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ABSTRACT. Clustering is a technique in data mining whose task is to classify objects into
groups. In the recent years, it has been utilized to predict mobility behaviors of users for
improving the quality and the management of services in wireless networks. Most of the
current solutions focus on extending the traditional k-means approach with the numerical
data to the categorical ones. However, such an extension paradigm may result in the loss
of semantics of the spatio-temporal mobility patterns of users in the wireless network.
Moreover, applying the random choice of initial values (or seeds) of the k-means tech-
nique may produce a different local optimum in every run time and thus lead to various
partitionings. In this paper, we first propose a model for estimating the similarity among
mobility patterns based on the weighted combination of Spatial and Temporal Pattern
Similarity measures (STPS) of mobile users in wireless networks. Then we introduce the
algorithm of Similarity Mobility Pattern based Clustering (SMPC), which is an alterna-
tive extension of the traditional k-means technique. Our approach focuses on using the
proposed measure STPS to define a new concept of “cluster center” and to construct two
novel procedures: a center updating procedure and a seed initialization procedure. We
have conducted experiments with various conditions and parameters to investigate the
suitability of the proposed similarity measure STPS and the quality of clusters generated
from the algorithm SMPC for mobility patterns in the wireless environment. Ezrperimen-
tal results have demonstrated that: (i) Integrating the spatial and temporal characteristics
of mobility patterns in the similarity model improves considerably the clustering quality;
(11) Our seed initialization and center updating procedures achieve the stability and the
computational speed better than ones with the traditional random initialization; (iii) Our
clustering algorithm SMPC with the proposed combination similarity measure is more
effective in computation than the other ones.

Keywords: Clustering, Mobility group, Mobility patterns, Mobile user, Similarity mea-
sure, Wireless networks

1. Introduction. The popularity of Wireless Local Area Networks (WLANSs) and mobile
devices such as cellular phones, laptops, PDAs enables WLAN users to utilize services
more and more easily and effectively for their daily activities. WLAN logs which are
collected from such mobile devices may provide useful information resources for various
application areas such as traffic management, location management, purchasing behavior
analyzing, location-aware advertising. In the recent years, discovering knowledge from
WLAN logs has become a major focus in studies about WLANs. Hsu et al. [1, 2] analyse
WLAN logs to understand the nature of user preferences which is a fundamental task
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for designing efficiently mobile networks. Some other research works, e.g., [3, 4, 5], try
to exploit the information of mobile users in order to provide the next Location-Based
Services (LBS) for their movement. Most of these studies focus on discovering mobility
behaviors from the WLAN logs to predict future movement of mobile users [6, 7, 8, 9,
10, 11, 12]. Since most of mobility prediction models are based only on the individual
own movement history, the incompleteness on information of movement history may limit
the extraction of mobility rules and in turn, the lack of extracted rules may affect the
accuracy in prediction. Hsu et al. [2] state that WLAN users may follow various mobility
patterns but their movements frequently exhibit mobility characteristics of group. Thus,
the movement prediction problem is reduced to the one of clustering mobility patterns
in the wireless domain into seperate groups. And several techniques for clustering these
patterns have been proposed in the literature.

Some studies make use of the Euclidean distance to determine the similarity among
categorical sequences. Ma et al. [13] have utilized it to discover sequential patterns from
mobile user histories for improving location management in wireless communication sys-
tems. Wang and Li [14] used it to introduce a simple sequential clustering algorithm for
predicting the group mobility and partition in wireless Ad-hoc networks. However, Do
and Kim [24] state recently that Euclidean distance may be a poor measure of similarity
for categorical sequences such as mobility patterns. The other studies are based on the
hierarchical approach to build a hierarchy of clusters by using merging or splitting tech-
nique of mobility patterns. For instance, Oh and Kim [16] proposed a method in order
to cluster categorical sequences into groups. They first defined a measure to compute the
similarity between two sequences and then constructed a hierarchical clustering algorithm
based on the new similarity measure. Hsu et al. [2] also made use of hierarchical clus-
tering method to discover behavioral group based on the eigenbehavior vectors. These
authors have classified WLAN users into groups of similar behaviors to understand the
nature of user mobility preferences in WLANs. However, Huang [17] demonstrated that
hierarchical clustering may be not efficient for application domain with large datasets.

The interesting point is that the traditional k-means algorithm has been widely used in
many application areas. The benefit of this technique is that it is scalable to large datasets
and thus suitable for discovering knowledge from various data resources [17]. However, its
original framework is for numerical data and makes use of the random initialization for k
cluster centers. In order to get over the limitation, several researches [17, 18, 19, 20, 21]
have focused on developing the traditional k-means approach for the following issues:

- Extending to categorical data: using a similarity measure to define a new cluster con-
cept in categorical domain instead of “mean” as in the numerical domain [17, 18].
Huang [17] extended the k-means algorithm by introducing a new concept of “mode”
based on a dissimilarity measure for categorical objects. He proposed a technique
of updating modes to minimize the clustering cost function in clustering process.
It is due to non-unique mode of each cluster, clustering results of k-modes algo-
rithm depend strongly on the selection of modes in clustering process. San et al.
[18] also defined a new notion of “representative” for categorical domain. The k-
representatives algorithm has only one representative for each cluster and thus deal
with the drawback of the k-modes algorithm. However, the k-representatives algo-
rithm may produce a locally optimal partitioning because of random initialization.

- Proposing an initialization procedure: In clustering algorithm, the random choice
of starting values (or seeds) may produce a different local optimum in every run
time and further lead to various partitionings [19]. This problem may be overcome
by a good initialization procedure [20] and has attracted a great deal of research
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interests. The good initialization is crucial for finding globally optimal partitionings
[20]. Some recent works [19, 20, 21] have focused on improving the initialization
procedure in order to find the globally optimal partitionings. Ranjan et al. [20]
demonstrated that there is no initialization procedure for k-means paradigm that is
the best across all datasets. Therefore, it is of great interest to understand which
initialization procedure is good for our scenarios.

