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ABSTRACT. This paper presents a problem of finding collision-free paths for multiple
robots in the complex environment. Many existing results for the problem cannot guaran-
tee to find a solution or to reduce the computational complezity as the number of robots
increases. In this paper, using a graph with cycles, we show that multiple robots can
determine collision-free paths. Specifically, we propose an algorithm which guarantees
completeness and scalability even though the empty space is small due to a crowd of
robots.
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1. Introduction. As addressed in [20], path planning is important in many real-life
problems such as robotics, military applications, logistics, and commercial games. Espe-
cially, as the use of multiple robots increases recently due to many potential benefits, path
planning for multiple robots has been researched as a critical issue [12]. The objective of
the path planning is to move multiple robots from their start positions to goal positions
without any collision. Approaches for the path planning of multiple robots are largely
classified into two types of methods such as decoupled methods and coupled methods.

Decoupled methods find a path for each robot independently from other robots, and
then the paths of all robots are coordinated using various techniques [2, 3, 5, 7, 15-
18] to avoid collision. In the velocity tuning technique developed in [7], the velocity of
each robot is adapted to avoid collision with other robots. In the prioritized planning
technique developed in [2, 3], priority is given to each robot and by moving robots in
order of priority, collision is avoided. Although the computational complexity of the above
methods is low, decoupled methods cannot guarantee completeness, where completeness
means that if there is a collision-free path, finding the path is guaranteed [14]. On the
other hand, coupled methods find a path for each robot by considering all robots’ current
configuration and goal configuration concurrently [8, 9, 13]. With the search algorithms
like A* algorithm in [18], coupled methods can achieve completeness. However, since
the computational complexity grows exponentially with the number of robots, coupled
methods are limited to a simple problem involving a small number of robots [18].

In [11, 14, 19], they attempt to combine the merits of the above two methods, to
reduce the computational complexity while guaranteeing completeness. In [19], to reduce
the computational complexity, they create probabilistic roadmaps which reduce the size
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of the search space. Nevertheless, the method is appropriate for only a small number of
robots. In [11], they proposed an algorithm in which they first find a path of each robot
independently, then to avoid collision, start configurations and goal configurations of all
robots are changed temporarily so that there are no overlapping paths. Since the path of
each robot is computed independently from other robots, the computational complexity
is low. However, if the number of robots is large compared with the size of the roadmap,
changing start and goal configurations may not be plausible and then, completeness cannot
be guaranteed. In [14], first the roadmap is transformed to a graph consisting of nodes
and edges. Then, to avoid collision, initially all robots move to leaf nodes which are the
nodes with only one incident edge and then they move to each goal according to priority.
Although the method guarantees completeness and reduces the computational complexity
due to simplicity, it cannot be applied to the case that the number of robots is larger than
the number of leaf nodes of the graph. As the size of the roadmap increases, the required
empty space to guarantee completeness becomes larger to satisfy the conditions in [11, 14].

On the other hand, robots are used in many industrial fields to increase work pro-
ductivity as shown in [4, 10]. Also, recently needs for robots have been increased to
provide better service [1]. Specifically, in shipbuilding, robots are used to increase work
productivity and quality [6]. As the number of robots placed at work sites increases, work
productivity and quality can be increased. However, the increase of robots makes empty
space small and makes it difficult for robots to find collision-free paths reaching to their
goals. Thus, work productivity and quality can be degraded. In such an environment,
to guarantee high work productivity and quality, a path planning algorithm suitable for
small empty space due to a crowd of robots is needed. The previous researches [11, 14] are
not appropriate in that they require large empty space to guarantee finding collision-free
paths.

In this paper, we present a path planning method for multiple robots which guarantees
completeness with a simple method even though the migration of robots is difficult due
to small empty space and due to a crowd of robots. For this purpose, the roadmap is
transformed to a graph with cycles. Then, we formally show that representation of the
roadmap as a graph can guarantee completeness although empty space is small. More-
over, we show that representation of the roadmap as a graph with cycles can provide
scalability for a large number of robots with low computational complexity. Then, we
propose an algorithm which guarantees completeness and scalability for a large number
of robots in the complex environment easily. Then, through examples including practical
application, we show that (1) when the roadmap is not crowded with robots, the proposed
algorithm finds collision-free paths with computational complexity lower than or equal to
the previous results (2) although previous results cannot guarantee completeness due to
a crowd of robots in the roadmap, the proposed method can guarantee completeness.

