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ABSTRACT. In this paper, a systematical methodology is introduced to construct the rule
base of an interval type-2 fuzzy logic controller based on an existing linear PI/PD con-
troller. An easy and rapid generation of the fuzzy rules can be achieved through this
technique. In addition, analytical structure of this controller is derived. A closed-form
of the fuzzy controller output is achieved under the circumstances that the input type-2
membership functions are diamond-shaped and a closed-form inference engine is used.
Consequently, a linear control law is transformed to a nonlinear structure and certain
elaborations can be done on the parameters of the evolved closed output structure. More-
over, the designer can benefit from the nonlinear structure of the proposed controller and
the extra degree of freedom of type-2 fuzzy sets. It can be concluded from the results that
the proposed controller can be more robust to the parameter uncertainties and eliminate
the oscillations much better than type-1 fuzzy logic and linear conventional controllers.
Keywords: Type-2 fuzzy sets, Interval type-2 fuzzy systems, Interval type-2 fuzzy logic
controllers, linear PI/PD controller

1. Introduction. Fuzzy logic systems (FLSs) have been widely developed and utilized in
different branches of science and technology [1-6]. A novel control design for discrete-time
Takagi-Sugeno fuzzy systems with time-varying delays is proposed in [1]. The problem
of adaptive fuzzy dynamic surface control has been investigated for a class of nonlinear
strict-feedback systems with unknown time delays based on fuzzy approximation approach
in [2]. A fuzzy controller based on the decomposition of the multivariable rule base
into simple rule base has been studied and compared with several PID-type fuzzy logic
controllers (FLCs) in [3]. Analytical structure of the fuzzy PID controller and conditions
for bounded-input bounded-output stability of fuzzy PID control systems are obtained
in [4]. The performance of conventional PID controllers has been compared with type-1
fuzzy logic controller (T1-FLC) through different simulations in [7]. In [8], it has been
shown that PID controllers can be realized by fuzzy control and simplified fuzzy reasoning
methods. The main difficulty in FLC design is to determine the parameters of the fuzzy
logic controllers (e.g., membership functions, rules, scaling factors) for inputs and outputs
of a fuzzy system. To ease the FLC design process, the researchers proposed a general
methodology to systematically construct a fuzzy logic controller based on the existence of a
linear controller in [9]. This methodology guarantees identical performance to an existing
linear controller. Since the performances of controllers are identical, it has been advised
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to use expert knowledge to improve the performance of fuzzy controller by appropriately
changing the rule base. However, changing the rule base through expert knowledge still
appears to be a challenging task.

The type-2 fuzzy logic sets (T2FLSs) are the extension of the ordinary type-1 fuzzy sets
[10]. The T2FLS may be able to outperform its type-1 (T1) counterpart, and especially,
they are better able to cope with nonlinearities and uncertainties because of the additional
degrees of freedom provided by the footprint of uncertainty (FOU) in their membership
functions [11,12]. Experiments show that the T2FLS may achieve better performance
in comparison with type-1 fuzzy set. Nevertheless, the computations of T2FLSs are
more complex than type-1 fuzzy sets. Therefore, a special type of type-2 fuzzy logic set
called interval type-2 fuzzy set (IT2FS) is proposed in [13]. A review on the design and
optimization of interval type-2 fuzzy controllers has been considered in [14]. Interval type-
2 fuzzy logic controllers (IT2-FLCs) have attracted much research interest in recent years
due to their ability to cope with uncertainties. Several control and engineering applications
such as liquid-level process control [15], autonomous mobile robots [16], prediction of
air pollutant [17], pH control [18], control and the identification of a real-time servo
system [19] and face recognition [20] illustrate the advantages of IT2FS. Studies have
been reported in the literature that the IT2-FLCs are generally more robust than T1-
FLC [21,22]. Wu [21] has discussed the fundamental differences between interval type-2
and type-1 fuzzy logic controllers. There, it has also been shown that interval type-2 PI
controllers have smoother control surfaces than its type-1 counterpart in the region around
the zero. In [23], an interval type-2 fuzzy proportional controller with a variable gain has
been developed. A method to design interval type-2 Takagi-Sugeno-Kang FLCs, PD-
type and Pl-type fuzzy controllers to satisfy certain desired transient response, has been
proposed in [24]. Derivation and analysis of the two Mamdani interval type-2 fuzzy PI
controllers that use the center-of-sets type reducer and the average defuzzifier are studied
in [25]. The analytical structure of a special class of interval type-2 fuzzy PI and PD
controllers that have symmetrical rule base and symmetrical consequent sets is presented
in [26]. Authors compare the IT2-FLC with the corresponding T1-FLC while the potential
advantages of using IT2-FL.C over T1 fuzzy controller are examined. Analytical structures
of interval type-2 fuzzy PI and PD controllers proposed in the studies [25,26] are very
complex and therefore, it becomes very difficult to generalize these analyses to IT2-FLC
with more than two membership functions for each input.

