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ABSTRACT. This paper concentrates on determining the hitting point where the racket
attached to the ping-pong playing robot will intercept the incoming ball. The nearest
neighbor method is used to estimate the racket velocity at the hitting point; then the
racket acceleration during the hitting process is analyzed. A parallel fuzzy learning system
consisting of two fuzzy subsystems is used to compute the success rate for the racket
acceleration. Both these subsystems will be updated online based on the feedback. A
performance function of the acceleration and the success rate is formulated to evaluate
the candidate hitting points obtained by trajectory prediction; then the optimal hitting
point is chosen. In comparison with the virtual hitting plane method, the proposed method
shows better performance.

Keywords: Ping-pong playing robot, Hitting point, Nearest neighbor method, Parallel
fuzzy learning

1. Introduction. In recent years, there are many researchers who focus on various as-
pects of the ping-pong playing robot [1-4,6,7]. Anderson [1] studied the prototype of
the ping-pong playing robot, where the ping-pong physics, vision system and real time
expert system were discussed. Zhang et al. [2] analyzed the ball’s flying model and re-
bound model. A distributed stereo vision system for ball detection was developed therein.
Acosta et al. [3] built a monocular vision system to estimate the ball position and de-
signed an expert module to define the game strategy. Matsushima et al. [4] used the
locally weighed regression [5] approach to return the incoming ball to a desired position.
In the framework of motor primitives, Muelling et al. [6] and Kober et al. [7] studied the
motor skill learning for hitting the incoming ball.

Trajectory prediction is an important issue for the ping-pong playing robot because
it is capable of guiding the robot to hit the incoming ball [2,8]. The goal of trajectory
prediction is to estimate the hitting position and the hitting time at which the robot
intercepts the incoming ball. Meanwhile, the ball velocity at the hitting time is important
as well. As soon as the information about the hitting point is determined, the robot begins
to return the ball. In general, the ball after rebound will continue to fly; thereby each point
on the ball trajectory after rebound can be seen as the hitting point. Here, the hitting
point includes the hitting position, the hitting time and the ball velocity. Muelling et
al. [9,10] defined the hitting point as the intersection point of the ball trajectory and the
virtual hitting plane. A virtual hitting plane that is parallel to the table plane was used
in [2]. The virtual hitting plane is simple and easy to understand. However, it does not
sufficiently concern the states of the flying ball and the capability limits of the robot.
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Human players are able to predict the hitting point intuitively and improve their abil-
ities by trial and error. As analogous to human perception and reasoning, fuzzy sets and
fuzzy logic have been studied widely [11,12]. A more common framework of fuzzy logic in
the practical applications is the fuzzy if-then rules [13]. The determination of the hitting
point is in essence a multivariate decision-making problem. If each variable associated
with the determination of the hitting point is characterized with more fuzzy sets, a large
number of trials are required to train the collection of fuzzy rules. On the other hand, if
each variable is characterized with less fuzzy sets, the few fuzzy rules cannot make full
use of the learning information due to rough granules of variables. Inspired by the work
of Karakose and Akin [14], a parallel fuzzy learning approach consisting of two fuzzy
subsystems is applied to the dynamic multivariate learning process. One fuzzy subsystem
is characterized with less fuzzy rules while the other one is with more fuzzy rules. When
only a few trials are carried out, the subsystem with less fuzzy rules is able to roughly
learn these trails. As the number of trials increases, the other subsystem with more fuzzy
rules will be trained sufficiently.

In this paper, we focus on the determination of the hitting point for the ping-pong
playing robot. First, we can obtain a series of candidate hitting points by trajectory
prediction [2,8]. The racket velocity for each hitting point is estimated using the near-
est neighbor (N-N) method [5,15]. Then, the racket acceleration for each hitting point
is analyzed based on the racket velocity, the hitting position and the hitting time. The
proposed parallel learning system is used to decide the success rate for the racket ac-
celeration. Each hitting point is evaluated by a performance function whose inputs are
the acceleration and the corresponding success rate. Finally, the optimal hitting point
is chosen from all the candidate hitting points. The feedback regulation is introduced in
the robotic system as well, which is used for updating online the parallel learning sys-
tem. Since both the capability limits of the robot and the states of the flying ball are
considered, a more appropriate hitting point is expected to be obtained. Moreover, the
parallel fuzzy learning system is adequate for the dynamical learning process. As the
experiment goes on, the parallel learning system with online parameters update will have
better overall performance.

