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ABSTRACT. This paper presents a methodology for the design of proportional-derivative-
type anti-windup compensators (PDAWCs) for linear time-invariant systems with input
and output saturation nonlinearities. A linear matriz inequality (LMI) condition for a
closed-loop control system representation is given to take into account the nonlinearities
and disturbance. A PDAWC is designed by solving the LMI problem. A numerical ex-
ample is shown to confirm the effectiveness of the proposed design method.

Keywords: Anti-windup compensator, Input saturation, Output saturation, PD con-
trol, Linear matrix inequality

1. Introduction. Over the past few decades, several studies have been made on the
design of anti-windup control systems, and various kinds of design methods have been
proposed as in [1, 2, 3, 4, 5] and references therein.

In [1], one of the authors proposed a method of designing a proportional-derivative-
type anti-windup compensators (PDAWCs) for linear time-invariant plant with input
saturation as a strategy of the avoidance of a difficulty in the generation of control input.
Although, in [2, 3], the problems of designing anti-windup control systems for input
saturation were considered, constructive strategies for the problem about the difficulty in
the generation of control input were not dealt with. Furthermore, in [1, 2, 3], the input
saturation was only investigated as the nonlinearity. On the other hand, the analysis and
design of control systems with output saturation have also been studied [4, 5] as another
important issue. From the practical point of view, design methods for systems with input
and output saturation nonlinearities can be applied to the consideration of actuator and
sensor saturations in actual control systems, respectively.

In this paper, the authors provide a method of designing PDAWCs for linear time-
invariant systems with not only input saturation but also output saturation. A linear
matrix inequality (LMI) condition to formulate the design problem is derived. It is well-
known that LMI problems can be solved efficiently by the interior-point method [6]. A
numerical example is given to check the effectiveness of the proposed design method via
the comparison with the conventional one.

The notation used in this paper is as follows: R’ is the set of all ¢-dimensional real
vectors, R?" is the set of all ¢ x r real matrices and I, indicates the g-dimensional
identity matrix, where the subscript ¢ is sometimes omitted for notational simplicity. For
a matrix A (or a vector x), AT (or zT) means the transpose. For a symmetric matrix A,
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A >0 (A >0) means that A is positive (positive-semi) definite. For a symmetric matrix
A, A< 0 (A<0) indicates —A >0 (—A > 0). ||w]|z, is the Ly-norm of a signal w(t).

2. Problem Statement. Consider a linear time-invariant plant

i (t) A, Bw By (1)
2(t) | = | C. D,y D w(t) |, (1)
y(t) c, 0 0 us(t)

where z,(t) € R"™ is the plant state, w(t) € R is the exogenous disturbance, uy(t) € R
is the control input, z(t) € R™ is the controlled output and y(t) € R" is the measured
output.

The control input ug(t) is subjected to the following saturation nonlinearity:

s = Pe(u), (2)
where
De 1 (ur) oei (u; > 0c;)
D (u) = : o Deilug) = wp (Jug| <oei)  (i=1,2,...0)
D o(ug) —0ci, (u; < —0cy)
and o.;(> 0) (1 = 1,2,...,() are given constants which represent the limitation on the

amplitude of control input us(t).
The signal u(t) in (2) is generated by a dynamic controller

e (1) [ Ac B z(t) )
u(t) | | C. D. ys(t) |’
where x.(t) € R? is the controller state.
The input ys(¢) in (3) is subjected to the following saturation nonlinearity:

Ys = P (y), (4)
where
(Y1) Omi (Yi > Omi)
i (y) = : o Poma(yi) = yi (yil <omi)  (i=12,...,7)
P (yr) —Om,i, (Yi < —0m,i)
and oy, (> 0) (i =1,2,...,r) are given constants which represent the limitation on the

amplitude of output ys(t).

The coefficient matrices (A, Be, Ce, D.) in (3) are assumed to be determined in advance
using one of appropriate linear control system theories without considering the saturation
nonlinearities (2) and (4) (i.e., us(t) = u(t) and ys(t) = y(1)).

Therefore, the nonlinearities (2) and (4) may deteriorate the performance of overall
control system.