2. Map Representation with Cycles and Nodes. As shown in [14], the roadmap is
represented as a graph without cycles in which each space is represented as a node and the
connecting line between two nodes is represented as an edge. Although the method can
guarantee completeness simply, it holds only for the case that the number of leaf nodes is
larger than the number of robots. Unlike the method in [14], we represent the roadmap
as a graph with cycles and show that forming cycles guarantees completeness for more
robots than without forming cycles.

Before presenting the main results, we introduce assumptions about the environment
which are also used in [11, 14].
Assumptions about environment

e Each node is occupied by only one robot.
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e To avoid collision, only one robot can move for each time interval.
e Robots can turn in place.

Note that from the above assumptions, if there are one or more empty nodes in a cycle,
just by rotating in the cycle, any robots in the cycle can move to any node in the cycle
while keeping its relative position to other robots. In the following theorem, we use this
property.

Theorem 2.1. Suppose that the roadmap is transformed to a graph with n connected
cycles Ci, i = 1,--- ,n and n sets of leaf nodes L; connected to C;. Let the number of
nodes in C; be N¢, and the number of nodes in L; be Ny,. Let R be the number of robots
in the roadmap. If R < 2, there are at least one or more paths such that the robots can
reach their goals. If R > 2, the sufficient and necessary condition of the existence of
collision-free paths irrespectively of their start configurations is

Ney + Np, —2 >R for n=1 )
v (Ne,+Ni,)—3 >R for n>1

Proof: When R < 2, if the roadmap can be changed to a graph with cycles, robots can
always avoid collision in cycles, and thus robots can move to any node in the graph irre-
spectively of their start configuration. Thus, robots can move to their goals irrespectively
of their start configuration.

When R > 2, if robots are placed in a cycle, they cannot switch their position in the
cycle. In the following, we derive the sufficient condition and necessary condition for the
existence of collision-free paths irrespectively of robots’ start configuration.

Sufficiency: Suppose that Y | Ny, = 0. Let n = 2. Suppose that R = Z?:l Ne, — 3.
There are two cycles C'y, C5 as in the following figure:

2
FIGURE 1. Two connected cycles with R =) N, — 3
i=1

The left cycle C; has N¢, nodes and N¢, —1 robots Ay, As, -+, An,,—1 and the right
cycle Cy has N¢, nodes and N¢, — 2 robots By, Bs,--, Bn,,—2. From the structure of
cycles, robots can rotate in the cycle while keeping the relative order of robots along the
clockwise or the counter clockwise direction only if there is one or more nodes in cycle is
empty. Thus, in Figure 1, a robot A;, i € [1, N, — 1], can always move to either the left
side node or the right side node of B;, j € [1,---, N¢g, — 2]. Then, although A; moves
to Cy, there is 1 empty node in C5. Thus by rotating the robots in C5, A; can move
to the desired node while keeping the relative position with other robots. Since A; does
not indicate a particular robot rather indicates anyone of robots, the above principle is
applied to any robot in C';. Thus, all robots can move to the desired goals. If there are
more than 3 empty nodes in two cycles, robots can move more freely than for the case of
3 empty nodes, obviously all robots can move to their desired goals.

Now suppose that the left cycle has N, nodes and N¢, robots and right cycle has Ng,
nodes and N¢, — 3 robots. To move a robot in C} to (5, the robot can be placed at
the node connected to C5. For this purpose, it is required that robots in C'; can rotate.
However, since there is no empty node in C, the robot placed at the node connected to
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FIGURE 2. Multiple connected cycles with R = ) N¢, — 3
i=1

leaf node

O
\C)Ieaf node

FI1GURE 3. One cycle and leaf nodes connected to cycle

(5 should be moved. Then, the situation becomes the same as the left cycle has N¢,
nodes and N¢, — 1 robots and the right cycle has N¢, nodes and N¢, — 2 robots. Thus,
the above principle can be applied, and thus, all robots can move to their desired goals.
As it follows from the above, we can see that for n = 2 without leaf, if

2
> Ne,—3>R (2)
i=1
all robots can move to their goals without collision.
Let n > 3 and ) Ny, = 0. Suppose that R = ) N¢, — 3 and cycles are connected as

i=1 i=1
shown in Figure 2.