In this paper, we first propose a model of similarity measure for mobility patterns, which
is based on the weighted combination of temporal and spatial similarity measures (STPS:
Spatial and Temporal Pattern Similarity). Then we introduce the clustering algorithm
SMPC (Similarity Mobility Pattern based Clustering) which is an alternative extension
of the traditional k-means technique. Our proposed clustering approach focuses on using
measure STPS to define a new concept of “cluster center” and to construct two novel
procedures. The first one is the center update procedure which is constructed to compute
the optimum cluster centers every time mobility patterns are reassigned to their nearest
clusters. The second one is the initialization procedure which is constructed to find a
good initial set of cluster centers instead of a set of randomly chosen cluster centers.

The contributions of our work are three-fold.

- Proposing a novel model of similarity measure STPS, which is the basis for construct-
ing our clustering approach. The model STPS computes the similarity between two
mobility patterns in wireless networks by exploiting both spatial and temporal prop-
erties of them.

- Introducing a new clustering algorithm SMPC for classifying mobility patterns into
groups. The algorithm SMPC extends the k-means paradigm to the categorical
domain of mobility patterns with a new concept “center” and two novel procedures.
The cluster center is defined as an optimum center of each cluster; the center update
procedure is constructed by means of a minimum of dissimilarities of patterns in a
cluster; the initialization procedure is made from the maximization of dissimilarities
among seeds.

- Conducting experiments to demonstrate:

— The weighted combination of spatial and temporal characteristics of mobility
patterns in the model STPS improves considerably the quality of the clustering;

— The new concept of “cluster center” and two novel procedures of initialization
and center updating contribute to reducing the time cost of computation and to
achieving clustering results as stable as possible;

— Both model STPS and algorithm SMPC are effective and efficient by examining
the various effect of internal parameters on them and in comparison with some
other works.

The remainder of this paper is organized as follows. Section 2 presents a measure
model for estimating the similarity between the two mobility patterns in wireless networks.
Section 3 introduces an alternative extended k-means algorithm for clustering mobility
patterns. Section 4 is devoted to describing experiments and results for evaluating the
proposed similarity measure and clustering algorithm. Section 5 gives a discussion and
related works introduction. Finally, Section 6 draws concluding remarks and our further
research work.

2. Computational Model of Similarity.

2.1. Mobility patterns in wireless networks. This section presents briefly the model
of wireless network and its pattern representation (For more detail, see [12, 22]), which
is utilized for constructing the similarity measure described in the next subsection. In
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FIGURE 1. The coverage region (a) and the corresponding graph G (b)

the wireless network environment, the mobile users can travel around the radio coverage
region that is illustrated by a hexagonal shaped network (see Figure 1). Each hexagon is
a cell which is served as a Base Station (BS) in the communication space. The mobility
of WLAN users is represented as an unweighted directed graph G = (V, E), where the
vertex set V' is the set of cells in the coverage region and the edge set E represents the
adjacency between pairs of cells. Each cell in V' is determined with the ID number ¢ and
and then a location of a mobility user at the timestamp ¢ is defined as a couple (¢, t). The
bidirected edges illustrate the fact that mobile users may move from one cell to another
directly and vice versa.

Definition 2.1. Let C' and T be two sets of ID cells and predefined timestamps, respec-
tively. The ordered pairs ¢ = (c,t), in which ¢ € C and t € T, is called a point. Denote
Q to be the set of all points, then Q@ = C x T = {(¢,t)|c € C and t € T}.

Two points ¢; = (¢;,t;) and g; = (¢;,t;) are said to be equivalent if and only if ¢; = ¢;
and t; = t;. Point ¢; = (¢;,t;) is defined to be earlier than point ¢; = (¢;, ¢;) if and only if
t; <tj, and it is denoted as (Ciati) < (Cj,t]‘) or g; < ¢j.

Definition 2.2. The mobility pattern is defined as a finite sequence of temporally ordered
points p = {((c1,t1), (ca,ta), ..., (ck, tg)) in C X T space, where ID cells of two consecutive
points must be neighbors in the coverage region.

Note that the value of each timestamp ?; is not unique in a mobility pattern, i.e., ¢,
may be equal to ¢; if they are timestamps of two consecutive points of a mobility pattern.
For example ((c1,t1), (co,t2), (c3,t2), (s, t4)) is a mobility pattern.

Definition 2.3. The length L(P) of a mobility pattern p is the number of points in P.

2.2. Model of similarity. This section is devoted to describing a similarity model called
STPS (Spatial and Temporal Pattern Similarity) for estimating the similarity between
mobility patterns in wireless networks, which is the basis for constructing the clustering
algorithm in Section 3. Our similarity model is motivated by the fact that the location of
mobility users in wireless networks should be characterized via both spatial and temporal
similarities:
- Two mobility patterns are considered to be more similar in space if they share more
common cells;
- Two patterns passing through the same cells at the same times must be considered
more similar in time than the case they stayed at the different times.

Formally, our similarity model is represented by a 4-tuples (P, S, H,O), in which:
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-P={P,P,,...,P,} — aset of mobility patterns;

- S =| P|*|P| - amatrix of spacial similarity. Elements S;; represent the spacial
similarity between mobility patterns P; and P; that is calculated via Definition 2.6.

- H =| P|*| P |- amatrix of temporal similarity. Elements H;; represent the tem-
poral similarity between mobility patterns P; and P; that is calculated via Definition
2.7.

- O =| P| x| P |- amatrix of overall similarity or combination similarity. Elements
O;; represent the overall similarity between mobility patterns P; and P; that is a
weighted combination of spatial similarity and temporal similarity as presented in
Definition 2.9. The smaller the value O;; is, the more similar the two mobility
patterns P; and P; are.

In order to determine components S, H and O of the similarity model, we define three
corresponding similarity measures, which are updated and extended from our previous
work [23] for estimating the values of S;;, H;; and O;;.

Definition 2.4. Let P be a set of mobility patterns. A similarity measure d : P x P —
[0,1] is a function from a pair of patterns to a real number between zero and one such
that the following conditions are satisfied:

(i) Reflexivity: for all P; € P d(P;, P;) = 0;

(it) Symmetry: for all P;, P; € P d(P;, P;) = d(P;, P;).

2.2.1. Spatial similarity. In order to estimate the value of each element S, in component
S, we define a measure for computing the similarity in space between two mobility patterns
P, and P,. For simplicity of presentation, this section makes use of the mobility pattern
without the time factor.