In order to cope with the adverse effect, in this paper, we propose the compensation
by a proportional-derivative-type anti-windup compensator (PDAWC):

v(t) = Apd(t) + Apd(t), (5)
where
Ap =] Apc Apm | € R*H7) - Ap = [ Abc Apwm | € RI*(HT)
and the signal d(t) in (5) is defined as the output of a nonlinearity defined by
d=""(¢) (6)
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FIGURE 1. Anti-windup control system
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Then, by the PDAWC (5), the controller (3) is compensated as follows:

i = le o o 1L g

The block diagram of overall anti-windup control system is illustrated in Figure 1.
Our problem is to design a PDAWC (5) (or equivalently, to determine coefficient ma-
trices (Ap, Ap)) by taking into account the nonlinearities and the disturbance.

3. Design of PDAWC. In this section, we derive an LMI condition to determine coef-
ficient matrices (Ap, Ap) of PDAWC.

3.1. Analysis condition. The following lemma gives an analysis condition of the per-
formance for systems with a class of nonlinearities.

Lemma 3.1. Assume that a scalar v,(> 0), a diagonal matriz R, (0 < R, < I) and
coefficient matrices of a system

Ta(t) As Ba Bao Bas Ta(t)
Cja(t) _ | Gar Dant Daiz Dai C?a(t) (8)
Ca(t) Caz Daz1 Dazz Dazs da(t)
Za(t) Caz Dazi Dazz Dass W, (t)
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are given. If there exists a positive-definite matriz P,(> 0), a positive-definite diagonal
matriz W,(> 0) and a nonsingular diagonal matrixz Z, satisfying a matriz inequality

[ ©ai1 Oaiz Oa1z Oais Ours |
B2’ a2 Oazz  Oaaa Oz
Oa13' Oazs’ Oazy Oazs O3z | <O, (9)
Oa1s’ Oazs’ Ousa’ Oaus Ouss

| ©a15' Oazs’ Ouzs’ Ouss’ Oass

then for all U, in
A, = {\I/a Dody = qja(ga)a daTWa(da - Raga) <0, daTZa(da - Ca> - O}’ (10)

the system consisting of (8) and d, = V,(C) (for all U, € A,) satisfies the condition
lzallL, < Yallwallz, for .(0) = 0. The matrices in the matriz inequality (9) are given by

Qa1 = PaAa + APy, Oa1z = PaBa + Cat' RJW,

Oa13 = PaBaz + Caz' Za,  Ouaiy = PuBag,  ©Ouis = Cag'

Onz2 = WaRoDa11 + Dart' RaW, — 2W,

Oazs = WaRaDat2 + Dazt' Za,  ©azs = WoRaDats,  ©ao5 = Dast’

Ouss = ZaDazo + Doz Zo — 2Z,,  Ousa = ZaDazs,  Ouss = Dazs

Oats = —Val, Ouass = Dass',  ©Oass = —Yal.

Proof: It follows from the Schur complement formula [7] that the matrix inequality
(9) is equivalent to

®a11 9alQ @a13 @a14 @a15
Oa12) Oazo  Ouoz Oy 1 | Oazs

+ — Oatst Oazs’ Ouzs’ Ous' | <0,
9a13T 9a23T Oa33  Oaza VYa | Oass [ * * * }
@a14T @a24T 6334T @a44 6345

(11)

Multiplying (11) by a vector [z,F d,F d,F w,T] from the left and its transpose from the
right, we have

d 1 . . )
i (za Paa) — YaWa Wa + —2a 20 < 2do Wa(da — RaCa) + 2y Zo(do — G). (12)
Ya

Therefore, for all ¥ € A, we have

d 1
T (2o Patta) — Yals wa + v—zaTza < 0. (13)

By integrating both sides of (13) from 0 to ¢, we obtain

for L[ g T
—%/O Wy (T)w, (1) dr — %/0 Za (T)za(T)dT < —2, (t) Paza(t) <0

or ||z||z, < 7allwl||L,, which completes the proof.
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3.2. Derivation of LMI condition for PDAWC design. The closed-loop system
which consists of (1), (2), (4), (5), (6) and (7) is represented as a system

