
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 11, November 2013 pp. 4509–4518

CONSTRUCTING PAIRING-FREE CERTIFICATE-BASED
ENCRYPTION

Yang Lu∗ and Jiguo Li

College of Computer and Information Engineering
Hohai University

No. 8, Focheng Xi Rd., Jiangning Dist., Nanjing 210098, P. R. China
∗Corresponding author: luyangnsd@163.com; lijiguo@163.com

Received October 2012; revised February 2013

Abstract. Certificate-based cryptography is a new paradigm that combines traditional
public-key cryptography and identity-based cryptography. It not only simplifies the cum-
bersome certificate management in traditional public-key cryptography, but also elimi-
nates the key escrow and distribution problems inherent in identity-based cryptography.
However, all constructions of certificate-based encryption in the literature so far have to
be based on the costly bilinear pairings. Therefore, the previous certificate-based encryp-
tion schemes are too expensive computationally to be employed in the computation-limited
mobile wireless networks. In this paper, we propose a certificate-based encryption scheme
that dose not depend on the bilinear pairings. The proposed scheme is proved to be chosen-
ciphertext secure in the random oracle model under the hardness of the RSA problem and
the computational Diffie-Hellman problem. Due to avoiding the computationally-heavy
bilinear paring operations, the proposed scheme significantly reduces the computational
cost and outperforms all the previous certificate-based encryption schemes. This inter-
esting property makes it particularly suitable for the resource-limited mobile devices.
Keywords: Certificate-based encryption, Chosen-ciphertext security, Bilinear pairing,
Random oracle model, Mobile wireless network

1. Introduction. In traditional PKC, the cryptographic keys are generated randomly
with no connection to the users’ identities. It is infeasible to prove that an entity is
indeed the owner of a given public key. The usual approach to ensure the authenticity
of a public key is to use a certificate. However, the need for public-key certificates is
considered as the main difficulty in the deployment of traditional PKC. In 1984, Shamir
[1] introduced the notion of identity-based cryptography (IBC). In IBC, each user’s public
key is derived directly from his identity, such as an IP address or an e-mail address,
and his private key is generated by a trusted third party called Private Key Generator
(PKG). The main practical benefit of IBC lies in the reduction of the need for public key
certificates. However, if the PKG becomes dishonest, it can impersonate any user using
its knowledge of the user’s private key. This is due to the key escrow problem inherent in
IBC. In addition, as private keys must be sent to the users over secure channels, private
key distribution in IBC is a very daunting task.

In Eurocrypt 2003, Gentry [2] introduced a new paradigm called certificate-based cryp-
tography (CBC) which represents an interesting and potentially useful balance between
traditional PKC and IBC. As in traditional PKC, each user in CBC generates his own
public key and private key pair and then requests a certificate from a trusted third party
called certifier. The difference is that a certificate in CBC acts not only as a certificate (as
in traditional PKC) but also as a private key (as in IBC). This additional functionality
provides an efficient implicit certificate mechanism. The feature of implicit certificate

4509



4510 Y. LU AND J. LI

allows us to eliminate the third-party queries for the certificate status and simplify the
certificate revocation in traditional PKI. As a result, CBC does not need some traditional
infrastructures like certificate revocation list (CRL) and online certificate status proto-
col (OCSP). Furthermore, CBC eliminates the key escrow and key distribution problems
inherent in IBC. Since its advent, CBC has attracted much attention in the research com-
munity and a number of schemes have been proposed, including many encryption schemes
(e.g., [3-10]) and signature schemes (e.g., [11-15]).
Our Motivations and Contributions. In the recent years, there has been an unprece-

dented growth in mobile wireless networks. Mobile wireless networks have been deployed
for a wide variety of applications. Although mobile applications deployed on mobile de-
vices have received significant attention, the security issue will be an important factor for
their full adoption. Compared with wired networks, mobile wireless networks are more
vulnerable to various attacks due to their nature of wireless communication. In some
mobile applications, providing confidentiality for sensitive data is of prime importance.
However, as mobile devices in a mobile wireless network usually have very constrained
resources and are unable to implement heavy cryptographic algorithms, providing data
confidentiality in mobile wireless networks poses more challenges than traditional net-
work security. For this reason, only the high efficient and power-saving cryptographic
algorithms can be used to provide mobile wireless networks with security.
The motivation of this paper is to develop a practical certificate-based encryption (CBE)

scheme for mobile wireless networks. As introduced above, CBE is a novel public-key cryp-
tographic paradigm with many attractive features and is very suitable for providing data
confidentiality services in mobile wireless networks. However, as far as we know, the CBE
schemes in the literature so far have to be based on the computationally-heavy bilinear
pairings. In spite of the recent advances in the implementation technique [16,17], the
bilinear pairing operation is still regarded as the heaviest time-consuming one compared
with other operations such as the prime modular exponentiations in the finite fields. Thus,
the bilinear pairing operations will greatly aggravate the computation load of a device,
which is extremely disliked by the power-constrained mobile wireless networks. Therefore,
the existing CBE schemes are too expensive computationally to be employed in mobile
wireless networks.
Being aware of the above problem of the current constructions of CBE, we propose