Given such two mobility patterns: P, = (¢q1,Ca2, - - -, Can) and Py = {(¢p1, 2y - - -, Com ),
forall1 <i<mn,1<j<mand ¢y, € V. Spatial similarity measure can be defined in
terms of spatial dissimilarity between two mobility patterns. The more uncommon cells
there are in two patterns, the more spatially dissimilar they are.

Definition 2.5. Let g : P x P — R be a function representing the number of cells in
pattern P, but not in pattern P,. Then, g is determined by the formula:

(P, Py) = card({cui|cai € Pa, Cai & Po}) (1)
It is easy to prove the following proposition:
Proposition 2.1.
(1) 0 < g(P,, Py) < L(P,), where L(P,) is the length of mobility pattern P,;
(ii) g(Pa, P,) =0, for all P, € P;
(iii) g(P,, Py) = L(P,), if P, and P, do not share any cells.
A spatial similarity measure between two patterns is then defined as follows.

Definition 2.6. The spatial similarity measure dgpoee(Pa, Py) between two patterns P, and
Py, is defined as follows:

g(Paan)+g(PbaPa) (2)

L(P,) + L(Py)

It is clear that if two patterns are equal, dgpoce(Pa, Pa) = g(Pa, Py) + g(B, P,) = 0.
Conversely, if the two patterns do not share any cells, the number of uncommon cells in
these patterns is g(Py, Py) +9(Ps, Po) = L(P,)+ L(Py). Thus, dspace(Pa, Py) = 1. It is easy
to check the reflexivity and symmetry properties of dgpoce(Ps, Py). We have the following
proposition.

Sab - dspace(Pa; Pb) -

Proposition 2.2. The function dspece 15 a similarity measure.
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2.2.2. Temporal similarity. The temporal similarity measure is constructed to compute
the value of each element H,, in component H of computational model. The temporal de-
pendency of mobile objects has been widely considered in the recent researches (e.g., [3, 5,
12]). Our alternative approach is based on intuition that two patterns must be considered
temporally similar when they pass through the same cells at the same time in the wireless
network. For example, two mobility patterns P, = {(1,1), (0,%3), (5,%4), (6,t), (7,19)}
and P, = {(0,13), (5,%4), (7,t9)} have three common cells 0,5 and 7 at times t3, 4 and to,
respectively. And they are considered to be temporally similar.

Then, our temporal similarity measure is defined by means of the temporal dissimilarity
between two mobility patterns. And in turn, the temporal dissimilarity is calculated to
be the sum of all temporal differences between the timestamps of the common cells in two
patterns. The smaller the total temporal difference is, the more temporally similar the
two patterns are. The formalization of the temporal similarity measure between patterns
P, and P, is given in the following definition.

Definition 2.7. Suppose P, = ((¢a1,ta1), - - -, (Cans tan)) and Py = {((co1,tp1), - - s (Com, tom))
are two mobility patterns, where cqi,cp; € C and t4,t; € T for all i, j. The temporal
similarity measure dyme(P,, Py) between two patterns P, and P, is given by

n,m

1 |tai - tb'|
Hap = diime (Po, Py) = k Z max (tg t]bj), where cai = i &
i=1,j=1 a

where k is the number of common cells of P, and Pj.
It is easy to prove the following proposition.
Proposition 2.3. The function dyme(P,, P,) is the similarity measure.

2.2.3. Combination similarity. Resulting from the above partial similarity measures, we
may construct the definition of the weighted combination similarity measure. Intuitively,
the combination similarity of spatial and temporal similarities must satisfy the following
constraints:

- It must be neither lower than the minimal and nor higher the maximal of spatial
similarity and temporal similarity;
- The higher the partial similarity is, the higher the combination similarity is.

These constraints may be formulated by the following combination function:

Definition 2.8. A function u : [0,1] x [0,1] — [0, 1] is called the combination function,
denoted com-function, if and only if it satisfies the following conditions:

(1) min(s, h) < u(s, h) < max(s,h);

(11) u(s1,h) < u(se,h) if s1 < so;

(ZZZ) ’LL(S, hl) < U(S, h2) Zf h1 é hg.

Proposition 2.4. The function u : [0,1] x [0,1] — [0, 1] defined by the formula:
U(T,Y) = Wepace * T+ Weime * Y, Where Wpace + Wiime = 1
s the com-function.
Proof: We will prove that:
min(z,y) < u(z,y) < max(z,y)

We have:
U,(ZC, y) = Wspace * T + Wiime * Y
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If x < y then min(z,y) = z, max(z,y) = y and y = x + € where € > 0.
By replacement:

u(m, y) = Wspace ¥ T + Wiime * (1’ + 6) (4)
= Wspace ¥ T + Wiime * T + Wiime * € (5)
= T * (wspace + wtime) + Wiime * € (6)

Due t0 Wspace + Weime = 1, w(T, y) = T+ Wiime * € and consequently u(z,y) > x when € > 0.
Additionally, due to wyme < 1, Wime * € < €. Thus, u(x,y) = & 4 Wiime x € < T+ € = 4.
Similarly, we prove that y < u(z,y) < x, when x > y. Thus, the first condition (1) has
been proven.

The second condition (2) is proven as follows. We have:

U(l‘l, y) = Wspace * T1 + Wiime * Y
and

U(l‘% y) = Wspace * T2 + Wiime * Y
If T < T2 then Wspace * T1 < Wspace * T2- ThllS,

u(xl, y) = wspace * T + Wiime * Y g wspace * To + Wiime * Y = U(IL’Q, y)

The second condition (2) has been proven. Similarly, it is easy to prove the third condition
(3). Thus, the proposition is proven.

Definition 2.9. Combination similarity measure d(P,, P,) between two patterns P, and
Py, is defined by the formula:

d(Paa Pb) = wspace * dspace(Paa Pb) + Wtime * dtime(Pa; Pb) (7)

in which Wspace + Wiime = 1, and dspace(Pa, Py) and dijme(Pa, Py) are spatial and temporal
similarity measures, respectively.

It is easy to prove the following proposition:

Proposition 2.5. Function d(P,, Py) is similarity measure.