@(t) A By, By Bj z(t)
((t) _ | &1 Du D D d(t) (14)
¢(t) Cy D1 Day Doy d(t)
z(t) C3 D31 Dz Dss w(t)

with (6), where

(1)
ze(t)

w(t) = [

Dy = D1 + D3AP, D22 = Dz + DSAD

}GR"W, By = B, + BoAp, By = ByAp

B, B 0
) 2 — Iq
-D.C,B, —C.B.— D.C,B,D.
—OB _CyBuDC
0 — R C A, + B,D.C, B,C
c D: [ A: P u-cvy u~’c
[o } 3M e ]
_ [ Bu D.C, C.
Lo ] c, O
C.B.C, + D.C,A, + D.C,B,D.C, C.A.+ D.C,B,C.
c,A, + C,B,D.C, C,B,C.
[O+DZUDC D..D. |
D —De Dis=0, Diy3=0, Dy= DeCyBu
11 — O O ) 12 — Y, 13 — Y, 23 — Cwa

D31 - |: _Dzu _Dzch } y D32 = 07 D33 = Dzw

The following theorem includes an LMI condition to design a PDAWC satisfying ||z||L,
< v|lwl|, under some assumptions.

Theorem 3.1. Assume that a diagonal matrix
R = block diag{R., R} = diag{Rc1,..., Res, Rm1,---, Ry}

(0 < R < Ipyy), the system matrices in (1) and (3) are given, and

UCZ

]uz\_l R (i=1,2,...,0) (15)
’yl‘—1j—n11§m (i=1,2,...,7) (16)
dqj(zd—lt(m) =0 (or ;) at w; ==x0.; (1=1,2,...,0) (17)
Wi (y:) =0 (ory) at y;==dom; (E=1,2,...,7) (18)

dt
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hold. If there exists a positive-definite matriz Q(> 0), a positive-definite diagonal matriz
V', a nonsingular diagonal matriz U, a scalar v, matrices Ap, Ap satisfying

6(Q,V,U, Ap,Ap,~) <0, (19)

where

éll (:)12 (:)13 é14 é15 |

@12T C:)22 C:)QZ% C:)24 625

é(@; V,U, ]\P,]\D,’V) = é13T é23T é33 (:)34 (:)35
615 628 O3 O O

| O157 Oss" O3 Ou" G55 |

(:)11 = AQ + QAT, é12 = QC1TR + B1V + BQAP

O13 = QCy" + BoAp, ©14=B;, 015 =QCs

O = RDiV + VDi/"R -2V, ©93 = VD" + RD,U + A" Dy

Oos = RDy3, ©a5 = VDy", O35 = DoU + UDS" + DsAp + Ap' Dyt — 2U

O34 = Doz, O35 =UDss", Oy =L, Ou5=Ds3", Os5=—7I,,
then there exists a PDAWC (5) which achieves the specification that the system (14) with
(6) satisfies ||z]|1, < v||lwl||L, for x(0) = 0. The coefficient matrices Ap and Ap in (5) can
be determined by

Ap =ApV7Y, Ap=ApU, (20)
respectively.
Proof: The congruence transformation [8] with
block diag{@Q~", V' U I\, I,,}
for (19) yields the following equivalent inequality:
O(P,W, Z,~;Ap, Ap) < 0, (21)
where
P=Q"', W=Vt Z=U"' Ap=ApV"', Ap=ApU~!
[ ©11 O O13 O O
O12" Oz ©Oy3 Oy O
O(P, W, Z,v; Ap, Ap) = O15" Oa3" O33 O3 Oy
O14 " O3 Ou Oy
| ©15" O25" Os5" O45" Os5
Oy = PA+A"P, ©13=PB,+C{"RW, ©13=PBy+C'Z
Oy = PB3, ©O15=0C3", Oy =WRDiy + D' RW —2W
©s3 = WRD13+ Do' Z, Oy =WRDy3, Oz =Dy
Os3 = ZDog + Doy’ Z — 27, O34 = ZDy3, ©Oz5 = D35"
Ous = —7Iy, Oy = Ds3",  O55 = g
If (15) and (16) hold, then, for any W, ;(> 0) and W, ;(> 0), we have
deWei(dei — Reju;) <0 (i=1,2,...,0) (22)
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and
dm,iVVm,i(drn,i - Rm,iyi) S 0 (Z - 1’ 27 s 7T) (23>
from the definition of (6). The inequalities (22) and (23) imply