This paper is organized as follows. In Section 2, we will simply describe the coordinate
system used in our robotic system. In Section 3, we explain trajectory prediction and
the principle of the learning system. The analysis of racket acceleration is presented in
Section 4. Then the parallel fuzzy learning approach is studied in Section 5. Experiments
are carried out to demonstrate the effectiveness of the proposed method in Section 6.
Finally, we will summarize our approach in Section 7.

2. Coordinate System. In our robotic system, the racket is attached to a three-degree-
of- freedom (DoF) mechanism that consists of three linear axes mounted on the table;
a two DoFs pan-tilt unit provides the orientation for the racket [16]. If a hitting point
is provided for the robot, the three DoFs mechanism moves the racket from the initial
position to the hitting position, so that the racket is able to intercept the incoming ball
with a certain velocity at the hitting time; meanwhile, the two DoFs units ensure the
proper orientation of the racket. Since the robot performance depends mainly on the three
DoF's mechanism, we will focus on the racket velocity and acceleration that reflect the
movement characteristics of this mechanism. As shown in Figure 1, {R} is the reference
coordinate system. The X-axis is parallel to the short side of the table; the Z-axis is
perpendicular to the table plane. For the convenience of discussion, some notations are
defined. The initial position of the racket is denoted as Py = (zo, %o, 20). The hitting
position and the desired landing position are denoted as P, = (zy, yn, 21) and P; = (x4,
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FiGURE 1. Coordinate system of the ping-pong robotic system

Yd, 2d4), respectively. The hitting time is ¢,. The racket velocity and acceleration are
denoted as V' = (v,, vy, v,) and @ = (as, ay, a,), respectively. The ball velocity just
before the impact of the racket is denoted as V; = (vy;, vy;, v2;). Furthermore, we use Dy
= (dga, dyd, dza) = (T4 — Th, Ya — Yn, 24 — 2n) to represent the desired flying distance, and
use Vi, = (Vgn, Vyn, Vzn) = (va(th), vy(tn), v.(ts)) to represent the hitting velocity.

3. Description of the Learning System. When a ping-pong ball is flying from the
human opponent to the robot, we can measure its 3-dimensional (3-D) positions using
the stereo vision system. After a series of 3-D positions are collected as the initial flying
trajectory, we can predict its subsequent fly trajectory using the flying model [2] and the
rebound model [8]. Accordingly, these points on the predicted rebound trajectory can be
seen as the candidate hitting points. The information of each candidate point includes the
hitting position P, the hitting time ¢, and the ball velocity V;. Here, the self-rotational
velocity is not considered. As shown in Figure 2, the blue circles represent the initial
flying trajectory and the red circles represent the candidate hitting points.

It is assumed that the desired landing position P; is given. Then, the desired flying
distance Dy for each candidate point is obtained. According to Dy and V; for each can-
didate point, the hitting velocity V}, is estimated by the N-N method [5,15]. Then, we
can obtain the racket’s approximate acceleration o, = (ag, ayr, a,-), which is relevant
to Py, t, and Vj,. It is noted that, each component of «a, represents a different robot
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FIGURE 2. Trajectory prediction of the flying ball
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F1GURE 3. Architecture of the learning system

joint, and each joint has different influence on the robot performance. In other words, the
importance of the variables a,,, a, and a,, are different for robot performance. Thus,
the success rate s of returning the incoming ball is required for c,.. The rate s represents
the overall performance of robot; it can be seen as a function of a,,, a, and a,,. The
parallel fuzzy system consisting of two fuzzy subsystems determines the success rate s for
a,. To take the parameters o, and s as the inputs, the performance function is used for
evaluating the candidate points. The candidate point at which the performance function
is maximal is seen as the optimal hitting point. After the optimal point is obtained, the
robot begins to return the incoming ball. Based on the actual performance of the robot,
the parallel fuzzy system is updated online so that the relationship between «, and s is

better represented. The architecture of the whole learning system is illustrated in Figure
3.