3. Clustering Mobility Patterns Based on Spatiotemporal Similarity.

3.1. The proposed clustering algorithm. The purpose of the clustering algorithm
is to partition the set of mobility patterns into k clusters such that patterns within the
same cluster have a high degree of similarity, whereas patterns belonging to different
clusters have a high degree of dissimilarity. Our new algorithm — SMPC (Similarity
Mobility Pattern based Clustering) — is an alternative extension of the k-means method
in clustering categorical data (e.g., [18, 24]). Our approach focuses on improving an
initialization procedure and on constructing a procedure of updating cluster center.

Instead of the traditional random initialization, k£ seeds are chosen by using the ini-
tialization procedure in Subsection 3.2. After choosing k initial centers, we apply the
assignation procedure in Subsection 3.3 to assign each pattern in dataset to the near-
est cluster (as showed in Algorithm 1, line 5). Then, the center of each cluster will be
updated by means of the combination similarity presented in Definition 3.2 (Algorithm
1, line 9). Based on the updated cluster centers, we reassign each pattern in dataset to
cluster according to assignation procedure (line 11). The center updating procedure and
the assignation procedure are repeated until no pattern has changed clusters via a test
cycle of the whole dataset (lines 6-12). The proposed clustering procedure is presented in
Algorithm 1.

In Algorithm 1, we use array A[n] to contain the cluster ID of each pattern. For
example, A[i] = j means pattern p; is assigned to jth-cluster. Furthermore, the center of
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Algorithm 1 SMPC Similarity Mobility Patterns Clustering Algorithm

Input: The dataset P = {P, P, ..., P,}
Output: k clusters

1: for all : =0 ton do

2. Ali]=0 // initialize array A[n]
3: end for

4: C + InitializationProcedure(P) // initialize k seeds

// Assign each pattern to the nearest cluster using k seeds

5. A[n] < AssignationProcedure(P, C, A[n])

6: repeat

7. changed =0 // flag to decide repeat or stop

8:  for all cluster X do

9: UpdateProcedure(X) // update the center of each cluster

10: end for

11:  changed = AssignationProcedure(P, C, A[n]) //
reassign each pattern to cluster

12: until changed = 0 // no pattern has changed its cluster

13: return A[n]

clusters may be changed whenever there is at least one pattern that changes its cluster.
In order to realize whether a pattern is moved to the other cluster, we use flag changed.
If there is a pattern changing clusters, the value of changed will be 1. Otherwise, the
value of changed will be 0.

3.2. A new method for initializing k seeds in algorithm SMPC. In this section,
we introduce a new initialization method which is based on the dissimilarity measure
among seeds. The main idea of this method is that a seed is randomly selected firstly
from the dataset and each of the remaining seeds is chosen by maximizing the sum of all
dissimilarities between it and all previous seeds.

Let P = {P;, P,,..., P,} be aset of mobility patterns called dataset and k be a positive
integer specifying the number of clusters. Denote ¢; to be the i*-seed, 1 < i < k and
then C' = {cy,ca,..., ¢} be a set of current seeds, 1 <[ < k.

Definition 3.1. The next seed is a mobility pattern P; in the dataset such that it mazi-

mMizes
!

D=y d(P,c;) (®)

where d(P;, ¢;) is the combination similarity measure between pattern P; and seed cj as in
Definition 2.9.

The initialization procedure is outlined as follows:

1. The first seed ¢; is randomly selected from the dataset.

2. For each pattern P; in the dataset, P; # ¢;, 1 < i < n, calculating the dissimilarity

between P; and ¢;, d(P;, ¢1).

The second seed ¢, is the pattern P; with the maximum of d(P;, ¢;).

4. Let [ be the number of current seeds. For each pattern P; in the dataset, P; ¢ C
where (' is the set of current seeds, calculating the sum of all dissimilarities between
P, and current seed as in Equation (8), denoted as D;. The next seed ¢, is the
pattern P; with the maximum of D;.

©w
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Algorithm 2 Initialization Procedure

Input: The dataset, P = {P,, P,,..., P,}
Output: £ seeds, C' = {c1,¢2,...,¢k}

1: ¢; = random(P) // generating a random pattern from dataset P
2: max =0

3:1=1

4: for all mobility pattern P, € P, P, # ¢; do
5. if max < d(P;,¢;) then

6: max = d(P;, ¢;)

T Co = IDZ

8 end if

9: end for

10: [=1+1

11: repeat

122 max =0

13:  for all mobility pattern P, € P, P, ¢ C' do
14: Dz == 0

15: for all current center ¢; € C' do

16: D; = D; +d(P;, c)

17: end for

18: if max < D; then

19: max = D,

20: 1 =B

21: end if

22:  end for

23:  C=CU{¢41}

24: [=1[1+1

25: until [ > k
26: return C

5. If | < k then assign C' = CU{¢11}, [ =1+1, and return to Step 4. Otherwise stop.

The detail of the initialization procedure is given in Algorithm 2.

3.3. Assigning patterns to clusters and updating cluster centers. Let P = { P,
Py,...,P,} and C = {¢1,¢,...,¢,} be a dataset and a set of current cluster centers,
respectively. Since each cluster is represented by a cluster center, the clustering problem
resulted in assigning each pattern P;, 1 < i < n in cluster ¢;, 1 < j < k such that the
dissimilarity between P; and c; is least. The assignation procedure is outlined as follows:

1. Calculating the dissimilarity between P; and ¢;, d(P;, ¢;), for each pattern P; in the
dataset, P, ¢ C, 1 <i < n and each cluster center ¢; € C;

2. Choosing ¢; such that d(P;, ¢;) is minimized;

3. Assigning P; to the cluster that is represented by c;.

The detail of the assignation procedure is presented in Algorithm 3.

