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Abstract. This paper investigates single-machine scheduling problems with simultane-
ous considerations of past-sequence-dependent delivery times and the effects of deteri-
oration and learning. The job delivery time is assumed to be proportional to the sum
of processing times of all already scheduled jobs. We show that the makespan and the
total completion time minimization problems can be optimally solved in polynomial time.
We also prove that the total weighted completion time, the maximum lateness, and the
maximum tardiness minimization problems remain polynomially solvable with agreeable
conditions.
Keywords: Scheduling, Learning effect, Job deterioration, Past-sequence-dependent
delivery times

1. Introduction. In the last years, scheduling problems with the past-sequence-depen-
dent (p-s-d) setup times and delivery times have been extensively studied by researchers.
The p-s-d setup time and the p-s-d delivery time were probably first introduced in sched-
uling by Koulamas and Kyparisis [10,11]. They assumed that the job setup time (delivery
time) is assumed to be proportional to the sum of processing times of all already scheduled
jobs.

On the other hand, the job processing time may change due to various factors such
as the deterioration effect or the learning effect. The deterioration effect in scheduling
can be defined as a job which takes more time when processed later than when processed
earlier, while in scheduling with the learning effect, the actual processing time of a job is
shorter if it is scheduled later in a sequence.

Although the scheduling problems with the p-s-d delivery times and the deterioration
effect and the learning effect have been separately studied in the literature, they have
never been simultaneously considered. Job deterioration and learning may co-exist in
many realistic scheduling situations. For related works, the reader may refer to [21,22].
The motivation for this study stems from the metal hot forging process that presses
an ingot to create various size and shape in a forging machine. Before the pressing
process, the ingot needs to preheat to the required temperature. Generally, the ingots
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are preheating in a batch processor. Thus, the longer the ingot waits for the processing
on the forging machine, the lower the temperature drops and the longer the processing
time needs [1,4,14,15]. On the other hand, the forging machine is operated by a skilled
worker. The worker learns how to produce more efficiently during the process. As a
result, deteriorating jobs and the learning effect simultaneously exist in the metal forging
process [19]. In addition, after the produce has been processed by the forging machine, it
should be exposed on an environment to drop its temperature and take a post-processing
operation before it is delivered to the customer. Consequently, this paper addresses the
problems of single-machine scheduling with p-s-d delivery times and the deterioration
and learning effects simultaneously. The performance measures include the makespan,
the total completion time, the total weighted completion time, the maximum lateness,
and the maximum tardiness.
The remaining part of this paper is organized as follows. In Section 2, a literature

review is given. We formulate the model of the paper in Section 3. In Section 4, several
single-machine scheduling problems are examined. In Section 5, we give a numerical
example for solving the problem under study. The last section presents the conclusions.

2. Literature Review. In two recent papers, Koulamas and Kyparisis [10,11] proposed
the concepts of p-s-d setup times and p-s-d delivery times in machine scheduling problems,
respectively. Koulamas and Kyparisis [10] considered single-machine scheduling problems
with p-s-d setup times for minimizing the makespan, the total completion time, and the
total absolute differences in completion times. They assumed that the job setup time
is dependent on all already scheduled jobs. Their study showed that all the problems
studied are polynomially solvable. They also extended their results to non-linear p-s-d
setup times. Biskup and Herrmann [3] extended the study of Koulamas and Kyparisis
[10] to the problems with due dates to minimize the total lateness, the total tardiness,
the maximum lateness, and the maximum tardiness problems. They proved that these
problems remain polynomially solvable with agreeable due dates. Later, Koulamas and
Kyparisis [11] stressed single-machine scheduling problems with p-s-d job delivery times.
They assumed that the job delivery time is needed to remove any waiting time-induced
adverse effects on the job’s condition prior to delivering it to the customer. For example,
an electronic component may be exposed to certain electromagnetic and/or radioactive
fields while waiting in the machine’s pre-processing area and regulatory authorities require
the component to be “treated” for an amount of time proportional to the job’s exposure
time to these fields. This treatment can be performed after the component has been
processed by the machine but before it is delivered to the customer [11]. Such a post-
processing operation is usually called the job “delivery time”. They further assumed that
the job delivery time is to be proportional to the job’s waiting time in order to model
the mandated post-processing job treatment. They proved that all the problems studied
can be optimally solved in polynomial time algorithms when the objective functions were
the makespan, the total completion time, the maximum lateness, and the number of
tardy jobs. Yang et al. [20] considered single-machine scheduling problems with the
p-s-d delivery times and the learning effect. They first showed that the makespan, the
total completion time, and the total waiting time minimization problems can be solved
in polynomial time. They also showed that the total weighted completion time and the
total weighted waiting time minimization problems remain polynomially solvable under
certain conditions.
On the other hand, scheduling with deteriorating jobs and/or learning effects has been