a CBE scheme that does not depend on the bilinear pairings in this paper. Our CBE
scheme is motivated from the RSA-based key agreement protocol proposed by Okamoto
and Tanaka [18], and is proved to be chosen-ciphertext secure under the hardness of
RSA problem and the computational Diffie-Hellman problem in the random oracle model
[19]. Without bilinear pairing, our scheme is more efficient than all of the CBE schemes
proposed so far. This distinct and interesting property makes our scheme particularly
suitable to be employed in the computation-limited mobile wireless networks.

2. Notations and Hard Mathematical Problems. For a positive integer n, let Zn

denote the set {0, 1, 2, . . ., n − 1}, Z∗
n denote Zn\{0} and Zodd

n denote the set of the odd
numbers from Zn.
The security of our CBE scheme is based on the hardness of the following RSA problem

and the computational Diffie-Hellman (CDH) problem.

Definition 2.1. The RSA problem in Z∗
n is, given (n, e, b), where n = pq such that p, q,

(p−1)/2 and (q−1)/2 are large prime numbers, e is an odd integer such that gcd(e, φ(n)) =
1 and b is a random integer from Z∗

n, to find a ∈ Z∗
n such that be = a(modn).



CONSTRUCTING PAIRING-FREE CERTIFICATE-BASED ENCRYPTION 4511

Definition 2.2. The CDH problem in Z∗
n is, given p, q, n, (g, ga, gb) ∈ Z∗

n, where n = pq
such that p, q, (p − 1)/2 and (q − 1)/2 are large prime numbers, and a, b ∈ Zodd

n , to
compute gab(modn).

3. Scheme Definition and Security Model of Certificate-Based Encryption.
Formally, a CBE scheme is specified by five algorithms (Setup, KeyPairGen, Cer-
tify, Encrypt, Decrypt) such that:

(1) Setup: Taking a security parameter 1k as input, the certifier runs this algorithm to
generate a master secret key msk and a list of public parameters params. After running
this algorithm, the certifier publishes params and keeps msk secret.

(2) KeyPairGen : Taking params as input, a user with identity id runs this algorithm
to generate a private key SKid and a partial public key PPKid.

(3) Certify : Taking params, msk, id and PPKid as input, the certifier runs this algo-
rithm to generate a certificate Certid and a public key PKid. The user id should combine
Certid and SKid as his decryption key to decrypt the ciphertext sent to him.

(4) Encrypt : Taking params, id, PKid and a message M as input, the user as a sender
runs this algorithm to create a ciphertext C.

(5) Decrypt : Taking params, SKid, Certid, a ciphertext C and optionally PKid as
input, the user as a receiver runs this algorithm to get a decryption δ, which is either a
plaintext message M or a special symbol ⊥ indicating a decryption failure.

Our definition of CBE is quite different from the previous ones [2,3]. The main difference
is that each user in our definition should first generate a partial public key and then
authenticate himself to the certifier to create his full public key, while each user in the
previous definitions generates his public key independently. It seems that our definition
of CBE is slightly weaker than previous ones. However, we note that the reason why
the CBE schemes in the literature so far have to depend on some known pairing-based
identity-based encryption (IBE) schemes is that in those schemes, a user need not be
certified before generating a public key, which is indeed a feature provided by IBE. By
relaxing this requirement, we could construct a very efficient pair-free CBE scheme which
does not depend on any existing IBE schemes. Most importantly, our new definition of
CBE does not lose the most attractive features of CBC, such as no key-escrow problem,
implicit certificates.

The following security model of CBE is modified from the one proposed by Al-Riyami
and Paterson [3]. It is defined by two different adversarial games.

Game-I: This game is played between a Type-I adversary AI and a game challenger.
Setup. The challenger runs the algorithm Setup(1k) to generate a master secret key

msk and a list of public parameters params. It then returns params to AI and keeps msk
to itself.

Phase 1. In this phase, AI can adaptively query the following oracles:
(1) CreateUser(id): On input an identity id, if id has already been created, the

challenger responds with the partial public key PPKid associated with the identity id.
Otherwise, the challenger should first generate a set of private key SKid, partial public
key PPKid, public key PKid and certificate Certid for the identity id, and then output
PPKid to AI . In this case, id is said to be created. We assume that other oracles defined
below only respond to an identity which has been created.

(2) RequestPublicKey(id): On input an identity id, the challenger responds with the
public key PKid associated with the identity id.