4. Representation of the Racket Acceleration.

4.1. Hitting velocity. In order to analyze the racket acceleration a, we need to obtain
the hitting velocity V},. Due to the redundant DoF's, our robot returns the incoming ball
along the Y-axis at the hitting time, i.e., v, = v,, = 0 [17]. Usually, the hitting velocity
V}, is determined by D, and V;. Here, the racket orientation is not involved for simplicity.
We use the N-N method to estimate Vj,. The N-N method represents the relationship
between (Dy, V;) and V3. The experience data are stored as shown in Figure 4. Here, n
is the number of the stored data points.

]

n | dd  dd  dd Ve VW Va W

FIGURE 4. Experience data (Dgy, V;) and V},
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For each candidate hitting point, we need to calculate D;, and then combine D, and
V; into a new vector. The N-N method is to search all the stored data points, so that
the index k € {1,2,---n} that satisfies (1) is found. Then, v, is seen as the estimated
hitting velocity vy, for D; and V;:

dis[(dfb‘d’ dyd’ dzd’ Ugiy Vyi, Uzi)’ (dfrda dlgjda dlzcda U]:ccia U]gjz‘a Ufz)] (1)
< dis[(dga, dyd, dza, Vaiy Vyis Vi), (dgg, dgda 24 Vs U;i’ v)], Vge{1,2,---,n}
where dis(-) represents the Euclidean distance.
4.2. Representation of acceleration. In the real game, the racket is expected to reach
the hitting position P, at the hitting time ¢,, so that the incoming ball is returned. In
other words, the racket velocity V' should satisfy the following equations:

[ttt = 2)
/0 " (Ot = 2 — 20 (3)
/Oth v, (t)dt = z, — 2o (4)

The discrete form of (2) is
[0y (0) + vy (1) + vy (2) + -+ + vy(n = DIT = yn — yo (5)

where T is the sampling time interval and satisfies nT = tj,.
The expanded form of (5) is

[vy(0) + (vy(0) + ay (0)T) + (vy(0) + ay (0)T + a,(1)T) + - --
+ (v,(0) + a, (0)T + a,(1)T + - - - + ay(n — 2)T)|T (6)
=[nvy(0) + (n — 1)a,(0)T + (n — 2)a, ()T + - - - + ay(n — 2)TT = yn — Yo
Here, v,(0) = 0. Denote the minimum and maximum values of the set {a,(0), a,(1),- -,

ay(n —2)} as aymin and aymax, respectively. Then, we have

aymin(n - 1)7’LT2 aymax(n — 1)7’LT2

<yp —yp < 7
5 SYn— Yo = 5 (7)
Thus,
2(yn —y
Qy min S % S gy max (8)
h
Similarly,
2 _
Gz min S (xh D) xU) S Az max (9)
th
2 _
(» min S (thZ ZU) S a7 max (10)
h

It is noted that the hitting velocity Vi, = (0,vy,0), a, should satisfy the additional
condition:

/th ay (1)t = vy (1)

It is reasonable to assume that a,(i) > 0,7 = 0,1,2,---, 7 — 1 and a,(i) = 0, i =
n,i+1,---,n — 2. Then, the discrete form of (11) is

lay(0) +ay(1) + -+ ay(n—1)|T = vy, (12)
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Denote the minimum and maximum values of the set {a,(0),a,(1), - ,a,(n — 1)} as
ay and a,,. We have
Qy - nT S Uyh S Qyp, nT (13)
Thus,
2 Uzh 2
y
Ay < E < Ayp, (14)

where ¢, = nT.
Let us reconsider (6); it is rewritten as

[a,(0)T + (ay(0)T + a,(1)T) + - - - + (ay(0) T + a, (1) T + - - - + a,(n — 1)T)|T