widely studied. For more details on scheduling with learning effects, the reader may refer
to the recent surveys by Biskup [2] and Janiak and Rudek [9], while scheduling problems
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with time-dependent job processing times are discussed in the book by Gawiejnowicz [7].
In addition, Kuo and Yang [12] first investigated single-machine scheduling problems with
p-s-d setup times and the learning effect. They proved that the makespan, the total ab-
solute differences in completion times, and the sum of earliness, tardiness and common
due-date penalties minimization problems are polynomially solvable. Wang [17] consid-
ered the time-dependent learning model with p-s-d setup times on a single-machine to
minimize the makespan, the total completion time, the sum of the quadratic job comple-
tion times, the total weighted completion time, and the maximum lateness. Wang et al.
[18] studied single-machine scheduling problems with p-s-d setup times and the effects of
deterioration and learning. They proved that the minimization problems of the makespan,
the total completion time, and the sum of the δth (δ ≥ 0) power of job completion times
can be solved by the smallest deterioration rate (SDR) rule, respectively. Cheng et al.
[5] introduced a new scheduling model in which deteriorating and learning effects and
p-s-d setup times are considered simultaneously. They derived polynomial time optimal
solutions for some single-machine problems with or without the presence of certain condi-
tions. Mani et al. [13] focused on the parametric analysis for a single-machine scheduling
problem with p-s-d setup times to minimize the total absolute differences in completion
times. Cheng et al. [6] proposed a scheduling model in which the actual processing time
of a job is a function of the logarithm of the total processing time of all already scheduled
jobs and the setup times are proportional to the actual processing times of the already
scheduled jobs. Under the proposed model, they provided optimal solutions for some
single-machine scheduling problems.

3. Notation and Model Formulation. There are n independent jobs J = {J1, J2, . . . ,
Jn} available at time zero which have to be processed on a single-machine. Preemption
is not allowed and the machine is only able to process one job at a time. Each job Jj
has a normal processing time pj, j = 1, 2, . . . , n. For any schedule S, let J[j] denote the
job in the jth position in S, and p[j] and C[j] denote the normal processing time and
the completion time of job J[j] in S, respectively. Due to the effects of deterioration and
learning, the actual processing time of job Jj when scheduled in position r is given by

pjr = pj

(
1 +

r−1∑
i=1

p[i]

)a

rb, j, r = 1, 2, . . . , n (1)

where a ≥ 1 and b < 0 are, respectively, the deteriorating factor and the learning factor.
Following Koulamas and Kyparisis [11], the processing of job J[j] must be followed by

a p-s-d delivery time q[j], which can be computed as

q[j] = γW[j] = γ

j−1∑
i=1

pi[i], j = 2, 3, . . . , n and q[1] = 0, (2)

where γ ≥ 0 is a normalizing constant, W[j] denotes the waiting time of job J[j], and pi[i]
denotes the actual processing time of job Ji scheduled in the ith position in a schedule.
Obviously, on a single-machine setting with a continuously available machine and all the

jobs simultaneously available at time zero, W[1] = 0 and W[j] =
j−1∑
i=1

pi[i], j = 2, 3, . . . , n. In

addition, it is assumed that the post-processing operation of any job J[j] modeled by its
delivery time q[j] is performed “off-line”, consequently, it is not affected by the availability
of the machine and it can commence immediately upon completion of the main operation
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resulting in C[1] = p[1] and

C[j] = W[j] + pj[j] + q[j] = (1 + γ)

j−1∑
i=1

pi[i] + pj

(
1 +

r−1∑
i=1

p[i]

)a

jb, j = 2, 3, . . . , n. (3)

For convenience, we denote the p-s-d delivery time given in Equation (2) by qpsd. We
consider the minimization of the following objective functions: the makespan Cmax =

max
j=1,2,...,n

{Cj}, the total completion time
n∑

j=1

Cj, the total weighted completion time
n∑

j=1

αjCj,

the maximum lateness Lmax = max
j=1,2,...,n

{Cj − dj}, where dj is the due-date of job Jj, and

the maximum tardiness Tmax = max {0, Lmax}. Following Graham et al. [8], we de-
note the corresponding scheduling problems as 1/pjr, qpsd/Cmax, 1/pjr, qpsd/

∑
Cj, 1/pjr,

qpsd/
∑

αjCj, 1/pjr, qpsd/Lmax, and 1/pjr, qpsd/Tmax, respectively.