After all patterns have been assigned to clusters, the center of each cluster must be
updated. Intuitively, the center of cluster X is a pattern in X such that the sum of all
dissimilarities between it and remaining patterns in X is minimum. The remainder of this
subsection is devoted to describing the construction of the center update algorithm.
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Algorithm 3 Assignation Procedure
Input: The dataset, P = {P,, P,,..., P,}

The set of current cluster centers, C' = {¢y,¢a, ...,k }

The current assignation, A[n] //array A contains the cluster ID of each pattern
Output: The new assignation, A[n]

1. changed =0 // flag to decide repeat or stop
2: for all mobility pattern P, € P, P, ¢ C' do

33 min=1 // because of d(P;,¢;) <1

4:  for all cluster center ¢; € C' do

5: if d(P;, ¢;) < min then

6: min = d(P;, ¢;)

7: index = j

8: end if

9: end for

10:  if A[i] # index then

11: Ali] = index

12: changed = 1 // marking move pattern P; to indexth-cluster
13: end if

14: end for

15: return changed

Algorithm 4 Center Update Procedure

Input: The cluster X = {P, P,,..., Py}
Output: The new center of X

1. min = m // because of O; = Z;nzl d(P;, P;) <m
2: for all mobility pattern P; € X do
3 0;,=0

4:  for all mobility pattern P; € X do

5: if P; # P, then

6: Oz :Oz—Fd(Pz,PJ)

7: end if

8: end for

9: if O; < min then

10: min = O;

11: c=P, // move pattern P; to indexth-cluster
12:  end if

13: end for

14: return c

Definition 3.2. Let X = {P, P,...,P,} be a cluster. The center of cluster X is a
pattern P; in X such that it minimizes

0i=3 0y=) d(P.P) (9)
j=1 j=1

where P; # P;, for all j, 1 < j < m and d(P;, P;) is the combination similarity between
patterns P; and P; as in Definition 2.9.

The center update procedure is outlined as follows:
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1. Initializing O; = 0 for the sum of all dissimilarities between P; and remaining patterns
in X, for each pattern P; in the cluster X, 1 < ¢ < m;
2. Adding d(P;, P;) to the sum O;: O; = O; + d(P;, P;), for each remaining pattern P;
in X;
3. Choosing P; such that O; is minimized and then P; is the center of cluster X.
The detail of the center update procedure is given in Algorithm 4.

4. Experimental Evaluation. This section is devoted to presenting the following issues:

- The statement of the problem and the traditional measures for experimental evalu-
ation;

- Set up a dataset for experimental evaluation;

- Experimentally evaluating the proposed similarity model STPS and the clustering
algorithm SMPC;

- Comparing with other approaches.

4.1. Problem statement and basis for experimental evaluation.

4.1.1. Problem statement. Given a wireless network with the coverage region as in Figure
1, which is composed of a set of mobile users. Each mobile user has a movement history
which records its movements from one cell to another in the coverage region. The move-
ment histories of all mobile users are used to discover the set of mobility patterns. Our
purpose is to provide an efficient approach for clustering mobility patterns into mobility
groups of similar behaviors. This is the basis for constructing an effective mobility pre-
diction technique based on mobility behaviors in group to deal with the incompleteness
on information of individual movement history.

In order to evaluate the proposed clustering approach, we first investigate both simi-
larity measure STPS and clustering algorithm SMPC via internal parameters and then
assess how effective it may be. Second, we compare the proposed approach with some
other research works in respect of clustering quality. Which measures are utilized for
evaluating the quality of the clustering are discussed in the next subsection.

4.1.2. Measures of clustering quality: Basis for experimental evaluation. Intuitively, the
indication of a good clustering result is that the distance between data objects in the same
cluster is low, whereas the distance between data objects in different clusters is high.
Currently, three measures have been widely used to investigate the clustering quality
([17, 18, 25, 26]): Overall Entropy (OE), Variation of Information (VI) and the clustering
accuracy measure for category data. We also utilize these measures to evaluate our
clustering algorithm and they are briefly presented in the remainder of this subsection.

First, clustering quality is traditionally evaluated by #nternal measure and external
measure [25]. The internal measure reflects the average semantic distance between data
objects within each cluster. In contrast, the external measure reflects the average semantic
distance between the clusters themselves. In [25], cluster entropy (E.) and class entropy
(E;) are defined as the internal and external measures, respectively, and the Overall
Entropy (OF) is then their linear combination:

OE = 8.E.+ (1 - ).E, (10)

where 3 € [0, 1] is empirically determined. The smaller the overall entropy is, the better
clustering quality is. And then entropy measures are defined as follows [25].

Suppose C' = C1 UCyU---U (Y} is a partition on the set of N data objects with the set
of labels {l1,ls,...,l~}. Let n; be the total number of data objects with label /; in the
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dataset, and n;; be the number of data objects labeled [; in cluster C;. Then, the cluster
entropy F. and the class entropy F; are defined by the following formulae:

Z Z Rij 1o n” (11)

i=1 j=1

ZZ ij 1og (12)

j=1 i=1

Second, in the case that the labels of data objects are not pre-defined, Gomez-Alonso
and Valls [28] proposed the Variation of Information (VI) measure for measuring the
cluster quality as follows. Let C* = C7 U C5 U ---U CY}. be the pre-constructed correct
partition of the dataset of discourse and C' = C; U Cy U ---U C) be the partition which
is generated by a clustering algorithm. The value of VI(C,C*) determines information
variation between C' and C* and is defined by Equation (13). The smaller VI(C, C*) is,
the more similar C' and C* is.

VI(C,CY) = H(C’|C*) + H(C*|C) = H(C) + H(C*) = 2.1(C, C*) (13)
X |C; ﬂC* |C;n C|/N
e ZZ *E(ICI/N)-(C5 )
i |c|
_ i i @

In this paper, we also discover that VI and OE measures whose classes and cluster
entropies with the same weight are equivalent when all data objects own predefined labels
(See Subsection 4.3.2).

Third, for clustering categorical data, these measures OE, VI are considered to be
unsuitable. Huang [17] and San et al. [18] adopted an extension which may measure the
degree of correspondence between the clusters obtained from the algorithm and the class
assigned previously. This measure of the clustering accuracy is defined as follows:

k
1
= > a (14)
=1

in which q; is the number of data objects that occur in both cluster C; and its correspond-
ing labeled class, and n is the number of objects in the data set. The larger the clustering
accuracy is, the better clustering quality is.