(3) RequestCertificate(id): On input an identity id, the challenger responds with the
certificate Certid associated with the identity id.



4512 Y. LU AND J. LI

(4) ExtractPrivateKey(id): On input an identity id, the challenger responds the
private key SKid associated with the identity id.
(5)Decrypt(id, C): On input an identity id and a ciphertext C, the challenger responds

with the decryption of the ciphertext C.
Challenge. AI outputs (id∗, M0, M1) on which it wants to be challenged, where M0

and M1 are two equal length messages. The challenger randomly chooses b ∈ {0, 1} and
computes C∗ = Encrypt(params, id∗, PKid∗ , Mb). It then outputs C∗ as the challenge
ciphertext to AI .
Phase 2. In this phase, AI issues a second sequence of queries as in Phase 1, but with

the following restrictions: (1) AI cannot make query RequestCertificate(id∗); (2) AI

cannot make query Decrypt(id∗, C∗).
Guess. AI outputs a guess b

′ ∈ {0, 1} and wins the game if b = b
′
. AI ’s advantage is

defined to be Adv(AI) = 2|Pr[b = b
′
]− 1/2|.

Game-II: This game is played between a Type-II adversary AII and a game challenger.
Setup. The challenger runs the algorithm Setup(1k) to generate a master secret key

msk and a list of public parameters params, and then returns params and msk to AII .
Phase 1. In this phase, AII can adaptively query the following oracles:
(1) CreateUser(id): On input an identity id, if id has already been created, the

challenger responds with the partial public key PPKid associated with the identity id.
Otherwise, the challenger should first generate a set of private key SKid and partial public
key PPKid, and then output PPKid to AII . In this case, id is said to be created. We
assume that other oracles defined below only respond to an identity which has been
created.
(2) ExtractPrivateKey(id): On input an identity id, the challenger responds the

private key SKid associated with the identity id.
(3)Decrypt(id, Certid, C): On input an identity id, a certificate Certid and a ciphertext

C, the challenger responds with the decryption of the ciphertext C.
Challenge. AII outputs (id∗, PKid∗ , M0, M1) on which it wants to be challenged.

The challenger randomly chooses b ∈ {0, 1} and computes C∗ = Encrypt(params, id∗,
PKid∗ , Mb). It then outputs C∗ as the challenge ciphertext to AII .
Phase 2. In this phase, AII issues a second sequence of queries as in Phase 1, but with

the restrictions: (1) AII cannot make query ExtractPrivateKey(id∗); (2) AII cannot
make query Decrypt(id∗, Certid∗ , C

∗).
Guess. AII outputs a guess b

′ ∈ {0, 1} and wins the game if b = b
′
. AII ’s advantage

is defined to be Adv(AII) = 2|Pr[b = b
′
]− 1/2|.

Definition 3.1. A CBE scheme is said to be secure against adaptive chosen-ciphertext
attacks (or IND-CBE-CCA2 secure) if no PPT adversary has non-negligible advantage in
both Game-I and Game-II.

4. The Proposed CBE Scheme. Our scheme is motivated from the RSA-based key
agreement protocol introduced by Okamoto and Tanaka [18]. It consists of the following
five algorithms.
(1) Setup: The certifier first generates two primes p and q such that p = 2p′ + 1

and q = 2q′ + 1, where p′ and q′ are k-bit prime numbers. It then computes n = pq
and the Euler totient function φ(n) = (p − 1)(q − 1). Additionally, it chooses four
cryptographic hash functions H1: {0, 1}∗ → Z∗

n, H2: {0, 1}∗ × Z∗
n × Z∗

n → Zodd
n , H3:

{0, 1}lm × {0, 1}lr × {0, 1}∗ × Z∗
n × Z∗

n → Z∗
n and H4: Z∗

n × Z∗
n → {0, 1}lm+lr , where lm

denotes the bit-length of the plaintext and lr denotes the bit-length of the random value



CONSTRUCTING PAIRING-FREE CERTIFICATE-BASED ENCRYPTION 4513

used in the encryption algorithm. Finally, the certifier sets params = {n, H1, H2, H3,
H4} as the public system parameters and msk = φ(n) as its master secret key.

(2) KeyPairGen : A user with identity id chooses a random value x ∈ Z∗
n as his

private key SKid and computes his partial public key PPKid = H1(id)
x.

(3) Certify : To generate a certificate and a public key for a user with identity id, the

certifier performs as follows: Choose a random value y ∈ Z∗
n and set PKid = (PK

(1)
id ,

PK
(2)
id ) = (PPKid, H1(id)

y); Compute e = H2(id, PK
(1)
id , PK

(2)
id ) and d such that ed ≡ 1

(mod φ(n)); Set Certid = y + d (mod φ(n)).
(4) Encrypt : To send a message M ∈ {0, 1}∗ to a receiver with identity id and

public key PKid = (PK
(1)
id , PK

(2)
id ), the sender performs as follows: choose a random value

σ ∈ {0, 1}lr and compute r = H3(M,σ, id, PK
(1)
id , PK

(2)
id ); compute k1 = (PK

(1)
id )er and

k2 = (PK
(2)
id )er; compute U = H1(id)

r and V = (M ||σ) ⊕ H4(k1, k2); set C = (U, V ) as
the ciphertext.