4. Problems Analysis. In this section, we first show that the makespan and the total
completion time minimization problems are polynomially solvable. We then show that
the total weighted completion time, the maximum lateness, and the maximum tardiness
minimization problems remain polynomially solvable with agreeable conditions.
Before presenting the main results, we introduce two useful lemmas that help find the

optimal schedule for the problem under study.

Lemma 4.1.
[
1 + ax1t(1 + t)a−1 ( r+1

r

)b]− [x2(1 + t)a
(
r+1
r

)b] ≥ 0 if 0 < x2 ≤ x1 ≤ 1,

a ≥ 1, b < 0, t > 0, and r = 1, 2, . . . , n− 1.

Proof: Let g(t) =
[
1 + ax1t(1 + t)a−1

(
r+1
r

)b] − [x2(1 + t)a
(
r+1
r

)b]
. Taking the first

derivative of g(t) with respect to t, we obtain

g′(t) = ax1(1+ t)a−1

(
r + 1

r

)b

+a(a−1)x1t(1+ t)a−2

(
r + 1

r

)b

−ax2(1+ t)a−1

(
r + 1

r

)b

.

Since 0 < x2 ≤ x1 ≤ 1, a ≥ 1, b < 0, t > 0, and r = 1, 2, . . . , n − 1, we have g′(t) ≥ 0

and g(t) > g(0) = 1 − x2

(
r+1
r

)b ≥ 0. Hence, g(t) is non-decreasing on 0 < x2 ≤ x1 ≤ 1,
a ≥ 1, b < 0, t > 0, and r = 1, 2, . . . , n− 1.

Thus,
[
1 + ax1t(1 + t)a−1

(
r+1
r

)b] − [x2(1 + t)a
(
r+1
r

)b] ≥ 0 if 0 < x2 ≤ x1 ≤ 1, a ≥ 1,

b < 0, t > 0, and r = 1, 2, . . . , n− 1.

Lemma 4.2.
[
λ+ x1(1 + λt)a

(
r+1
r

)b]− [1 + λx2(1 + t)a
(
r+1
r

)b] ≥ 0 if 0 < x2 ≤ x1 ≤ 1,

λ ≥ 1, a ≥ 1, b < 0, t > 0, and r = 1, 2, . . . , n− 1.

Proof: Let f(λ) =
[
λ+ x1(1 + λt)a

(
r+1
r

)b] − [1 + λx2(1 + t)a
(
r+1
r

)b]
. Taking the

first and second derivatives of f(λ) with respect to λ, we have

f ′(λ) =

[
1 + ax1t(1 + λt)a−1

(
r + 1

r

)b
]
−

[
x2(1 + t)a

(
r + 1

r

)b
]

and

f ′′(λ) = a(a− 1)x1t
2(1 + λt)a−2

(
r + 1

r

)b

.

Since 0 < x2 ≤ x1 ≤ 1, λ ≥ 1, a ≥ 1, b < 0, t > 0, and r = 1, 2, . . . , n − 1, we have
f ′′(λ) ≥ 0. Hence, f ′(λ) is non-decreasing on 0 < x2 ≤ x1 ≤ 1, λ ≥ 1, a ≥ 1, b < 0, t > 0,
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and r = 1, 2, . . . , n− 1. In addition, by Lemma 4.1, we obtain

f ′(λ) ≥ f ′(1) =

[
1 + ax1t(1 + t)a−1

(
r + 1

r

)b
]
−

[
x2(1 + t)a

(
r + 1

r

)b
]
≥ 0,

for 0 < x2 ≤ x1 ≤ 1, λ ≥ 1, a ≥ 1, b < 0, t > 0, and r = 1, 2, . . . , n − 1. Hence, f(λ) is
non-decreasing on 0 < x2 ≤ x1 ≤ 1, λ ≥ 1, a ≥ 1, b < 0, t > 0, and r = 1, 2, . . . , n− 1.