Motivated by the aforementioned drawbacks, this paper aims to design a systemati-
cal methodology to construct an IT2-FLC based on conventional controller and extract
the closed-form relation for IT2-FLC. The methodology depends on a nonlinear map-
ping from an existing conventional linear control law (e.g., PI, PD) to IT2-FLC in which
the beneficial sides of a linear controller in terms of simplicity are captured. The pro-
posed nonlinear mapping is done under certain circumstances that input type-2 member-
ship functions are diamond-shaped and the closed-form inference engine given in [27] is
used. The diamond-shaped type-2 membership functions provide easiness in the analyt-
ical derivation of mathematical closed-form expressions. An important advantage of the
proposed methodology is the closed-form relation between input and output of IT2-FLC
for any number of type-2 membership functions. This provides a clue about the robust-
ness of I'T2-FLC and how they cope with uncertainties. Another beneficial feature of this
technique is the ease and rapid generation of the fuzzy rules of the I'T2-FLC based on the
existing linear controller. When the FOUs of the antecedent membership functions are
taken to be zero, the IT2-FLC will be reduced to T1-FLC; thus, an identical mapping is
accomplished between conventional linear controller and the proposed controller. If FOU
is not equal to zero, then an additional degree of freedom is acquired that provides an
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uncertainty cloud over the proposed controller. This provides the designer an additional
tool to cope with the uncertainties and nonlinearities, which may exist in the system to be
controlled. Two special cases of the proposed controller with 2 x 2 and 2 x 3 rule bases are
mathematically analyzed in detail to show the effect of variable gains that are introduced
by the proposed IT2-FLC. Simulations on various processes and a real time application
on ball and beam system demonstrate that the proposed controller is more robust and
capable to manage the uncertainties much better than conventional linear controller and
T1-FLCs. In summary, the main contributions of this paper can be listed as:

i. The closed-form relations between input and output of an I'T2-FLC are derived. These
relations clarify the unknown internal structure of IT2-FLC and give ability to un-
derstand its behavior in comparison with its T1 counterpart.

ii. The proposed analytical derivation method allows the use of any number of input
fuzzy sets; whereas, the previous works are limited to two fuzzy input sets.

iii. An easy and rapid generation of the fuzzy rules based on the existing linear controller
can be achieved through this technique.

The paper is organized in five sections. In Section 2 the general structure and the com-
ponents of the proposed IT2-FLC are discussed in detail. In Section 3, the methodology
and analytical derivations are done to show the mapping between the proposed control
structure and the conventional linear controller. In Section 4, a simulation study has been
implemented on first-order plus time delay process. Furthermore, a practical experimental
study is performed on a ball and beam system again to demonstrate certain advantages
of the proposed I'T2-FLC. Finally, discussions and conclusions are presented in Section 5.

2. The General Structure and the Components of the Proposed IT2-FLC. In
this section, the general structure of the handled IT2-FLC is given. The feedback control
structure of IT2-FLC is shown in Figure 1(a). The output of linear PI or PD controller
is given by

U = kll'l + k2$2 (1)

where x; is the error, x5 is the integral of error or derivative of error.

The configuration for two input-one output PI or PD based IT2-FLC is shown in
Figure 1(b). In this structure ¢; and ¢y are the input scaling factors. Without loss
of generality, it will be assumed that scaling factors (¢; and ¢3) are equal to 1. In the
considered I'T2-FLC, the antecedent membership functions are defined with interval type-
2 fuzzy sets, while the consequent part is defined with crisp singleton parameters. The
rule structure of IT2-FLC is as follows [12]:

Rule I : IF xy is F/" and x5 is FJ> Then u' (2)

where x1 and z, are the inputs, while u! is the consequent crisp set (I = 1,..., M), M
is the number of rules and F}* denotes the type-2 membership functions for ;& fuzzy set
associated with the i input (i = 1,2 j; = 1,...,n) and n is the number of membership
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FIGURE 1. The structure of (a) the feedback control system and (b) the
IT2-FLC
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functions that cover the universe of discourse of the inputs. The final output of the system

can be written as
- Sl
U= / o / Zl 1 [z (3)

Frelfh T et
where f and fl are given by

f(x) = Hpn (1) * Hpie (z2)
— _ _ (4)
f(x)= [ (1) * [ijie (x2)

and 1z Fggis i are the upper and lower membership functions for the {** rule, respectively.