4.2. Synthetic dataset generation. In the scope of this paper, our experiments are
conducted with a dataset generator which describes the movement behaviors of mobile
users around the coverage region as in Figure 1. At first, we manually generate 5 move-
ment behaviours which are represented in sequences, called the set of initialized patterns.
For each movement behavior, approximately 100 mobility patterns are automatically gen-
erated by following procedure. Each mobility pattern is a movement around the graph
G in Figure 1. So, mobility patterns are generated by inserting some points ¢; = (¢;, t;)
into the movement behavior which satisfy two constraints. The first one is the network
constraint, i.e., consecutive cells in patterns are neighbor in graph GG and the second one
is the temporal constraint which satisfies the ascending order of timestamps in patterns.
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TABLE 1. Datasets

Datasets | Set of initialized patterns | Datasets| Set of initialized patterns
((17t1)7 (27t3)7 (87t6)7 (47t9)> ((Oatl)a (27t3)7 (87t6)7 (47t9)>
((17 t3)7 (97 t4)7 (87 t9)7 (77 t10)> ((07 t3)7 (27 t4)7 (87 t9)7 (77 tlU))
DS1 ((67t3)7(77t5)7(]‘0’t7)7(87t9)> DS3 ((67t3)7(77t5)7(107t7)7(87t9)>
((67t2)7 (77t6 ) (47t8)7 (87t9)> ((67t2)7 (77 tﬁ)a (47t8)7 (87t9)>
((37 t4)7 (47 tﬁ)a (57 tg), (67 t10)> ((37 t4)7 (47 tﬁ)a (57 t8)7 (67 tlU))
<(07t3)a (2at4)a (8at6)a (75 t8)> <(1at1)a (2at3)a (8at6)a (47t9)>
<(3a t4)a (4a tG)a (53 tS)a (6a t10)> ((la t3)v (9’ t4)a (8a t9)v (7v t10)>
DS2 <(13t3)a(95t5)a(loat7)a(11at8)> DS4 ((11,t3),(7,t5),(10,t7),(8,t9)>
((Gat?))a (7,t5), (10,t7), (8,t9)> ((113t2)a (loatﬁ)v (g,tg), (8at10)>
<( at4)7 (8at6)a (2at7)a (15t9)> ((3at4)a (4at6)a (5at8)a (63t10)>

All of 100 generated mobility patterns are assigned the same label. Repeating the pro-
cedure for each movement behavior, we obtain a testing dataset which consists of 500
mobility patterns with 5 clusters. Such a size of a testing dataset is common in clustering
experiments [27]. We can generate different datasets by using different sets of initialized
patterns. In this work, we generated four different datasets DS1, DS2, DS3 and DS4 as
in Table 1.

4.3. Evaluation of proposed approach. In this section, we examine the effect of each
following parameters in order to evaluate how suitable and effective both the similarity
measure STPS and the clustering algorithm SMPC are for classifying mobility patterns
into groups of similar behaviors:

- The combination weights in the measure STPS;

- The number of clusters in the algorithm SMPC;

- The random initialization in the clustering algorithm;
- The number of mobility patterns (datasets size);

- The various datasets.

4.3.1. Effect of weighted combination («). In this section, we study how suitable the
proposed model STPS is if it reflects the similarity between mobility patterns not only
in spatial but also in temporal aspects. For this purpose, we examine the effect of the
weighted combination in order to answer the question that the similarity between mobility
patterns should be measured based on both spatial and temporal properties or based only
either on spatial or temporal property. The experiment is performed on the measure STPS
of the form a.dspgce(Pa, P») + (1 — @).diime(Pa, Py) as in Definition 2.9, where wgpqee = o
and wyme = (1 — ). The value of « is varied in the experiments to find how significant
the spatial and temporal properties of mobility patterns are to clustering quality; a = 0
means clustering based on purely temporal similarity, while &« = 1 means clustering based
on purely spatial similarity.

The algorithm SMPC with the measure STPS is run on the dataset DS1 and the number
of generated clusters is fixed at £k = 5. Varying « from 0 to 1 on 0.1 incremental steps,
we obtain experimental results as in Figure 2 which shows that the clustering quality is
improved with a varying from 0.3 to 0.6. This indicates that both spatial and temporal
properties are important to the clustering quality. It means that our weighted combination
similarity model STPS was well defined.

4.3.2. Effect of number of clusters (k). For obtaining the best clustering quality, the
optimal value of the number of generated clusters k£ should be determined by experiments.
We run the proposed algorithm SMPC on the dataset DS1 with the optimal value o = 0.6
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FIGURE 3. The effect of number of clusters (k)

and k varying from 2 to 10. In order to exactly evaluate, we study the effect of the number
of generated clusters k& with respect to not only Overall Entropy (OE) and Variation of
Information measures (VI) but also Clustering Accuracy measure (CA).

For the Overall Entropy measure, we take the equal weights for the cluster entropy
and the class entropy, i.e., 8 = 0.5 for Equations (10). Figure 3 demonstrates the sig-
nificant difference of clustering quality with varied k£ in three measures OE, VI and CA.
As expected, the best clustering quality is obtained when & = 5, which is the same as
the number of clusters of the testing dataset. It implies that our dataset generator is
suitable for the proposed clustering method. Furthermore, Figure 3 also shows that the
corresponding VI and OE curves actually have the same shape. This demonstration is
also in accordance with the equivalence of VI and OE measures.

4.3.3. Effect of the random initialization in clustering algorithm. The question now is
why an initialization procedure should be proposed instead of random initialization for &
cluster centers. To answer this question, we conduct an experiment to study the effect of
the random selection for initial values of seeds in clustering algorithm. We first run our
clustering approach 10 times on the dataset DS1 with the optimal value « = 0.6 and k£ = 5.
Then, we will compare clustering results to each other among run times with respect to
both overall entropy and clustering accuracy. The difference of clustering quality among
run times is presented in Figure 4 which shows that the random initialization for the first
seed in algorithm SMPC may affect clustering quality. Therefore, we can say that the
clustering quality may be much different among run times if k£ seeds are randomly chosen.
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Run times | Overall Entropy | Clustering Accuracy
1 0.19 0.71
2 0.19 0.70
3 0.178 0.71
4 0.145 0.796
5 0.234 0.6
6 0.145 0.796
7 0.19 0.69
8 0.23 0.6
9 0.178 0.71
10 0.2 0.71

FiGure 4. Difference of clustering quality among run times

TABLE 2. Improvement in time cost of the proposed initialization proce-
dure

Initialization Procedure | Random Initialization
Run Time (second) 0.02 0.13

This means that it is necessary to construct an initialization procedure for k seeds in
order to achieve clustering quality as stable as possible.