From the result of n = 2, if there are 3 empty nodes in neighboring two cycles, robots
in the cycles can move to any node in the two cycles. On the other hand, suppose that the

number of empty nodes in neighboring two cycles is smaller than 3. Since R = ) N¢, —3,

i=1
there are empty nodes outside the two cycles, and by moving some robots in the two cycles
to other cycles, 3 empty nodes can be obtained in the neighboring two cycles. Thus, robots
which tend to move towards their goals can move to the adjacent cycle in the direction of
their goals. By repeating this procedure, robots can reach their goals. Thus, the robots
can move to their goals irrespectively of their start configuration if

n
> Ne,=3>R forn>2 (3)

i=1
Now, suppose that there is a cycle C connected to a set of leaf nodes L; and Ny, # 0
as shown in Figure 3. If there are one or more empty nodes in C; when a robot Ry, in
a set L; moves to ('}, Ry, can move to any place in the cycle by rotating in the cycle.
Then, by rotating robots in the cycle, any other robots in the cycle can move to the leaf
node in which Ry, was firstly placed. Moreover, by moving a robot in C} to a node of
Ly and then again moving to C', the relative position of the robot to other robots can be

switched. Thus, all robots can move to any place. Then, we can easily see that if

Ne, +Np, —2>R (4)

all robots can move to any node without collision.



ON COMPLETENESS OF SCALABLE PATH PLANNING 4171

Now there are two or more cycles C;, i = 1,--- ,n and Y., L, # 0. Denote a pair
(Cy, L;) be S;. Suppose that S;, [ € {1,---,n} and the other set Sy where [ # k €
{1,--+,n} are adjacent. Then, from (2) and (4), a robot in S; can move to any node in
Cy if

(N¢, + Ni,) + (Ng,, + Ni,) — 3 > total number of robots in S; and S (5)
On the other hand, from (4), a robot in C can move to any node in Ly if
(N¢, + Ni,) + (Ng,, + Ni,) —2 > total number of robots in S; and S (6)

Note that from (5) and (6), if (5) is satisfied, any robot in S; can move to any nodes in
Sk. Then, we can consider S; as a cycle, and then by applying the same principle used to
drive (3), we can see that if . (N¢, + Np,) — 3 > R, any robot can move to any node
without collision.

Necessity: We show the necessary condition by mathematical induction. First, for 2
cycles and one or zero leaf node, we show that if (1) is not satisfied, then robots cannot
move to their goals irrespectively of their start configuration. First, we assume that for
n cycles and m leaf nodes, if (1) is not satisfied, then robots cannot move to their goals
irrespectively of their start configuration. Then, we need to show that when the number
of cycles increases to n + 1 or the number of leaf nodes increases to m + 1, if (1) is not
satisfied, then robots cannot move to their goals irrespectively of their start configuration.
Thus, by this induction method, we show that for any number of cycles and leaf nodes,
robots cannot move to their goals irrespectively of their start configuration if (1) is not
satisfied.

Consider that there are 2 cycles C,Cy as follows: C) has Ng, nodes and Ng, — 1
robots Ay, -- vANol—l and C5 has N¢, nodes and N¢, — 1 robots, By, - - - ,BNOQ_l. That
is, N¢, + N, — 2 = R. Suppose that the goal of A;, i € {1,---, Ng, — 1} is a node in Cs
which is not the node connected to C. If A; moves to the node in C5 which is connected
to C', there is no empty node and then the robots cannot rotate in C5, and thus A; cannot
move to other node in Cs. To prevent this situation, when A; is transferred to Cs, there
is at least one empty node in Cs, and it means that there are at least 2 empty nodes in
C5 before A; moves to C5. To make 2 empty nodes in Cs, one of By, - - - ,BNOfl should
move to C; before A; move to Cy. However, then the entrance of C' is blocked and A;
cannot move to C5. Thus, in any cases, A; cannot move to a node in Cy which is not the
node connected to C;. Since the same principle holds for other robots, all robots cannot
move to their goals irrespectively of their start configuration.