Here, the operator x represents the t-norm, which is the product operator. The output of

the IT2 FLC is achieved in a closed-form via the inference engine given in [27] as follows:
M —l

Zl:l ilul + 211\11 f ul

M gl M M gl M
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In this paper, the diamond-shaped type-2 membership function [28] is preferred in the

U =

(5)

representation of the inputs space. In Figure 2, F represents the modal of the j!* fuzzy
set associated with the i input and the parameter A defines the uncertainty of the
interval type-2 fuzzy set. As it can be clearly seen in Figure 2, the diamond-shaped type-
2 membership function gets 0 value at both ends of the support and 1 value at the modal
of the membership function. The upper membership functions of the diamond-shaped
type-2 fuzzy sets are defined as:

(le + —CL',‘) +2A (:El —le )

i FligFlit!
— o= FZL <z < il A
- _ it _Fi == 2 (6)
Hgii = =i+l i ,
Ft (Fiz 7;ri)(1+2A) F?JFF?ZH < < F]H—l
it _Fi . ST Ly
12 3
while the lower membership functions are defined as
(F{iﬂfzi) 72A(:1:i7f?) —j; Fli ittt
B Bl F) <oy < B
Fiz 7Fiz 2 (7)
Hmii = i+l P
—Fil (1’1'1z 711‘) (172A) F'741+F]-1+1 ]z+1
i tL i — <z < F;
FiTFl
) y Hr g i )
!‘-Jl #2 E® -1 Er
! A | s /
v 0.5+A A 4
& o5
@ Q 05-A 7
[\ / J/ i\ >
‘FTI !,“1 +‘J,‘|1 !'_;: ;.'_-’;.- 1 flu—1 +""..i !?‘u
2 2

FIGURE 2. The diamond-shaped type-2 membership functions for the pro-
posed IT2-FL.C
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The membership grades of the ﬁ'giﬂ type-2 fuzzy set satisfy the following property
Ppiirs = 1= T (8)

Ppiivt =1 — pg (9)
The location of the crisp numbers for the consequent part of IT2-FLC is the key feature
of this study. The structure of consequent part of the I'T2-FLC is given as

U= + kY jief{l,...n}, i={1,2} and l€{l,...,M}  (10)

where k; is the proportional gain, k5 is the integral or derivative gain, FZ represents the
modal of the j! fuzzy set associated with the i’ input (i = 1,2 j; = 1,...,n) and n is the
number of membership functions that cover the universe of discourse of inputs [29]. As it
is seen from (10), the location of the crisp numbers for the consequent part of IT2-FLC
directly incorporates the linear control law.

3. The Methodology and Analytical Derivation for the Proposed IT2-FLC. In
this section, the analytical derivations for the proposed I'T2-FLC based on conventional PI
or PD, shown in Figure 1(b), is examined. It is clear from Figure 2 that the membership
functions overlap at a membership grade of 0.5. Therefore, only two type-2 membership
functions are active for any input set. Consequently, four rules are always activated and
considered in computation of the IT2-FLC output (M = 4). The IT2-FLC output for the
input set (x1,z5) can be calculated using (5) as follows:
—l

DYV Y )
- )
Saff st v
where the consequent part u' is given as:

’LLI = klﬁil + ngéQ )

'LL2 = klﬁjll —|1— kg?;z-'_

ud = le’11+1 +hEy

U4 — leil‘F + I{;2F§2+
where k; = k, and ky is k4 or k;. Using the approach described by (10) and (12) the
consequent part of active rules for the given inputs are generated as in Table 1.

U

(12)

TABLE 1. I'T2-FLC rule base for a system with given inputs

X,
X, f:'.,] sz: F‘-g"-"'_ B F‘-:a
al
o
F‘-‘."l 1
1 u u
o i+l 3
2 u’ ou
~”
F

Theorem 3.1. The output of IT2-FLC in (11) can be formulated as follows:

UN _ P(l‘Z,FZl, A, K) + 2(]?711'1 + kzlb'g) (13)

U=— —
ur 2(Q(z;, F)',A) + 1]

if and only if
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i. The rule base contains all possible combinations of active input sets.
ii. The input interval type-2 fuzzy sets are normal and satisfy (8) and (9) for any given
nput set.