Another experiment should be also conducted to evaluate the proposed initialization
procedure. We set up two scenarios:

- Scenario 1: based on the proposed initialization procedure
- Scenario 2: based on the random initialization

The experimental results in Table 2 indicate that the run time of the Scenario 1 is sig-
nificant smaller than that of the Scenario 2. The reason is that k£ seeds in the Scenario 1
are chosen as dissimilar as possible and then each mobility pattern is assigned to cluster
exactly. This advance may reduce the number of times to reassign each mobility pattern
to another cluster when the cluster centers are updated. Therefore, the clustering process
in the scenario based on the proposed initialization procedure may be converged more
quickly compared with the scenario based on random initialization for seeds.

4.3.4. Effect of the number of mobility patterns (dataset size). The question is that in
evaluating clustering quality, what dataset size should we use? In order to answer this
question, we will perform experiments with different dataset sizes. We run the algorithm
SMPC on the dataset DS2 with different number of mobility patterns at the optimal values
a = 0.5 and k£ = 5. Figure 5 shows experimental results of comparison which suggests
that there is no significant difference of clustering quality among different number of
mobility patterns in datasets. However, the light increase of clustering quality at dataset
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Ficure 5. Non-significant difference of clustering quality on various num-
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8 0.071 | 0.070 | 0.097 | 0.071
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FiGure 6. Comparison of clustering quality on various datasets

size in approximately hundreds of mobility patterns indicates suitability of datasets of
500 mobility patterns in above experiments.

4.3.5. Effect of the various datasets. In order to test the effect of datasets, we perform
experiments on four above datasets DS1, DS2, DS3 and DS4. For each dataset, we run
the algorithm SMPC 10 times with respect to the Overall Entropy (OE) and calculate
the average value of these clustering results. The obtained data is given in Figure 6
which shows that the change on datasets could affect the clustering quality. However, the
difference of clustering results is not too much. Furthermore, if we consider OE < 0.35 as
a “good” clustering result, then we can say that the clustering quality is good on various
datasets.

4.4. Comparison with other approaches. Our clustering approach utilizes the algo-
rithm SMPC with the similarity measure STPS. Therefore, the clustering quality of the
proposed approach depends on both of them.
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FIGURE 7. Significant difference of clustering quality between STPS and
other similarity measure

4.4.1. Comparison STPS with other similarity measures. The question now is whether or
not it is necessary to introduce a new similarity model. In order to answer this question,
we perform algorithm SMPC on two different similarity measures:

- Case 1: The proposed model STPS
- Case 2: The similarity measure in [28]

For each case, we run algorithm SMPC 10 times on the dataset DS1 with £ = 5. In Case
1, the combination weight is taken the optimal value, i.e., a = 0.6. Figure 7 illustrates
the comparison of clustering quality in two cases. The experimental results show that the
clustering quality of Case 1 is better than that of Case 2. Our new similarity model STPS
may contribute considerably to the improvement in the clustering quality. In conclusion,
we can say that the proposed measure STPS is suitable and effective for measuring the
similarity between mobility patterns in wireless networks.

4.4.2. Comparison SMPC with other clustering algorithms. In order to compare the pro-
posed algorithm SMPC with the other ones, we implement both algorithm SMPC and
the hierarchical clustering algorithm in [16] on the same measure STPS. The experiment
results in Table 3 show that the difference of average clustering quality between the two
algorithms is not so much. However, the average run time of algorithm SMPC is signifi-
cantly smaller than that of the other, approximately hundredfold. Hence, we can say that
our algorithm SMPC is effective in the time cost of the clustering computation.

4.4.3. FEvaluating measure STPS on other clustering algorithms. Intuitively, one of the
key steps which affects clustering quality is the measure used to compute the similarity
between data objects. Thus, this experiment is conducted to make use of other clustering
algorithm to evaluate the proposed measure STPS via clustering results. We implement
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TABLE 3. Significant difference of computational speed

Algorithm SMPC | Other Algorithm
Average Clustering Accuracy 0.807 0.85
Average Run Time (second) 0.020 4.940
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FI1GURE 8. The suitability of our similarity model

TABLE 4. Evaluation of our clustering algorithm

Overall Entropy | Number of results | Good results

0 — 0.099 0 Good

0.1 — 0.199 0 Good

0.2 — 0.299 30 Good

0.3 — 0.349 41 Good

0.35 — 0.399 10

0.4 — 0.499 19

0.5 — 0.599 0
0.6 - 1.0 0

and run the hierarchical clustering algorithm in [16] using the measure STPS on dataset
DS3. The good clustering results (see Figure 8) suggests that the measure STPS are well
constructed. Furthermore, the improvement of clustering quality with « varying from
0.2 to 0.6 indicates that it is reasonable to take into account simultaneously spatial and
temporal properties of mobility patterns in our proposed measure STPS.

4.4.4. FEvaluating algorithm SMPC on other similarity measures. In order to avoid the
effect of our similarity model on clustering quality, we will implement and run the pro-
posed algorithm SMPC 100 times on the similarity measure introduced in [28]. In this
experiment, we use dataset DS1 and fix the number of generated clusters at the optimal
value £ = 5. The experiment produced 100 clustering results which contained 71 good
results (OE < 0.35) as in Table 4. This means that there is a 71% chance to obtain a good
result by using our algorithm SMPC. Therefore, we can say that the algorithm SMPC is
effective for clustering mobility patterns.

4.4.5. General comparison. This section is devoted to a summary of the comparison of the
performance between our clustering approach and the others, in which the performance
of the clustering includes the quality of the clustering and the time cost of the clustering
computation.

FEvaluation Criteria
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TABLE 5. Input parameters

Parameters Values
Combination weight («) for measure STPS 0.5
Number of clusters (k) for algorithm SMPC 5

Number of mobility patterns (dataset size) 500
Dataset DS1
Number of runs for each experiment 100

TABLE 6. Summary of comparison with other approaches

Measure STPS Other Measure
. OE = 0.08, Time = 0.02 (s) | OE = 0.33, Time = 0.02 (s)
Algorithm SMPC Good Rather Good
. OE = 0.06, Time = 4.94 (s) | OE = 0.21, Time = 4.94 (s)
Other Algorithm Rather Good No Good

In order to make the results comparable, we use the same values for input parameters
in all experiments as in Table 5. For each experiment, we will run 100 times and calculate
the average values of clustering Quality (Overall Entropy) and run Time (Second).

