ Rq×(`+r)

under the assumption of the invertibility of the matrix I −Λc21, the determination of the
output u of controller must be governed by

us = Φ(ξ +Gus) (32)

if we adopt the control mechanism (29) with (30). The determination of the control input
us under the relationship (32) is not, in general, necessarily easy. On the other hand, for
(7) and (5), since the output u of controller does not depend on us explicitly, we can avoid
such a difficulty. However, the structure of control mechanism is not different. In fact,
for (29) and (30), we have a relationship

u(t) = Cc

∫ t

0

eAc(t−τ){Bcys(τ) + Λc1d(τ)}dτ +Dcys(t) + Λc2d(t). (33)

On the other hand, for (7) and (5), we have a relationship

u(t) = Cc

∫ t

0

eAc(t−τ){Bcys(τ) + (ΛP + AcΛD)d(τ)}dτ +Dcys(t) + CcΛDd(t). (34)

The simulation result in the previous section shows that the condition ‖z‖L2 ≤ γ‖w‖L2

was satisfied, and the compensation by PDAWC designed in this paper was successfully
done. Furthermore, although the conventional PDAWC improved the behavior of the
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control system, the proposed one brought better performance in the sense of the ratio
‖z‖L2/‖w‖L2 . This is the important advantage of this paper.

6. Conclusion. In this paper, a methodology of designing PDAWCs for control systems
with not only input saturation but also output saturation by means of LMI was developed.
The LMI condition to determine the coefficient matrices of PDAWC was derived under
some assumptions for a closed-loop representation. By using the LMI condition, the
design problem was formulated as the minimization problem of the performance index
concerning the disturbance attenuation. A numerical example was shown to check the
effectiveness of the proposed design method. The structural relationship of control system
with PDAWC was discussed. The discussion revealed that the design method proposed in
this paper was a successful extension of the result in [1]. The comparison of the proposed
PDAWC result with the conventional one in the numerical simulation indicated that the
proposed PDAWC brought better performance.
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