In (13), z; is the input, K = [ky ko] is a vector of the conventional controller gains
and A is the parameter that produces FOU for type-2 membership function. The proof
of the theorem is given in two parts via two lemmas. The derivations of the expressions
for the denominator UP and the nominator U" and related proofs are given in Lemmas
3.1 and 3.2, respectively.

Lemma 3.1. For any input set, x1 and x5, the denominator UP = Z;LZI f + Z?Zlfl
from the IT2-FLC output given in (13) is equal to UP =2 |Q(z;, F), A) + 1].
Proof: Using (4) and (11), the following relation for U” is obtained:
u® = HpiBgge T BpiBgg T Bpn fygert + B [t
Flpivi g + BgheBpge + Ppinefpine + Bpne gt
Simplifying (14), one obtains
0P = (s + o) (g + stz ) + (R ) (Foge + Fagen ) 19)
Using (8) and (9), (15) can be rewritten as
— — =i
U =2 (i — 1) (g — 1) +1] =2 |@ (e FV,0) +1) (16)

Using (6) and (7), the term <ﬁﬁ_ji - EF?’%‘) can be rewritten as

4A(z-ffjji) — Fli it
- o Fil 7Fil (17)
H’Fijl Hﬁ‘ljl o 4A(ng+l—:vi) fj_'i_l_fl_'ﬁ'l —jit+1
2 1 .
Tl 3 <z < F;
12 7

Substituting (17) in (16), Q(xi,ng, A) is obtained for four regions in the input domain
as tabulated in Table 2.

TABLE 2. The expressions of Q(xi,ng, A) for four regions in input domain

) . w2 | ietl =2 | ietl )
Qai, Fi', A) ISP I i +2F2 LAl +2F2 <@ <FYT
P < Fl 4t ANF — 00)\ [AA(FE — 2) AAN(my — FIY [AAFE — ay)
150 s 2 Fh _ 7l _ T _ et
1 1 2 2 1 1 2 2
H+R" _ (u(_ﬁ‘“ - _m)) (44(1:2 - Fé’%)) <4A<Fil“ - ;n)) <4A<Fff“ - ;rz>>
2 — =1 F]11+1 - Fjll FJ22+1 - fdzz F]11+1 - Fjll F]22+1 - FJZZ

Lemma 3.2. For any input set, x; and xs, the nominator UN = Zle (f +71> ul from
the IT2-FLC output given in (11) is equal to UN = P (mi,FZi,K, A) + 2 (ki + koxs).

Proof: The nominator UV of (11) can be written as

e =y (f+7)u (18)

=1
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Thus, UY can be subsequently derived as

UN =u' (Hﬁ‘ljlﬁﬁ‘g? +ﬁﬁ1{1ﬁﬁg2> + u? <EF{1EF~‘§2+1 +ﬁﬁ*{1ﬁﬁg2+1)

(19)
+u? (Hﬁfl+lﬁﬁgjz + ﬁﬁlf'ﬁlﬁﬁ?) + u? (Hﬁfiﬂﬁﬁg‘z%—l +ﬁp{1+1ﬁﬁ52+1>
Using the relations (8) and (9), (19) can be reformulated as
UN — (ul + u4) (Eﬁ‘flﬁﬁ}n =+ ﬁFﬂljlﬁFﬁQJé) + (u2 _ u4) (Eﬁulll + ﬁﬁ‘{l) (20)
— (w4 ) (g T + gty ) + (00 =) (g, + T ) + 20
From (12) it is obvious that u! + u* = u? + u®. Thus, (20) can be simplified as
UY = (ut ) (g g+ FieFing = gy e~ i ) (21)
+ (u? — u) (Eﬁfl +ﬁﬁ{1> + (u® —ut) (HﬁgQ +ﬁﬁg2) + 2u?
In order to simplify (21), the following equation is derived from (6) and (7)
2 (FZZ+1 - IL’Z)
2F) F; F?z"‘l . Fgl
and G(xi,FZi, A) is defined as:
G (%Ffl, A) = Hﬁflﬁpgg "‘ﬁﬁflﬁpgz - HﬁflﬁﬁgQ - ﬁﬁlflﬁggz (23)