Ezxperimental Results

Table 6 shows that the clustering quality in the cases based on measure STPS is sig-
nificant higher than in the cases based on the measure in [28]. In addition, the results
also suggest that using the algorithm in [16] do not increase much clustering quality but
increase much time cost compared with the algorithm SMPC. In summary, the measure
STPS is good at the quality of the clustering and the algorithm SMPC is good at the
time cost of the clustering. Hence, we can say that it is better to use the algorithm
SPMC based on measure STPS to classify mobile users into groups of similar mobility
behaviours.

5. Discussions and Related Works. This section is devoted to discussing how our
clustering approach may deal with the problems of the current clustering approaches
presented in Section 1.

Firstly, our clustering approach determines the similarity among mobility patterns by
using the proposed similarity measure STPS instead of the Euclidean distance as in some
studies [13, 14]. Do and Kim [24] demonstrated that the Euclidean distance may be a
poor measure of similarity for categorical attributes which are frequently involved in data
mining applications. The measure STPS has exploited the characteristics of dependency
in space and time of mobility patterns in wireless networks. The suitability and the
effectiveness of STPS have been evaluated in experiments. The good quality of clustering
results have demonstrated that STPS is well defined for measuring the similarity between
the two mobility patterns of mobile users in the wireless environment.

Secondly, since our clustering approach takes advantage of the simplicity and the com-
putational speed of the original k-means algorithm, the time cost of the clustering is sig-
nificantly smaller than ones based on hierarchical clustering [2, 16]. Huang et al. [31] and
the other works [20, 29, 30] have also shown that comparing with conventional approaches,
the k-means clustering technique offers several key advantages and most importantly it
can be applied to forecast the future. Thus, it has become the most popular clustering
algorithm in scientific and industrial applications with large data sets as our work.
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Thirdly, our clustering approach works well for categorical data and avoids the locally
optimal partitioning, which are drawbacks of most clustering approaches based on k-means
algorithm. The benefit of our construction may stem from the following factors:

- We have introduced a new concept of “cluster center” instead of “mean”. Some
earlier works [32, 33] simply converted categorical data into numeric values and
then used the concept of “mean” as the center of cluster, which is computed by
Euclidean distance. The disadvantage of these approaches is that they may lead to
the loss of semantics in category concept [24]. Therefore, it is necessary to construct
a new concept of cluster center which is determined by the similarity measure of
categorical data. Moreover, our clustering approach also avoids the dependency of
the selection of the cluster centers as in k-modes technique [17]. It is due to the
fact of the proposed clustering algorithm SMPC has only one cluster center for each
cluster. This advance leads clustering results of SMPC to be more stable than that
of k-modes. A cluster center updating procedure has been constructed to find the
optimum center of each cluster whenever mobility patterns are reassigned.

- The algorithm SMPC has utilized the proposed initialization procedure for the choice
of the initial values (or seeds) instead of random initialization for seeds, which may
produce locally optimal partitioning and lead to varying partitionings [19, 20, 21].
In the proposed initialization procedure, the seeds are chosen such that they are as
dissimilarily as possible with the aim of reducing the delay of clustering process. It
is due to the fact that the more dissimilar the set of seeds is, the more separate the
generated clusters are. Thus, each mobility pattern is assigned to the closest cluster
exactly and further reducing the number of times to move patterns from one cluster
to another because of cluster center update. This advance may enable the clustering
process to be converged more quickly compared with some approaches [18], which is
based on random initialization for seeds.

Our clustering approach is to classify mobility patterns of mobile users into groups with
similar behaviors. Discovering similar mobility groups may lead to that more mobility
rules are extracted from the mobility patterns within the same cluster, and thus the
prediction of the user movement is more accurate. Utilizing clustering techniques to
improve the accuracy in predicting the future locations of mobile users has also been
widely studied [2, 3, 4, 6, 7, 8, 10, 34]. The most similar point of view to ours is given
by Yang et al. [34]. The authors have found out that most patterns only appear in a
group of sequences and more distinctive patterns can be mined from the same cluster.
In addition, the patterns which are mined from the sequences within the same cluster
are more reliable for prediction. From such observation, they proposed a new method to
cluster sequences into different groups, and then make prediction based on the patterns
mined from the groups separately. The authors also proposed a new similarity measure
for finding common subsequences between two sequences. Their measure is then applied
to k-medoids algorithm — a variation of k-means one. In order to improve the performance
of k-medoids algorithm, they used the initialization method by Krishnapuram et al. [35].
However, their purpose is to mine sequences of web sections in web logs to understand
user behaviors on the web environment. Thus, their pattern representation is completely
different from the mobility patterns in time and space in our wireless environment.

6. Conclusions and Future Work. In this paper, we have presented a new approach
to discover group mobility behaviors of mobile users in wireless networks, where the users
belong to the same mobility group exhibit more similar movement characteristics. First,
we have introduced a model of similarity measure to estimate the similarity between mo-
bility patterns, which is discovered from WLAN logs. Our computational model is a
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weighted combination of spatial and temporal similarity measures in mobility. Second,
we have applied the similarity model to algorithm SMPC for classifying mobility patterns
into different mobility groups. Our clustering algorithm is an extension of the k-means
paradigm to the categorical domain in wireless network. Our algorithm SMPC is com-
posed of two novel procedures: (i) initialization procedure for starting values of k seeds in
the clustering algorithm instead of traditional random initialization, and (ii) update pro-
cedure for updating the cluster centers in the clustering process. In order to evaluate the
necessity and effectiveness of the model STPS and algorithm SMPC, we have conducted
experiments with various simulated conditions and then evaluated results with various
measures of clustering quality. The experimental results demonstrate that it is necessary
to combine both spatial similarity and temporal similarity. The experiments also indi-
cate that the initialization and update procedures contribute significantly to stability of
clustering quality. Furthermore, the effectiveness and accuracy of our proposed clustering
method are also verified in comparison with the conventional approach. We are currently
utilizing the proposed clustering algorithm SMPC to develop a prediction technique for
future movement of mobile users with the aim to improve the precision for predicting user
mobility behaviors in wireless network. These research results will be presented in our
future work.
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