15
=[na,(0)T + (7 — V)a,(1)T + -+ a,(7n — )TIT = Ay <y — yo (15)
Then,
2A
ay < 52 < apy (16)
h
By combing (14) and (16), we have
v2 v2 a?
oh oo o (17)

2(yn — yo) ~ 2Ay T ay

Because a, usually varies in a small range, a,;/a,; is roughly seen as 1. In this case, (17)

is rewritten as
2
Uyh

2(Yn — yo)

According to (8)-(10) and (18), ay, |a;| and |a,| are roughly represented by max{2(y, —

Y0)/ths Upn/ (Yn—Y0) /2}, 2|zn — 20| /t;, and 2|z, — 2| /13, respectively. In fact, we can obtain

the racket’s accurate acceleration for each candidate hitting point by the motion planning.

Since each candidate point requires a new motion planning, the execution speed will slow

down when there are many candidate points. Thus, we use the approximate representation
of the racket acceleration for the purpose of reducing the time consuming.

S Clyh (18)

5. Parallel Fuzzy Learning.

5.1. Parallel fuzzy system. The parallel fuzzy learning system consists of the rough
fuzzy subsystem (RFS) and the precise fuzzy subsystem (PFS). The RFS is character-
ized with less fuzzy rules while the PFS is characterized with more fuzzy rules. Denote
max{2(yn — y0) /15, vin/(Yn — Y0)/2}, 2|xn — wo|/th and 2|2z, — 2|/t} as agr, ay and az,,
respectively. Assuming that the domains of interest for the variables a,,, a, and a,,
are determined according to the experimental results. In the RFS, we use A%, B{ and

C¥ to represent the fuzzy values for a,, a, and a,,, respectively, where i = 1,2, 7y,
j=1,2,---,p, k=1,2,---,q;. In the PFS, we use A}, B} and CJ to represent the
fuzzy values for a,,, a, and a,,, respectively, where [ = 1,2,--- 7y, m = 1,2,--- ,py,
n=1,2,---,q. Here, 7o > 11, pp > p; and ¢ > ¢1.

The f-th fuzzy rule in the RFS is defined as
IF a,, is A} and ay, is B] and a,, is CF, Then s is s,

where 0 < s,y <1 is the success rate.
The f-th fuzzy rule in the PFS is defined as

IF a,, is A, and a,, is BY* and a,, is C3, Then s is sy
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where 0 < 5oy < 1 is the success rate.
For an input (asr, Gy, @), the rule in the RFS is chosen as follows:
Find i* € {1,2,---,r}, 75 €{1,2,---,p1} and k* € {1,2,--- , ¢} satisfying

fai (Qar) 2 prai(agr), Vi€ {1,2,--+ i} (19)
b (0) = g (aye), Vi € (1,2, ) (20)
pier (az) > per(az), Vk € {1,2,--+,q} (21)
Then, the address f; of the selected rule in RFS is
fi=(0@ =pg + (" — D +£ (22)

Similarly, I* € {1,2,---,r}, m* € {1,2,--- ,pp} and n* € {1,2,--- ¢} are found.
The address f, of the selected rule in PFS is

fo= (" =1)pago + (M" — 1)gz + n* (23)

After the rules in both the subsystems are chosen, the output s for the input (az., ay,
ayp) 1S
miSiy + maSaf,

S\Qgry Qyry Qzr) = 24
( v ) my + me (24
where
mp = min{uAil* (Cbg;r), MB{* (ayr)a MC{C* (aZT‘)} (25)
mo = min{MAg* (Qzr), Hpm- (ayr), Hep (azr)} (26)

If the success rate s of the approximate acceleration «;. is determined, the performance
function used for evaluating the candidate hitting point is given as

J = S(azra Qyr azr)/(a:rr + Ay + azr) (27)