There are four different cases for GG (xz-, ng, A) according to the range that the inputs are

taking place. Thus, by substituting (6) and (7) in (23) and simplifying, G (xi,Ffi, A) is

obtained as Table 3. Substituting (22), (23) and (12) into (21), U" is obtained as
UN=p (xF] K, A) + 21wy + Eos) (24)
where
P K8) = (b (Fr P b (2 FE7) ) G (P 0) (o9

Note that if A = 0, it is clear that Q(xi,FZi,A) = 0 and P(xi,Ffi,K, A) = 0. Thus,
IT2-FLC reduces to a T1-FLC and has an identical output to the PI or PD control law
as follows:

U = ki) + kaxy = kpe + k; ftf) edt (PI)or U = kyzy + kowo = kpe + kié  (PD)  (26)

As it can be seen from (13), IT2-FLC produces a nonlinear controller, which has a con-
ventional linear controller part and nonlinear parts P(x;, ng, K, A) and Q(z;, ng, A) that
vary with its arguments.

In the following two subsections, two special cases with 2 x 2 and 2 x 3 rule bases of
the proposed controller are mathematically analyzed and the effects of variable gains of
the proposed nonlinear PI/PD controller are examined in detail.
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TABLE 3. The expressions of G(xi,ng, A) for four regions in input domain

J2+1 J2+1

Fy +Fy Fy +F,

G, F',A) Fy <ay< 2 2t <a <

Py < FATT WRE ) mm) 108 ) (-
. (T -FHET ) (T -FHET -

F]l-l +F]1'1+1 < F11+1 716A2( 11+1 )(Fz 7?2) 16A2( ]1+1 B LL‘I)(F?-H 7."[2)
92 - - (FJ1+1 _ F]l)(sz-H —Fj;) (F31+1 - F]l)(sz-H - FJQZ)

3.1. The analytical formulation for the output of IT2-FLC in case of 2X2 rule
base. In order to show how IT2-FLC affects the control performance, it has been assumed
that two interval type-2 fuzzy sets cover the universe of discourse of the input variables
which are normalized to [—1, 1]. Using (24), (16), Table 2 and Table 3, (13) is simplified as
in (27) and it is clear that P(z;, F;', K, A) = 0 and Q(z;, Fy , A) = 4A?(1 —|z|) (1 — |z2).
Therefore, the output of the proposed controller can be written as

k1$1+k21‘2
= = A)(k k 2
U= o0 e a1 s A+ k) (21)

where
1

AN (1 = [z ) (1 — |2|) +1
Note that v(x1, 22, A) is a decreasing function of inputs and A. If A =0, (1,22, A) is
always equal to 1 then ['T2-FLC naturally reduces to a T1-FLC and possesses an identical
control signal output as the conventional controller. On the other hand, as the value of A
is increased then 7y(z1, 22, A) value decreases and this means variable gains for IT2-FLC.
Naturally, these gains soften the control signal and reduce the oscillations in comparison
with conventional controller. Consequently, the proposed IT2-FLC controller can manage
the uncertainties much better and more robustly than T1-FLC and conventional linear
controllers. The variation of v(z, 22, A) will be shown by an example in the illustrative
example part of this section.

(28)

(w1, 29, A) =

3.2. The analytical formulation for the output of IT2-FLC in case of 2x3 rule
base. It can be seen from (13) that P(z;, F]', K, A) and Q(z;, F;', A) are also functions
of the FZ of membership functions. Thus, the output of IT2-FLC is effected by the
distance between ng’s that makes more nonlinearity for I'T2-FLC and may be able to
provide better performance. Let us assume that two and three diamond-shaped type-2

membership functions cover the universe of discourse of the xy and x5, respectively, which
are normalized to [—1,1]. Thus, the output of IT2-FLC in (13) can be written

U = o+ 5(l€11‘1 + kgIL’Q) (29)
where i
o, F K A) = IM%anm
ﬂQquﬂ,A%+H (30)
Bwi, Fl'yA) =

Q(xi,Ffi, A)+1

One has to calculate P(xi,FZi,K, A) and Q(xi,FZi,A) for eight different regions in
the range that the inputs are taking place in order to determine a(xi,ng,K, A) and
B(z;, F/',A) in (30). By substituting the corresponding values and using Table 2 and
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TABLE 4. The expressions of P(xi,ng,K, A) and Q(xi,Ffi,A) for eight
regions in the input domain