2 2

Now suppose that >~ N7, = 1 and Y N¢, —1 = R. Comparing to the case that there is
=1 =1

no leaf node, it is clear that the relation Z N¢, + Z N1, — 2 = R is not changed. Thus,

a robot should be placed in the leaf node and the leaf node cannot provide empty space.
The situation is the same as the leaf node does not exist and thus robots in Cy (or C5)
cannot move to the nodes in Cy (or C4). It means that robots cannot move to their goals
irrespectively of their start conﬁguration

Now, suppose that for n cycles with Z N, =m,if >  Ne,+>.r No, —2 = R holds,

robots cannot move to their goals 1rrespect1vely of their start configuration. Increase the
number of cycles to (n + 1) while the relation ) " , N;, = m remains the same. Then,
if Znﬂ N¢, + Z"H Ni. —2 = R, it corresponds to the case that a cycle full of robots is
appended Compared to the case of n cycles and thus the appended cycle cannot provide
any empty nodes. The situation is the same as before the cycle is appended. Thus, robots
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cannot move to their goals irrespectively of their start configuration. On the other hand,
increase the number of leaf nodes to m + 1 While the number of cycles remains as n, that
is, n cycles with Z Ni, = m+ 1. Then, if Z Ne, + Z N, — 2 = R, it corresponds to

=1 =1
the situation that a leaf node full of robots is appended compared to the case of n cycles

with Y | Nz, = m and thus the appended node cannot provide any empty nodes. The
situation is the same as before the leaf node is appended. Then, robots cannot move to
their goals irrespectively of their start configuration.

Thus, by mathematical induction, when there are two or more cycles, robots cannot
move to their goals irrespectively of their start configuration if > | N, +> | Np, —2 =
R. Thus, if > Ne, + >0 N1, — 2 < R, the number of empty nodes is smaller so
that robots cannot move to their goal irrespectively of their start configuration. Thus,
robots cannot move to their goal irrespectively of their start configuration if Y | N¢, +
Sr N, —2<R.

Now, by using Theorem 2.1, we show that representing the roadmap as a graph with
cycles guarantees the existence of collision-free paths for more or equal to the number of
robots representing the roadmap as a graph without cycles.

Theorem 2.2. Represent the roadmap as a graph of tree structure with the method in
[14]. Then, transform the the graph except leaf nodes to cycles. Then, the transformed
graph with cycles quarantees the existence of collision-free paths for more or equal to the
number of robots using the graph without cycles shown in [14].

Proof: In [14], when the roadmap is represented as a graph of tree structure, collision-
free paths for R robots exist if L — 1 > R where L is the number of leaf nodes. On the
other hand, when there is one or more cycle, from Theorem 2.1, there are collision-free
paths for R robots if No + L — 3 > R where N¢ is the total number of nodes in cycles.
If No =2, then L — 1> R and N¢o + L —3 > R are the same but if No > 3, we have
Nec+ L —3 > L — 1. Thus, if each cycle has at least 3 nodes, representing the roadmap
as a graph with cycles guarantees existence of collision-free paths for a large number of
robots compared with the result in [14].

Remark 2.1. If the roadmap is crowded with robots, it is not likely to satisfy L —1 > R.
On the other hand, for the large roadmap, 3 empty nodes turns out to be small space in
the large roadmap. Thus, representing the road map as a graph with cycles is appropriate
to find collision-free paths when the empty space is small due to a crowd of robots.

3. Two Phase Path Planning Algorithm. In this section, to obtain collision-free
paths, we propose a path planning algorithm. The proposed algorithm consists of two
phases. As described in detail later, the algorithm is applied to individual robots sequen-
tially according to the predefined priority. In Phase 1, all robots whose goals are leaf
nodes move to their goals sequentially according to priority, and then in Phase 2, other
robots move to their goals according to priority. We summarize some definitions and
settings to be used in the algorithm.
Definitions and Settings: To begin with, we use a word ‘CL-set’ as a set of a cycle and
leaf nodes connected to the cycle.

r;: In two phases, r; denotes robot which moves to its goal currently.