5.2. Feedback regulation. The candidate hitting points are obtained by trajectory
prediction, and then the optimal point is chosen according to the evaluation function
(27). Once the final hitting point is determined, the robot will plan to intercept the ball.
The success rates s1¢; in RFS and syf9 in PFS are updated online as the experiment goes
on. If the robot returns the incoming ball so that the ball lands on a satisfactory region,
the corresponding success rates in RFS and PFS will increase. Otherwise, the success
rates will decrease.
The feedback regulation is formulated as

S1f, = S1f, + My -+ Sy, (28)

Safy = Sofy T M2 P+ sy (29)
where a > 0 and 8 > 0 are constants. s, = 1 or —1 indicates whether the ball lands on
the desired region. The parameters s; ¢ and syo represent the overall success rates for the
input (agr, Gyr, azr). It is noted that the racket’s approximate acceleration (agy, ayr, z)
is different from its actual acceleration (ay, ay, a,). The success rate may not precisely
represent the relationship between the robot performance and the actual acceleration, but
it can be seen as an approximate measure of this relationship.

6. Experiments and Results.

6.1. Experimental system. A stereo vision system developed in [2] was used to detect
the ball position, where two high speed cameras (250fps) were used. The computer used
for predicting the hitting point had a 2.3 GHZ CPU and a 2 GB RAM. The physical
structure of the ping-pong playing robot is shown in Figure 5.
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F1GURE 5. Robot physical structure

TABLE 1. The average performances of different methods

Proposed method | Method in [10] | Method in [2]
0.20 0.17 0.08

6.2. Definitions of fuzzy subspaces. The fuzzy sets A}, B{ and C¥ for ag,, a, and
a,r in RFS are defined as shown in Figures 6(a)-6(c). A5, By and C¥ for agy, a,, and a,,
in PFS are shown in Figures 6(d)-6(f).

6.3. Performance evaluation. The initial position of the racket was (0, 0, 300) mm.
The N-N method was previously trained using 2000 trails. The ball trajectory was pre-
dicted using the flying model [2] and the rebound model [8], where the self-rotational
velocity was neglected. On the rebound trajectory we had predicted, a series of points
with time interval 10 ms were chosen as the candidate hitting points. The initial suc-
cess rates in RFS and PFS were set to 1. The parameters in feedback regulation were
a = = 0.1. The desired landing position was (0, 2250) mm. A region whose z-coordinate
lay in [—400, 400] mm and y-coordinate lay in [1850, 2650] mm was seen as the satisfactory
region. The racket parameters were obtained by the locally weighed regression method in
[16].

We had 350 trials to train the parallel fuzzy system. Then, 80 trails were carried out
to evaluate our method using (27). The virtual hitting plane methods proposed in [2,10]
were also used for comparison. In our experiment, the virtual plane in [10] was defined as
yn = 450 mm and the virtual plane in [2] was defined as z;, = 220 mm. Figure 7 shows the
predicted hitting positions using the three methods. The results of performance evaluation
are shown in Figure 8. It can be seen that the proposed method has the best performance
overall. Table 1 shows the average performances of the three methods. Since the proposed
method considers both the ball states and the robot capability, the predicted hitting point
is much more flexible. Thus, the robot is able to return the incoming ball to a desired
region with a higher probability.

6.4. Determination of the hitting point. In this experiment, we had 450 trials to
train the parallel fuzzy system. Then, another trail was carried out. xp, yn, 2n, Vai, Uy,
Vsis thy Qgr, Qyr, Qzr, s and J for each candidate hitting point were stored. Figure 9 shows
the curves of these parameters. The optimal point is the one at which the performance
function is the largest. As shown in Figure 9(b), the optimal point selected from the
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FIGURE 8. Performance evaluation of different methods

candidates hitting points has comparatively small acceleration and big success rate. Thus,
the predicted hitting point obtained by the proposed method is more appropriate.