-1 <2, <-0.5 —0.5 <2, <0 0<29<0.5 05<2,<1
P() *8A2(1+Il)(1+12)k2 *BAZ(*I *1’1)(12)]&'2 8A2(1+1’1)(I2)I€2 *8A2(*1 *Il)(l *Iz)kg
Q() SAZ(*I - .7;1)(*1 - l’g) *SAZ(I + Il)(If_)) *8.&2(*1 - Il)(l‘z) SAQ(.Tl + 1)(1 - .7;2)
P() SAZ(I - (L‘l)(fl - 172)k2 SAZ(I - (L'l)(fljz)kz BAZ(I - .’L'l)(éliz)kz 8A2(1 - .Ll)(l — (L'Q)kg
0<r <1

Q) 8AX(1 — ) (1 + x) —8A2(1 — x1)(w2) 8A%(1 — x1)(z2) 8A%(1 — x1)(1 — )

Table 3, P(z;, F', K,A) and Q(z;, F)',A) can be written more explicitly for different
regions of the range that the inputs are taking place as given in Table 4. As it can be seen
from Table 4 that P(xi,FZi, K,A) and Q(xi,ng, A) values depend on the input values
(z1 and z2) and also on the uncertainty interval in the FOU (A) and the gains of con-

ventional controller. It is also clear from Table 4 that Q(xi,ng, A) has always positive
sign for all regions and it is equal to zero if A = 0. Thus, it can be concluded from (30)
that 8 (xi,FZi, A) will get positive values and it will always be equal to or less than one.
Increasing the value of A, a(z;, F)', K, A) and B(z;, F)', A) will produce variable gains for
IT2-FLC. The output of IT2-FLC with 2 x 3 rule base may produce a nonlinear control
signal that may provide better performance in comparison with IT2-FL.C, which has a
2 x 2 rule base.

In this study, the analytical derivation of the proposed IT2-FLC for two input-one
output structure is examined in detail. The variations of a(z;, F', K, A) and B(z;, F;', A)
will be examined over an example in the following illustrative example.

3.3. Illustrative example. In this subsection, the effect of nonlinear and time variable
gains (7, «, #) that are generated by IT2-FLC based on existing conventional controller is
examined. Since most of the industrial processes can be approximated by first-order plus
time delay (FOPTD) model, the process with the following transfer function is used

673.55

4s +1
For the process in (31) a linear PI controller is implemented as @& = k,é + k;e where
k, =1.03, k; = 0.1 and % is the change of the control signal.

In order to investigate the nonlinearity of the proposed IT2-FLC, two fuzzy logic con-
trollers with different number of type-2 membership functions for inputs are selected to
see the effect of the variable gains of the controllers. For the first controller, two mem-
bership functions are used for each input and it is named as I'T2-FLC22. For the second
controller, two membership functions are assigned to the derivative of error input while
three membership functions are set to the error input and the second controller is named
as IT2-FLC23. The structure of the consequent part is designed as in (10) based on

Gl(S)

(31)

conventional controller with model point of ;' = {—1,1} and F;' = {~1,0,1} for inputs
with two membership functions and input with three membership functions, respectively.
The scaling factors (c1, ¢2) are equal to 1. It is obvious from (13) and (26) that the results
of IT2-FLC are identical to T1-FLC and conventional controller if A = 0. By increasing
the value of A in IT2-FLC, the linear conventional controller (which is the same as T1-
FLC) is transformed to a nonlinear PI controller as shown in (13). Figure 3 shows the
step responses and control signals of the process for the conventional PI and IT2-FLC in
the case A is 0.2. By increasing the value of A to 0.4, the performance of I[T2-FLC is im-
proved compared with the conventional PI controller as illustrated in Figure 4. As it has
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been proven in (27), I[T2-FLC22 is a nonlinear PI controller with a time varying param-
eter y(xq1,z2,A). Figure 5 shows the variation of v(z1,x9, A) for A = 0.2 and A = 0.4.
It can be seen from Figure 5 that y(xy, 25, A) is variable that acquires values smaller
than 1. By increasing the value of A from 0.2 to 0.4, the value of the term y(xq, s, A)
will decrease and produce variable gains for [T2-FLC. These gains will cause a smoother
control signal which improves the closed loop system performance. The IT2-FLC23 has
two time-varying parameters Oz(xi,in,K, A) and B(xi,ng, A) and their variations are
shown in Figure 6(a) and Figure 6(b) for A equals 0.2 and 0.4, respectively. If A =0,
a(mi,F?i,K, A) and 5(:{;i,FZi,A) will be 0 and 1, respectively. Then, IT2-FLC reduces
to a T1-FLC and has an identical output to the conventional controller. By increasing
the A it can be seen from Figure 6 and (30) that the parameter 5(z;, F; , A) is less than
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FIGURE 3. Tllustration of (a) the step responses and (b) the control signals
for A =0.2
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FIGURE 4. Tllustration of (a) the step responses and (b) the control signals
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FIGURE 5. Illustration of the term v(x1, 2, A) for (a) A =0.2 and (b) A =0.4
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1 and a(xi,ng, K, A) varies in a small range around zero. The control signals are shown
in Figure 3(b) and Figure 4(b).