4 T
Z deiWei(dei — Reiu;) + Z Am,iWn,i(dw; — R ii) = d"W(d— R¢) <0, (24)
i=1

i=1
where W = diag{Wc1,...,Wee, W1, ..., Wi, }. On the other hand, if (17) and (18)
hold, then, for any Z.; and Z,,;, we have

deiZei(des — 1) =0 (i=1,2,...,0) (25)
and
AoniZmi(dmi —9:) =0 (1=1,2,...,7) (26)
from the definition of (6). The equalities (25) and (26) imply
/ r
Z dc,iZc,i(dc,i - uz) + Z dm,iZm,i(dm,i - yz) = dTZ(d - U) = Oa (27>
i=1 i=1

where Z = diag{Zc1,...,Zct, Zm1,- -+ Zmy}. Therefore, if (15), (16), (17) and (18) are
met, then the nonlinearity ¥ in (6) belongs to

A={T: d=T(), d"W(d—-R¢) <0, d* Z(d—-¢) =0}. (28)
Consequently, Lemma 3.1 shows that if the inequality (21) holds for some P, W, Z,

Ap, Ap and 7 under the assumptions (15), (16), (17) and (18), then the system (14) with
(6) satisfies |||/, < v|lwlL, for z(0) = 0.

3.3. Problem formulation. It is noted that the matrix inequality (19) is an LMI in @),
V, U, Ap, Ap and ~.

Thus, by virtue of Theorem 3.1, the problem of designing a PDAWC (5) can be formu-
lated as follows:

find Q, V, U, Ap, Ap and 7 so as to
minimize y

subject to LMI (19).

After solving this LMI problem, we can determine coefficient matrices Ap and Ap in (5)
by (20).

4. Numerical Example. Consider a two-mass-spring-damper system illustrated in Fig-
ure 2 as the plant (1), where x; and x5 are the displacements of masses m; and ms,
respectively, w is the displacement disturbance, ug is the control force, k; and ko are
the spring constants, and ¢, is the damping coefficient. Such a model can be applied
to the vibration control of suspensions. The values of the physical parameters are given
by my = 158 [kg], me = 12.6[kg], k1 = 5.2[N/m], k2 = 5.8[N/m], ¢ = 0.05[Ns/m],
0. = 0.25[N] and oy, = 0.026 [m]. The plant state z,(t), the controlled output z(¢) and
the measured output y(t) are selected as

1(t)

8

2a(t) z1(t)
x; o 0. 1ug(t)
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FIGURE 2. A plant model for numerical example

respectively.

The dynamic controller (3) was constructed by not considering the nonlinearities (2) and
(4). The coefficient matrices (Ac, B., Cc, D.) of the controller (3) were obtained by solving
a problem of minimizing the upper bound of an H-norm ||C5(sl,44 — A) "' B3 4+ Ds3]|0c-
As is well-known, the H, control problem for ¢ = n can be reduced to LMI one by using
some appropriate techniques such as the elimination of variables [9]. By solving the LMI
problem [6], the coefficient matrices were obtained as follows:

3.2454 04251 3.8343  1.9577 13.8014
17.6131 —1.9059 13.1615  0.5400 76.0085
©7 | —8.8843 0.9485 58152  0.5995 |’ ¢ | —34.9302
1.8223  —0.6524 1.1524 —276.8294 6.9049

Co=[ 258701 —2.6556 19.0254 1.6743 |, D, = 104.5199.

By setting R. = 0.75, R, = 0.5, and solving the LMI problem formulated in the
previous section, we have

W = diag{0.2741, 488.2579}, Z = diag{0.0007, 4.1861}, ~ = 567.3658

—0.0004 —0.0086 0.0050  —0.4546

—0.0006 0.0074 3 —0.0025 0.1127
AP = x 10 s AD =

0.0001  —0.0081 0.0036  —0.2648

0.0377  1.3981 —0.7624 71.6831

To demonstrate the effectiveness and efficiency of design method proposed in this paper,
a simulation was conducted. Figures 4-7 are the response for a disturbance w depicted
in Figure 3, where, in these figures, without sat. (dash-dotted line) is the response with-
out any saturation nonlinearities (i.e., ug(t) = u(t) and ys(t) = y(t)), with sat. without
comp. (broken line) is the response with input and output saturations but without any
compensation, with sat. with comp. (proposed) (solid line) is the response with input and
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output saturations and PDAWC designed in this paper, and with sat. with comp. (con-

ventional) is the response with input and output saturations and PDAWC proposed in
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The performances evaluated by ||z, /||wl|r, were calculated for saturated cases:
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5. Discussion. The anti-windup compensation by (5) proposed in this paper includes
the strategy in [1] as a special case. Indeed, by setting Ap,, = 0 and Ap,_, = 0, we have a
PDAWC for the plant (1) with input saturation but without output saturation.