depth: When the distance from a predetermined node in a cycle to a node N in the
cycle is measured in the clockwise direction, if the distance is large, we say that the depth
of the node N is deep, otherwise we say that the depth of the node is swallow.
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connection node of S for r;: When a robot r; moves to a CL-set S from outside S, there
is a node in S which the robot should pass by first. The node is called as the connection
node of S for r;.

left (right) entry node of S for r;: When a robot r; moves to a CL-set S from outside
of S, there are two nodes in S adjacent to the connection node of S for r;. For r;, the two
nodes are placed at the left and right side of the connection node of S respectively. The
left (right) side node is called as the left (right) entry node of S for r;.

outnode(St, S2): When a robot r; moves from a CL-set S; to a CL-set Sy, the node in
S1 connected to Sy is called as the outnode(Sy, Ss).

current CL-set(r;): The CL-set in which r; is located.

next CL-set(r;): The CL-set adjacent to the current CL-set in the direction of r;’s goal.

cnset(r;): Function such that enset(r;) : r; — [current CL-set(r;), next CL-set(r;)].

goal CL-set(r;): The CL-set in which the goal of r; is located.

infreedom(S): Function such that infreedom(S) = true if the number of empty nodes
in S > 2, and infreedom(S) = false otherwise. This function is used to check whether
robots in the CL-set S can move to any nodes in S. If the condition for true is satisfied,
it is clear that robots in the CL-set S can move to any node in S because the relation (1)
for n = 1 is satisfied for the nodes in S.

betfreedom(St, Se): Function such that bet freedom(Sy, Sy) = true if the total number of
empty nodes in S; and Sy > 3 and bet freedom(Sy, S2) = false otherwise. This function
is used to check whether robots in the CL-sets S; and S, can move to any nodes in S
and S,. If the condition for true is satisfied, it is clear that robots in the CL-sets S; and
Sy can move to any node in S; and Sy because the relation (1) for n > 1 is satisfied for
the nodes in S; and S,.

moveout(Sy, -+, Sk): Select any other robot than r; in one of Sy, -, Sk, and move it
out from Sy,---, Sj.

movetoentry(S): Move r; to one of the left (right) entry nodes in S which are adjacent
to next CL-set(r;).

prior(A): Give priority to robots in a set A. Robots whose goals at leaf nodes should
be given higher priority than robots whose goals are cycles. If A is the set of robots whose
goals are leaf nodes, assign higher priority to a robot whose goal is connected to a cycle
which is nearer to the end of the graph. For the robots whose goals are connected to the
same cycle, priority is given randomly. If A is the set of robots whose goals are not leaf
nodes, assign higher priority to a robot whose goal is in a cycle which is nearer to the end
of the graph. For the robots whose goals are in the same cycle, higher priority is given to
the robots whose goals are deeper.

insert (next CL-set(r;)): For the robots in the cycle of the next CL-set(r;), rotate the
robots keeping their relative position to the other robots so that the robot whose depth
of goal is the deepest among robots whose depth of goal is more shallow than r; should be
placed at the left entry node of the next CL-set(r;). Analogously, the robot whose depth
of goal is the shallowest among robots whose depth of goal is deeper than robot ¢ should
be placed at the right entry node of the next CL-set(r;), and the connection node of the
next CL-set(r;) should be empty.

Recall that robots whose goals are leaf nodes should be given higher priority than
robots whose goals are cycles. Since robots whose goals are leaf nodes move in Phase 1
and robots whose goals are leaf nodes move in Phase 2, Phase 2 begins after Phase 1 ends.
A. Phase 1

In this phase, all robots whose goals are leaf nodes move to their goals sequentially
according to priority. Since higher priority is given to a robot whose goal is connected to
cycle and the cycle is nearer to the end of the graph and leaf nodes are end nodes in the
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roadmap, if robots whose goals are leaf nodes move earlier than other robots, they do not
block other robots’ paths, and thus, complexity of the algorithm decreases. Robots move
to their goals sequentially according to their priority. From the proof of Theorem 2.1, to
move a robot from a set and to another set, betfreedom should be true and to move a
robot from a leaf node to the connected cycle or from a cycle to the connected leaf node,
infreedom should be true. If it is not satisfied, other robots should move to other sets to
make the values true. Remaining details are given in the Pseudocode for Phase 1.