Thus,
[
λ+ x1(1 + λt)a

(
r+1
r

)b] − [1 + λx2(1 + t)a
(
r+1
r

)b] ≥ 0 if 0 < x2 ≤ x1 ≤ 1,

λ ≥ 1, a ≥ 1, b < 0, t > 0, and r = 1, 2, . . . , n− 1.

4.1. The 1/pjr, qpsd/Cmax problem.

Theorem 4.1. For the 1/pjr, qpsd/Cmax problem, an optimal schedule can be obtained by

sequencing the jobs in the smallest normal processing time first (SPT) rule.

Proof: This theorem can be proved by a pair-wise interchange of jobs. Let S1 and S2

be two job schedules where the difference between S1 and S2 is a pair-wise interchange of
two adjacent jobs Jj and Jk. That is, S1 = (π1, Jj, Jk, Jl, π2) and S2 = (π1, Jk, Jj, Jl, π2),
where π1 and π2 are partial sequences and π1 and π2 may be empty. We assume that jobs
Jj, Jk and Jl are scheduled in positions r, (r+1) and (r+2) in S1, respectively. To show
S1 dominates S2, it suffices to show that Ck(S1) ≤ Cj(S2).

Suppose that pj ≤ pk. By definition, the completion times of jobs Jj and Jk in S1 and
jobs Jk and Jj in S2 are, respectively, given by

Cj(S1) = (1 + γ)
r−1∑
i=1

pi[i] + pj

(
1 +

r−1∑
i=1

p[i]

)a

rb, (4)

Ck(S1) = (1+γ)
r−1∑
i=1

pi[i]+(1+γ)pj

(
1 +

r−1∑
i=1

p[i]

)a

rb+pk

(
1 +

r−1∑
i=1

p[i] + pj

)a

(r+1)b, (5)

Ck(S2) = (1 + γ)
r−1∑
i=1

pi[i] + pk

(
1 +

r−1∑
i=1

p[i]

)a

rb, (6)

and

Cj(S2) = (1+γ)
r−1∑
i=1

pi[i]+(1+γ)pk

(
1 +

r−1∑
i=1

p[i]

)a

rb+pj

(
1 +

r−1∑
i=1

p[i] + pk

)a

(r+1)b. (7)

Taking the difference between Equations (5) and (7), it is derived that

Cj(S2)− Ck(S1) = γ(pk − pj)

(
1 +

r−1∑
i=1

p[i]

)a

rb + (pk − pj)

(
1 +

r−1∑
i=1

p[i]

)a

rb

+ pj

(
1 +

r−1∑
i=1

p[i] + pk

)a

(r + 1)b − pk

(
1 +

r−1∑
i=1

p[i] + pj

)a

(r + 1)b.

(8)

Let λ = pk
pj

≥ 1, x =

(
1 +

r−1∑
i=1

p[i]

)a

≥ 1, and t =
pj

(1+
∑r−1

i=1 p[i])
> 0. Then, we have that

Cj(S2)− Ck(S1) = γpj(λ− 1)xrb

+ pjxr
b

{[
λ+ (1 + λt)a

(
r + 1

r

)b
]
−

[
1 + λ(1 + t)a

(
r + 1

r

)b
]}

.

(9)
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Clearly, γpj(λ− 1)xrb ≥ 0. Hence, by Lemma 4.2, we obtain Cj(S2) ≥ Ck(S1).
Therefore, repeating this interchange argument for all the jobs which are not sequenced

in the SPT rule yields Theorem 4.1.

4.2. The 1/pjr, qpsd/
∑∑∑

Cj problem.

Theorem 4.2. For the 1/pjr, qpsd/
∑

Cj problem, an optimal schedule can be obtained
by sequencing the jobs in the SPT rule.