4. Simulation Studies. In this section, the proposed IT2-FLC has been implemented
on two benchmark processes. The inputs (x1,z3) of IT2-FLC and T1-FLC are already
normalized to [—1, 1]. The unit step reference signal is applied to the closed-loop system.

4.1. Robustness of the proposed IT2-FLCs to process parameter variations. In
this subsection, the robustness of the IT2-FL.C against the parameter uncertainty in the
system is tried to be illustrated on the following uncertain FOPTD process.

Ke—Ls
Gals) = Ts+ 1

The nominal parameters of the process are K =1, 7 = 10 and L = 2.5. The uncertainty
intervals for the parameters are selected as K = [0.5,1.5], 7 = [8,12] and L = [1.5,4]
[29]. The nominal parameters are varied to test the robustness of controllers to the
parameter uncertainty. The Ziegler-Nichols [30] design method has provided the following
PI controller parameters as k, = 3.6 and k; = 0.432. The scaling factors of the fuzzy
controllers are set to [cy, co] = [1,0.18] for the nominal system. Two proposed IT2-FLCs
with different number of IT2FSs for the inputs, namely, IT2-FLC22 and [T2-FLC23 are
considered for the robustness performance comparison. The step responses and the control
signals of the implemented controllers for the nominal plant are shown in Figure 7 and
Figure 8 for IT2-FLC22 and IT2-FLC23, respectively. These figures depict that the step
response of IT2-FL.C23 is more capable of eliminating the oscillation in comparison with
the IT2-FLC22 and the PI controller.

Figure 9 shows the step responses of the uncertain system when the static gain (K)
of the process changes to 1.5. The system responses when the time delay of the system
varies 60% are illustrated in Figure 10.

The performance values (ITAE,T;) are tabulated in Table 5 for the system parameter
variations. According to the results obtained from Table 5, increasing of the value of A and
changing the number of membership functions do not necessarily improve the performance
of the controller. The robustness of the proposed controller to the parameter uncertainty
in comparison with linear PI controller can be observed from the results of this subsection.
The FOU of the IT2-FLC provides the designer with an additional degree of freedom and
provides a tool to design a more robust controller. Results in Table 5 validate this fact.

(32)
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F1Gure 9. Illustration of the step responses (a) IT2-FLC22 and (b) IT2-
FLC23 on the plant by varying static gain parameter to K = 1.5

4.2. Experiment. In this subsection, the IT2-FLC with the proposed structure is im-
plemented on the Quanser ball and beam system. The objective of the ball and beam
system is to stabilize the ball to a desired position along the beam. The experimental
setup and cascade control structure that will be used for the control of ball and beam
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FLC23 on the plant by varying the system time delay parameter to L =4

TABLE 5. The performance values for the Gy(s) with parameter variations

Nominal Static gain change Time constant change Time delay change
k=1 k=15 k=0.5 k=1 k=1 k=1 k=1
7=10 T=10 T=10 T=38 T=12 7=10 T=10
L=25 L=25 L=25 L=25 L=25 L=4 L=15
ITAE Ty (s) ITAE T(s) ITAE T(s) ITAE T,(s) ITAE T, (s) ITAE T(s) ITAE Ty (s)
PI 43.82 2233 5165 87.33 30.75 17.83 8539 3091 3412 17.25 8784 429.00 11.31 9.31
IT2-FLC22 39.97 2142 2866 57.20 2852 1790 70.04 26.37 3218 17.84 3731 209.30 8.73 883
A=02
IT2-FLC23 37.19 17.12 3328 6250 2927 18.15 62.74 26.12 31.71 13.63 2646 166.16 12.65 10.00
IT2-FLC22 36.12 18.83 1240 37.26 29.89 1850 5221 26.36 32.35 20.32 1276 112.81 7.085 4.80
A=04