Pseudocode for Phase 1

1 A : Set of robots whose goals are leaf nodes
2 prior(A)
3 In order of priority, name robots as ry,ry--- , 1,
4 that is r’s priority is the highest and and r,’s priority is the lowest.
5 fori=1ton
6 [current CL-set(r;)), next CL-set(R;)] = cnset(r;)
7 while ( next CL-set(r;) # goal CL-set(r;))
8 infree = infreedom(current CL-set(r;))
9 betfree = betfreedom(current CL-set(r;), next CL-set(r;))
10 if (betfree = false)
11 while (betfree = false)
12 moveout(current CL-set(r;), next CL-set(r;))
13 end while
14 else
15 if (infree = false)
16 moveout(current CL-set(r;))
17 end if
18 movetoentry(current CL-set(r;))
19 end if
20 infree = infreedom(next CL-set(r;))
21 if (infree = false)
22 outnodergnq(r;) = randomly selected one node
23 of outnodes(current CL-set(r;), next CL-set(r;))
24 while (infree = false)
25 moveout(next CL-set(r;), outnodegana(r;))
26 infree = infreedom(next CL-set(r;))
27 end while
28 end if
29 move r; to next CL-set(r;)
30 [current CL-set(r;), next CL-set(r;)] = cnset(r;)
31 end while
32 moveout(goal of ;)
33 rotate r; in the current cycle and then move r; to its goal
34 end for
B. Phase 2

In the second phase, robots whose goals are not leaf nodes move to their goals sequen-
tially in order of priority. Since all robots whose goals are leaf nodes are placed in their
goals through Phase 1, the leaf nodes can be neglected as if these nodes do not exist.
Detailed algorithm is given in the Pseudocode for Phase 2.
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Pseudocode for Phase 2

1 A : Set of robots whose goals are not leaf nodes

2 prior(A)

3 In order of priority, name robots as ri,7r9- -, rp,

4 that is r’s priority is the highest and and r,,’s priority is the lowest.
5 fori=1tom

6 [current CL-set(r;)), next CL-set(r;)] = cnset(r;)

7 If current CL-set(r;) = goal CL-set(r;)

8 If (robots in current CL-set(r;) whose goals are in current CL-set(r;)
9 are not arranged in order of their depth)
10 move r; to one of adjacent CL-sets

11 next CL-set(r;) = goal CL-set(r;)

12 else

13 continue

14 end if

15 end if

16 while (next CL-set(r;) # goal CL-set(r;))

17 infree = infreedom(current CL-set(r;))

18 betfree = betfreedom (current CL-set(r;), next CL-set(r;))

19 if (betfree = false)

20 while (betfree = false)

21 moveout(current CL-set(r;), next CL-set(r;))

22 end while

23 else

24 if (infree = false)

25 moveout(current CL-set(r;))

26 end if

27 movetoentry (current CL-set(r;))

28 end if

29 infree = infreedom(next CL-set(r;))

30 if (infree = false)

31 outnodeggnq(r;) = randomly selected one node

32 of outnodes(current CL-set(r;), next CL-set(r;))
33 while (infree = false)

34 moveout(next CL-set(r;), outnodegana(r;))

35 infree = infreedom(current CL-set(r;))

36 end while

37 end if

38 move(next CL-set(r;))

39 [current CL-set(r;), next CL-set(r;)] = cnset(r;)

40 end while

41 insert (next CL-set(r;))

42 end for

43 All robots rotate in the cycle while keeping their relative positions to move
their goals

After Phase 1 and Phase 2, all robots arrive to their respective goals completely. Let the
complexity of A* algorithm be C'. Note that when there is only one robot, path planning
is executed with the same manner of A* algorithm. Throughout two phases, each robot’s
path is computed only once since robots move to their goal sequentially and robots which
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already arrived to their goals do not block other robots’ paths. Then, although the number
of robots increases, other robots’ paths need not be considered when computing the path
for each robot. Thus, the total computational complexity of two phases becomes O(RC')
for R robots.