Proof: We still use the same notations as in the proof of Theorem 4.1. Suppose that
pj ≤ pk. To show S1 dominates S2, it suffices to show that (i) wl(S1) ≤ wl(S2) and (ii)
Cj(S1) + Ck(S1) ≤ Ck(S2) + Cj(S2).
By definition, the waiting times of job Jl in sequences S1 and S2 are, respectively, given

by

wl(S1) =
r−1∑
i=1

pi[i] + pj

(
1 +

r−1∑
i=1

p[i]

)a

rb + pk

(
1 +

r−1∑
i=1

p[i] + pj

)a

(r + 1)b (10)

and

wl(S2) =
r−1∑
i=1

pi[i] + pk

(
1 +

r−1∑
i=1

p[i]

)a

rb + pj

(
1 +

r−1∑
i=1

p[i] + pk

)a

(r + 1)b. (11)

Then the difference between wl(S2) and wl(S2) is

wl(S2)− wl(S1) = (pk − pj)

(
1 +

r−1∑
i=1

p[i]

)a

rb

+ pj

(
1 +

r−1∑
i=1

p[i] + pk

)a

(r + 1)b − pk

(
1 +

r−1∑
i=1

p[i] + pj

)a

(r + 1)b.

(12)

By the proof of Theorem 4.1, we have wl(S1) ≤ wl(S2).
Furthermore, by the proof of Theorem 4.1, we have that Cj(S2) − Ck(S1) ≥ 0 and

Ck(S2) − Cj(S1) = (pk − pj)

(
1 +

r−1∑
i=1

p[i]

)a

rb ≥ 0. Hence, Ck(S2) + Cj(S2) ≥ Cj(S1) +

Ck(S1).
Therefore, repeating this interchange argument for all the jobs which are not sequenced

in the SPT rule yields Theorem 4.2.

4.3. The 1/pjr, qpsd/
∑∑∑

αjCj problem.

Theorem 4.3. For the 1/pjr, qpsd/
∑

αjCj problem, if pk
pj

≥ 1 ≥ αk

αj
for any two jobs Jj

and Jk, j, k = 1, 2, . . . , n, an optimal schedule can be obtained by sequencing the jobs in a
non-decreasing order of pj/αj (i.e., the WSPT rule).

Proof: Here, we still use the same notations as in the proof of Theorem 4.1. To show S1

dominates S2, it suffices to show that (i) wl(S1) ≤ wl(S2) and (ii) αjCj(S1)+αkCk(S1) ≤
αkCk(S2) + αjCj(S2).
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The proof of part (i) is given in Theorem 4.2. In addition, by the proof of Theorem
4.1, we have that

[αkCk(S2) + αjCj(S2)]− [αjCj(S1) + αkCk(S1)]

= (αjpk + αkpj)

(
1 +

r−1∑
i=1

p[i]

)a

rb + (αk + αj)(pk − pj)

(
1 +

r−1∑
i=1

p[i]

)a

rb

+ αjpj

(
1 +

r−1∑
i=1

p[i] + pk

)a

(r + 1)b − αkpk

(
1 +

r−1∑
i=1

p[i] + pj

)a

(r + 1)b.

(13)

Let x1 =
αj

αj+αk
, x2 =

αk

αj+αk
, λ = pk

pj
, x =

(
1 +

r−1∑
i=1

p[i]

)a

≥ 1, and t =
pj

(1+
∑r−1

i=1 p[i])
> 0. If

pk
pj

≥ 1 ≥ αk

αj
, then 0 < x2 ≤ x1 ≤ 1 and λ ≥ 1. Thus,

[αkCk(S2) + αjCj(S2)]− [αjCj(S1) + αkCk(S1)]

= (αjλ+ αk)pjxr
b + (αk + αj)pjxr

b

{[
λ+ x1(1 + λt)a

(
r + 1

r

)b
]

−

[
1 + λx2(1 + t)a

(
r + 1

r

)b
]}

.

(14)

Clearly, (αjλ + αk)pjxr
b > 0. Hence, by Lemma 4.2, we have αjCj(S1) + αkCk(S1) ≤

αkCk(S2) + αjCj(S2).
Therefore, we have that the optimal schedule can be obtained by sequencing the jobs

in a non-decreasing order of pj/αj.

4.4. The 1/pjr, qpsd/Lmax problem.

Theorem 4.4. For the 1/pjr, qpsd/Lmax problem, if jobs have agreeable due-dates, i.e.,
pj ≤ pk implies dj ≤ dk for any jobs Jj and Jk, j, k = 1, 2, . . . , n, an optimal schedule can
be obtained by sequencing the jobs in a non-decreasing order of dj (i.e., Earliest Due-Date
rule, EDD rule).