IT2-FLC23 2943 1250 164.8 4290 31.08 19.40 40.17 21.30 30.51 15.60 797.3 76.82 16.77 13.62

FiGURE 11. Illustration of the ball and beam experimental system

system are shown in Figure 11 and Figure 12, respectively. As illustrated in Figure 12,
this system is comprised of motor and beam plants and both systems are in series.
The complete process transfer function (motor voltage to ball displacement) is expressed
as follows [31]:
X(S) KbbK
Via(s) (754 1)s3
where, Ky, is the model gain, K is the open-loop steady-state gain, 7 is the open-loop time
constant, X is the ball position, 6, is the motor angle and V,,, is the motor input voltage. In
this example, the parameters of the system are Ky, = 0.418, K = 1.76, 7 = 0.0285. Here,
the proportional-velocity (PV) controller (motor compensator) gains are k,, = 13.6 and

(33)
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FIGURE 13. Illustration of the ball position responses in case of (a) simu-
lation and (b) experiment

k, = 0.0795, which is the same for I'T2-FLC and PD cascade controllers. The proportional
(kp1) and derivative (k4) gains of PD cascade controller are 6.315 and 4.21, respectively.
For the IT2-FLC, two diamond-shaped membership functions are assigned to the error
input while three membership functions are set to the derivative of error. The scaling
factors of the fuzzy controllers are set to [c1, ¢o] = [10,5] and the value of A is 0.3. The
simulation and experimental results of the ball position for the T1-FLC (PD) and IT2-
FLC are shown in Figure 13(a) and Figure 13(b), respectively. The performance values
are tabulated in Table 6 for the ball and beam system for simulation and experiment
cases. According to the results obtained from Table 6, IT2-FLC can be characterized
by small peak time, settling time and percentage overshoot in comparison with T1-FLC
and PD controllers. Nonlinear properties caused by inertia of the ball and error of the
position measurement on beam lead to a slight difference within the results of simulation
and experiment. The overshoot in the experiment increased by 62.1% in comparison with
simulation result when T1-FLC (PD) has been used while the percent increase in the
overshoot is about 24.8% for the case of IT2-FLC. Therefore, it can be concluded that
the proposed controller is more robust to the possible uncertainties and nonlinearities
of the system compared to T1-FLC and linear conventional controllers. The output of
controllers and the motor input voltage responses of T1-FLC (PD) and IT2-FLC for
experimental test are illustrated in Figure 14(a) and Figure 14(b), respectively.

5. Conclusion. In this paper, a systematical methodology to construct an interval type-
2 fuzzy logic controller is proposed. The methodology depends on a nonlinear mapping
from an existing PI/PD control law to IT2-FLC that eases the generation of rule base.
The structure of the proposed controller is achieved under circumstances that input type-
2 membership functions are diamond-shaped and a certain closed-form inference engine
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TABLE 6. Comparison of the performance of the two controllers

Simulation Experiment
T1-FLC (PD) IT2-FLC TI1-FLC (PD) IT2-FLC
Peak time 1.92 1.93 2.38 2.22
Settling time 2.79 2.45 3.98 2.95
Percentage overshoot 11.1 4.67 18 5.83
Steady-state error 0 0 0.09 0.009
(a) ? IJU {T1-FLC and PDY) (b) X T1-FLC and PD
° 0, (T2£L0) 8 IT2-FLC
20 i
g . % o
i o 2 5
-20 “
-40 N
05 5 10 5 20 = 20 % 5 10 15 20 25 30

time (s) time (s)

FIGURE 14. Tllustration of the (a) output results and (b) motor input volt-
ages of T1-FLC and IT2-FLC for experimental test

is used. It has been proven that these preferences provide a closed-form for the output
of IT2-FLC. Then, certain elaborations can be done on the parameters of the evolved
closed output form. If the FOU of the IT2-FLC is zero then the obtained control law
is identical to the type-1 fuzzy logic and conventional PI/PD controllers. If FOU is not
equal to zero, then an additional degree of freedom is acquired and this provides the
designer an additional tool to cope with the uncertainties and nonlinearities. Results
show that the proposed controller is more robust to the parameter uncertainties and
eliminate the oscillations much better than type-1 fuzzy logic and linear conventional
controllers. However, it is not so fair and right to draw a general conclusion that the
system performance is necessarily guaranteed to be improved for all systems and design
methodologies. The analysis for the proposed IT2-FL.C can be generalized to different
number and type of membership functions for the inputs.
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