Remark 3.1. Note that the proposed algorithm guarantees completeness with low com-
putational complexity which increases linearly as the number of robots increases. This
achievement is obtained by introducing cycles which allows robots in a cycle move to any
place in the cycle just by rotation along the cycle even though other robots are on the
cycle. From this property, if the road map is represented as a graph with cycles, when a
robot moves to its goal, the robot has only to know the cycles on the path reaching to goal
irrespective of the paths of other robots. Thus, the computational complezity is that of the
decoupled method.

4. Examples. To show the effectiveness of the proposed method, we compare perfor-
mances of the proposed method with the methods in [11, 14] for two scenarios. In the
first scenario, if the proposed method and the methods in [11, 14] can guarantee com-
pleteness, the proposed method exhibits efficiency higher than or equal to the methods in
[11, 14] in the sense that the total length of the robots’ movement is shorter than or equal
to those obtained from [11, 14] and the computational complexity is lower than or equal to
those obtained from [11, 14] also. Nowadays, as presented in [6], robots are used in ship-
building to improve work productivity and quality. In the second scenario, we consider
the path planning problem for robots in shipyard as a practical example, where we show
that the proposed method can guarantee completeness with computational complexity
O(RC) even the methods in [11, 14] cannot guarantee completeness. The comparison
results are summarized in Table 1.
i) 1st scenario

Initially 19 robots Ry,---, Ryg are located as shown in Figure 4(a) and their goal
configuration is shown in Figure 4(b). Squares with slashes are the spaces which are
filled with fixed obstacles and thus robots cannot move to those squares. Squares without
slashes are free spaces. Since there can be two or more cycles and the number of the
empty nodes is larger than 3, the proposed method can be applied. Also, the methods in
[11, 14] can be applied because the number of leaf nodes can be larger than the number
of robots. Let the length of squares’ side be 1. As summarized in Table 1, the proposed
algorithm guarantees completeness with performance better than or nearly equal to the
methods in [11, 14].
ii) 2nd scenario

Consider the shipbuilding yard as shown in Figure 5(a). Figure 5(a) can be schematized
as shown in Figure 5(b). As shown in Figure 5, robots can move on some regions of the

TABLE 1. Performance comparison summary for two scenarios

Scenario | Method | Completeness Computational | Total movement length

complexity of robots
[11] guaranteed 21C 93
Scenario 1 [14] guaranteed 29C 196
Proposed | guaranteed 22C 93
[11] not guaranteed - -
Scenario 2 [14] not guaranteed - -

Proposed | guaranteed 38C 897
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FIGURE 5. (a) Shipbuilding yard, (b) schematized shipbuilding yard
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FIGURE 6. 2nd scenario: (a) start configuration, (b) desired final configuration

ship but cannot move on the other regions. Suppose that robots are doing their tasks on
the deck. Then, the deck of the ship can be drawn as a roadmap as shown in Figure 6.
In Figure 6, the outer line represents the edge of the deck, the gray blocks represent the
region where robots can move and the other regions where robots cannot move. Let there
be 4 types of tasks, welding, screw driving, cutting, and painting but robots are specialized
in only one of the types. Suppose that for each block, 4 types of tasks should be executed
and at each block, robots have just finished their tasks at their current positions as shown
in Figure 6(a). Then, Figure 6(b) represents their next goal positions where their new



4178 H.-W. JO, J.-H. PARK, G. T. KIM AND J.-T. LIM

tasks should be executed. Each block can be represented as a node, and then there are 6
empty nodes in the map. Thus, the condition in Theorem 2.1 is satisfied and by applying
the proposed algorithm, all robots can reach their goal positions without collision. Let
the length of squares’ side be 1. As shown in Table 1, proposed algorithm guarantees
completeness with computational complexity O(RC') even though the methods in [11, 14]
cannot guarantee completeness.

5. Conclusion. In this paper, a multiple robot path planning problem is presented.
First, we find out the existence condition of collision-free paths irrespective of their start
configuration. We show that representing the roadmap as a graph with cycles guarantees
the existence of collision-free paths for more robots than that in the existing methods.
We quantitatively show the relation between the node number of the roadmap and the
number of robots for the existence of collision-free paths. We conclude that as the number
of robots increases, representing the roadmap as a graph with cycles is more beneficial
than the existing methods. Finally, we propose an algorithm guaranteeing completeness
and scalability.

Acknowledgements. This research is supported by NRRC for RIT (NIPA-2012-H1502-
12-1002).