Furthermore, the theoretical property in the conventional PDAWC strategy of [1] for
the avoidance of the difficulty in the generation of control input wug is still maintained.
The difficulty arises in the anti-windup control system with the control mechanism

o =16 o Lo |+ Lo (29)
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compensated by a static anti-windup compensator
][
Vea(t) Aca
For (29) and (30), since we can represent the output u of controller as
u=E&+ Gus,
where

€ = (I — Aea1) " (Coe + Doy + Aeandy)
G=—(I—Ag1) Aea1, Az = [ Acar Acao } e Rox(H7)
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(30)

(31)

under the assumption of the invertibility of the matrix I — Ao, the determination of the

output u of controller must be governed by

us = B(€ + Gus)

(32)

if we adopt the control mechanism (29) with (30). The determination of the control input
us under the relationship (32) is not, in general, necessarily easy. On the other hand, for
(7) and (5), since the output u of controller does not depend on ug explicitly, we can avoid
such a difficulty. However, the structure of control mechanism is not different. In fact,

for (29) and (30), we have a relationship

u(t) = C. /Ot eAC(t*T){BCyS(T) + Acd(7)}dT + Deys(t) + Aead(t).

On the other hand, for (7) and (5), we have a relationship

(33)

u(t) = C. /Ot e By (1) + (Ap + AcAp)d(7)}AT + Doys(t) + CeApd(t). (34)

The simulation result in the previous section shows that the condition ||z||z, < v||w||L,
was satisfied, and the compensation by PDAWC designed in this paper was successfully
done. Furthermore, although the conventional PDAWC improved the behavior of the
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control system, the proposed one brought better performance in the sense of the ratio
Izl 2,/ |lw]||L,. This is the important advantage of this paper.

6. Conclusion. In this paper, a methodology of designing PDAWCs for control systems
with not only input saturation but also output saturation by means of LMI was developed.
The LMI condition to determine the coefficient matrices of PDAWC was derived under
some assumptions for a closed-loop representation. By using the LMI condition, the
design problem was formulated as the minimization problem of the performance index
concerning the disturbance attenuation. A numerical example was shown to check the
effectiveness of the proposed design method. The structural relationship of control system
with PDAWC was discussed. The discussion revealed that the design method proposed in
this paper was a successful extension of the result in [1]. The comparison of the proposed
PDAWC result with the conventional one in the numerical simulation indicated that the
proposed PDAWC brought better performance.

REFERENCES

[1] Y. Matsuda and N. Ohse, Synthesis of PD-type anti-windup compensators for control systems with
input saturation, Transactions of the Japan Society of Mechanical Engineers, Series C, vol.77, no.722,
pp.3139-3146, 2006 (in Japanese).

[2] F. Wu and B. Lu, Anti-windup control design for exponentially unstable LTI systems with actuator
saturation, Systems €& Control Letters, vol.52, no.3-4, pp.305-322, 2004.

[3] L. Zaccarian and A. R. Teel, Modern Anti-Windup Synthesis, Control Augmentation for Actuator
Saturation, Princeton University Press, 2011.

[4] M. C. Turner and S. Tarbouriech, Anti-windup compensation for systems with sensor saturation:
A study of architecture and structure, International Journal of Control, vol.82, no.7, pp.1253-1266,
2009.

[5] Z. Lin and T. Hu, Semi-global stabilization of linear systems subject to output saturation, Systems
& Control Letters, vol.43, no.3, pp.211-217, 2001.

[6] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI Control Toolbozx, The MathWorks, Inc.,
1995.

[7] S.Boyd, L. Ghaoui, E. Feron and V. Balakrishnan, Linear Matriz Inequalities in Systems and Control
Theory, STAM, Philadelphia, 1994.

[8] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control, Analysis and Design, 2nd Edition,
John Wiley & Sons Ltd, 2005.

[9] R. E. Skelton, T. Iwasaki and K. M. Grigoriadis, A Unified Algebraic Approach to Linear Control
Design, Taylor & Francis, 1998.