Proof: We still use the same notations as in the proof of Theorem 4.1. Then the
lateness of jobs Jj and Jk in S1 and jobs Jk and Jj in S2 are respectively given by

Lj(S1) = (1 + γ)
r−1∑
i=1

pi[i] + pj

(
1 +

r−1∑
i=1

p[i]

)a

rb − dj, (15)

Lk(S1) = (1+γ)
r−1∑
i=1

pi[i]+(1+γ)pj

(
1 +

r−1∑
i=1

p[i]

)a

rb+pk

(
1 +

r−1∑
i=1

p[i] + pj

)a

(r+1)b−dk,

(16)

Lk(S2) = (1 + γ)
r−1∑
i=1

pi[i] + pk

(
1 +

r−1∑
i=1

p[i]

)a

rb − dk, (17)

and

Lj(S2) = (1+γ)
r−1∑
i=1

pi[i]+(1+γ)pk

(
1 +

r−1∑
i=1

p[i]

)a

rb+pj

(
1 +

r−1∑
i=1

p[i] + pk

)a

(r+1)b−dj.

(18)
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If dj ≤ dk, then we obtain Lk(S2) ≤ Lj(S2). That is, Lj(S2) = max{Lk(S2), Lj(S2)}
if dj ≤ dk. Moreover, if pj ≤ pk and dj ≤ dk, from Theorem 4.1, we have that Lj(S1) ≤
Lj(S2) and Lk(S1) ≤ Lj(S2). Hence, max{Lj(S1), Lk(S1)} ≤ max{Lk(S2), Lj(S2)}.
Therefore, we see that the optimal schedule can be obtained by sequencing the jobs in

a non-decreasing order of dj.

4.5. The 1/pjr, qpsd/Tmax problem. The maximum tardiness Tmax is defined as Tmax =
max {0, Lmax}. Then, the results of Theorem 4.4 can be transferred directly to the problem
of 1/pjr, qpsd/Tmax. Consequently, we have the following theorem.

Theorem 4.5. For the 1/pjr, qpsd/Tmax problem, if jobs have agreeable due-dates, i.e.,
pj ≤ pk implies dj ≤ dk for any jobs Jj and Jk, j, k = 1, 2, . . . , n, an optimal schedule can
be obtained by sequencing the jobs in the EDD rule.

5. Numerical Example. We demonstrate the results of the paper in the following ex-
ample:

Example 5.1. Consider 5 jobs with p1 = 3, p2 = 4, p3 = 5, p4 = 6, p5 = 7, d1 = 5,
d2 = 6, d3 = 7, d4 = 8, d5 = 9, α1 = 6, α2 = 5, α3 = 4, α4 = 3, α5 = 2. The
deteriorating factor and the learning factor are a = 1.0 and b = −0.3, respectively. The
normalizing constant for p-s-d delivery time is γ = 0.05. According Theorems 4.1-4.5, we
know that the optimal schedule is [J1, J2, J3, J4, J5] for the following objective functions:
Cmax,

∑
Cj,

∑
αjCj, Lmax and Tmax. In addition, by Equation (3), we obtained that

the completion times of jobs are C[1]= 3.0, C[2]= 16.146, C[3]= 45.565, C[4]= 98.464, and
C[5]= 183.103. Then, we see that the optimal solution for the example is as follows:

Cmax =183.103,∑
Cj =3 + 16.146 + 45.565 + 98.464 + 183.103 = 346.278,∑

αjCj =6 ∗ 3 + 5 ∗ 16.146 + 4 ∗ 45.565 + 3 ∗ 98.464 + 2 ∗ 183.103 = 942.588,

Lmax = max
j=1,2,...,n

{Cj−dj}

= max {3− 5, 16.146− 6, 45.565− 7, 98.464− 8, 183.103− 9} = 174.103,

Tmax = max {0, Lmax} = 174.103.

6. Conclusions. In this paper we considered single-machine scheduling problems with
p-s-d delivery times and deterioration and learning effects simultaneously to minimize the
makespan, the total completion time, the total weighted completion time, the maximum
lateness, and the maximum tardiness problems. The job delivery time was assumed to
be proportional to the job’s waiting time. We showed that the makespan and the total
completion time minimization problems can be optimally solved by polynomial time algo-
rithms. We also proved that the total weighted completion time, the maximum lateness,
and the maximum tardiness minimization problems remain polynomially solvable under
certain conditions. It is worthwhile for future research to investigate p-s-d delivery times
scheduling with different jobs deterioration and/or the effect of learning, in multi-machine
setting, or optimizing other performance measures.
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