REFERENCES

[1] G. Bekey and J. Yuh, The status of robotics, IEEE Robotics & Automation Magazine, vol.15, no.1,
pp.80-86, 2008.

[2] M. Bennewitz, W. Burgard and S. Thrun, Optimizing schedules for prioritized path planning of
multi-robot systems, Proc. of IEEE Int. Conf. Robot. Autom., pp.271-276, 2001.

[3] M. Bennewitz, W. Burgardm and S. Thrun, Finding and optimizing solvable priority schemes for
decoupled path planning techniques for teams of mobile robots, Robotics and Autonomous Systems,
vol.41, no.2, pp.89-99, 2002.

[4] G. Biegelbauer, A. Pichler, M. Vincze and C. L. Nielsen, The inverse approach of flex paint, IEEE
Robotics & Autonomation Magazine, vol.12, no.3, pp.89-99, 2002.

[5] C. Clark, S. Rock and J. C. Latombe, Motion planning for multiple robot systems using dynamic
networks, Proc. of IEEE Int. Conf. Robot. Autom., pp.4222-4227, 2003.

[6] P. G. de Santos, M. A. Armada and M. A. Jimenez, Ship bulding with ROWER, IEEE Robotics &
Automation Magazine, vol.7, no.4, pp.35-43, 2000.

[7] Y. Guo and L. Parker, A distributed and optimal motion planning approach for multiple mobile
robot, Proc. of IEEE Int. Conf. Robot. Autom., pp.2612-2619, 2002.

[8] L. Kavraki, P. Svestka, J.-C. Latombe and M. Overmars, Probabilistic roadmaps for path planning
in high-dimensional configuration spaces, IEEE Trans. on Robotics and Automation., vol.12, no.4,
pp.566-580, 1996.

[9] S. LaValle and J. Kuffner, Rapidly-exploring random trees: Progress and prospects, Workshop on
the Algorithmic Foundations of Robotics, pp.293-308, 2000.

[10] J. N. Pires, A. Loureiro, T. Godinho, P. Ferreria, B. Fernanodo and J. Morgado, Welding robots,
IEEFE Robotics € Automation Magazine, vol.10, no.2, pp.45-55, 2003.

[11] J.-H. Oh, J.-H. Park and J.-T. Lim, Centralized decoupled path planning algorithm for multiple
robots using the temporary goal configurations, The 3rd International Conference on CIMSIM,
pp-206-209, 2011.

[12] L. E. Parker, Path Planning and Motion Coordination in Multiple Mobile Robot Teams, Springer,
2009.

[13] D. Parsons and J. Canny, A motion planner for multiple mobile robots, Proc. of IEEE International
Conference on Robotics and Automation, pp.8-13, 1990.

[14] M. Peasgood, C. M. Clark and J. McPhee, A complete and scalable strategy for coordinating multiple
robots within roadmaps, IEEE Trans. on Robot., vol.24, no.2, pp.283-292, 2008.

[15] J. Peng and S. Akella, Coordinating multiple robots with kinodynamic constraints along specified
paths, Int. J. Robot. Res., vol.24, no.4, pp.295-310, 2005.



ON COMPLETENESS OF SCALABLE PATH PLANNING 4179

[16] M. Saha and P. Isto, Multi-robot motion planning by incremental coordination, Proc. of IEEE/RS.J
Int. Conference on Intelligent Robots and Systems, pp.5960-5963, 2006.

[17] G. Sanchez and J. C. Latombe, Using a PRM planner to compare centralized and decoupled planning
for multi-robot systems, IEEE Int. Conf. Robot. Autom., pp.2112-2119, 2002.

[18] T. Siméon, S. Leroy and J.-P. Laumond, Path coordination for multiple mobile robots: A resolution
complete algorithm, IEEE Trans. on Robot. Autom., vol.18, no.1, pp.42-49, 2002.

[19] P. Svestka and M. Overmars, Coordinated path planning for multiple robots, Robotics and Au-
tonomous Systems, vol.23, pp.125-152, 1998.

[20] K.-H. C. Wang and A. Botea, Tractable multi-agent path planning on grid maps, Proc. of the
International Joint Conference on Artificial Intelligence, pp.1870-1875, 2009.