7. Conclusions. A parallel fuzzy learning approach was proposed so as to determine the
hitting point for the ping-pong playing robot. The parallel fuzzy system consisted of the
rough and precise fuzzy subsystems. The rough fuzzy subsystem was characterized with
less fuzzy rules and the precise fuzzy subsystem was with more fuzzy rules. Both the
subsystems were updated online by the feedback learning. The parallel system is suitable
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FIGURE 9. The parameters used for determining the hitting point

for the dynamic learning process. The proposed method was able to sufficiently consider
the ball states and the capabilities of the robot, and accordingly a more appropriate
hitting point is obtained. The experimental results showed that the proposed method
had better performance than the virtual hitting plane method.

Acknowledgment. This work was supported in part by the National Natural Science
Foundation of China under Grant 61075035 and Grant 61273337.



4192 Y. HUANG, D. XU AND M. TAN

REFERENCES

[1] R. L. Anderson, Dynamic sensing in a ping-pong playing robot, IEEE Trans. on Robotics and
Automation, vol.5, no.6, pp.728-739, 1989.

[2] Z. Zhang, D. Xu and M. Tan, Visual measurement and prediction of ball trajectory for table tennis
robot, IEEE Trans. on Instrumentation and Measurement, vol.59, no.12, pp.3195-3205, 2010.

[3] L. Acosta, J. J. Rodrigo, J. A. Méndez, G. N. Marichal and M. Sigut, Ping-pong player prototype,
IEEFE Robotics € Automation Magazine, vol.10, pp.44-52, 2003.

[4] M. Matsushima, T. Hashimoto, M. Takeuchi and F. Miyazaki, A learning approach to robotic table
tennis, IEEE Trans. on Robotics, vol.21, no.4, pp.767-771, 2005.

[5] C. G. Atkeson, A. W. Moore and S. Schaal, Locally weighted learning, Artificial Intelligence Review,
vol.11, pp.11-73, 1997.

[6] K. Muelling, J. Kober and J. Peters, Learning table tennis with a mixture of motor primitives, Proc.
of IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, pp.411-416, 2010.

[7] J. Kober, E. Oztop and J. Peters, Reinforcement learning to adjust robot movements to new situa-
tions, Robotics: Science and Systems, pp.33-40, 2010.

[8] A. Nakashima, Y. Ogawa, Y. Kobayashi and Y. Hayakawa, Modeling of rebound phenomenon of a
rigid ball with friction and elastic effects, Proc of American Control Conference, Baltimore, MD,
USA, pp.1410-1415, 2010.

[9] K. Muelling and J. Peters, A computational model of human table tennis for robot application,
Autonomy Mobile System, pp.57-64, 2009.

[10] K. Muelling, J. Kober and J. Peters, A biomimetic approach to robot table tennis, Proc. of IEEE/RS.J
International Conference on Intelligent Robots and Systems, Taipei, pp.1921-1926, 2010.

[11] C. Z. Janikow, Fuzzy decision trees: Issues and methods, IEEE Trans. on System, Man, and Cyber-
netics, Part B: Cybernetics, vol.28, no.1, pp.1-14, 1998.

[12] L. Wang, The WM method completed: A flexible fuzzy system approach to data mining, IEEE
Trans. on Fuzzy System, vol.11, no.6, pp.768-782, 2003.

[13] L. A. Zadeh, Toward human level machine intelligence — Is it achievable? The need for a paradigm
shift, IEEE Computational Intelligence Magazine, pp.11-22, 2008.

[14] M. Karakose and E. Akin, Block based fuzzy controllers, International Journal of Research and
Reviews in Applied Sciences, vol.3, no.1, pp.100-110, 2010.

[15] D. R. Wilson and T. R. Martinez, An integrated instance-based learning algorithm, Computational
Intelligence, vol.16, no.1, pp.1-28, 2000.

[16] Y. Huang, D. Xu, M. Tan and H. Su, Adding active learning to LWR for ping-pong playing robot,
IEEE Trans. on Control Systems Technology, 2012.

[17] P. Yang, D. Xu, H. Wang and Z. Zhang, Control system design for a 5-DOF table tennis robot, Proc.
of International Conference on Control, Automation, Robotics and Vision, Singapore, pp.1731-1735,
2010.