(5) Decrypt : To decrypt a ciphertext C = (C1, C2, C3), the receiver id parses the
ciphertext C as (U, V ) and computes M ′||σ′ = V ⊕ H4(U

SKid·e, UCertid·e/U). It then

checks whether U = H1(id)
H3(M ′,σ′,id,PK

(1)
id ,PK

(2)
id ) holds. If it does, output M ′; otherwise

output ⊥.
The consistency of the above scheme is easy to check as we have

USKid·e = (H1(id)
r)xe = (PK

(1)
id )er,

UCertid·e

U
=

(H1(id)
r)(y+d)e

H1(id)r
de≡1(modφ(n))

=
(H1(id)

y)erH1(id)
r

H1(id)r
= (PK

(2)
id )er.

5. Security Proof. In this section, we prove in the random oracle that our CBE scheme
achieves IND-CBE-CCA2 security under the hardness of the RSA problem and the CDH
problem.

Theorem 5.1. The proposed CBE scheme is IND-CBE-CCA2 secure in the random or-
acle model, assuming that the RSA problem and the CDH problem are both intractable.

This theorem can be proved by combining the following two lemmas.

Lemma 5.1. Suppose that H1∼ H4 are random oracles and AI is a Type-I adversary
against the IND-CBE-CCA2 security of our CBE scheme with advantage ε when run-
ning in time τ , making qcu CreateUser queries, qpub RequestPublicKey queries, qpri
ExtractPrivateKey queries, qcer RequestCertificate queries, qdec Decrypt queries
and qi random oracle queries to Hi (1 ≤ i ≤ 4). Then there exists an algorithm ARSA

to solve the RSA problem in Z∗
n with advantage ε′ ≥ ε/qcu and running time τ ′ ≤

τ + (q1 + qdec)(3τexp + O(1)) + (q2 + q3 + q4 + qcu + qpub + qcer + qpri)O(1), where τexp
denotes the time for computing a modular exponentiation in Z∗

n.

Proof: Assume that ARSA is given a random instance (n, e, b) of the RSA problem.
Its goal is to find a ∈ Z∗

n such that ae = b (mod n) by interacting with AI as follows:
In the setup phase, ARSA randomly chooses an index I with 1 ≤ I ≤ qcu and simulates

the setup algorithm by supplying AI with params = {n, H1, H2, H3, H4}, where H1 ∼ H4

are random oracles controlled by ARSA. AI can make queries to these random oracles
at any time during the game. Note that the corresponding master key is the factors of
n, namely p and q which are unknown to ARSA. ARSA responds AI ’s various queries as
follows:

H 1-queries: ARSA maintains a list H1List of tuples <idi, ei, h1,i >. On receiving
such a query on idi, ARSA responds as follows. (1) If idi already appears on H1List in a



4514 Y. LU AND J. LI

tuple <idi, ei, h1,i >, then ARSA returns h1,i to AI . (2) Else, if i = I, then ARSA does the

following: Randomly choose α ∈ Zodd
n , γI ∈ Z∗

n and set eI = e, h1,I = γαe2

I . Randomly

choose xI ∈ Z∗
n and set SKidI = xI , PK

(1)
idI

= (h1,I)
xI and PK

(2)
idI

= γI . Insert <idI ,

eI , h1,I >, <idI , PK
(1)
idI

, PK
(2)
idI

, eI > and <idI , SKidI , PK
(1)
idI

, PK
(2)
idI

, − > into H1List,
H2List and UserList respectively. Return h1,I to AI . Note that the certificate of the
identity idI is unknown to ARSA. (3) Otherwise, ARSA does the following: Randomly
choose ei ∈ Zodd

n , γi ∈ Z∗
n and set h1,i = γei

i . Randomly choose xi ∈ Z∗
n, si ∈ Zodd

n

and set SKidi = xi, PK
(1)
id = (h1,i)

xi , PK
(2)
id = (h1,i)

si · γ−1
i and Certidi = si. Insert

<idi, ei, h1,i >, <idi, PK
(1)
idi

, PK
(2)
idi

, ei > and <idi, SKidi , PK
(1)
idi

, PK
(2)
idi

, Certidi > into
H1List, H2List and UserList respectively. Return h1,i to AI . It is easy to verify that

(PK
(2)
idi

)ei · h1,i = (h1,i)
Certidi ·ei . Therefore, {SKidi , PKidi = (PK

(1)
idi

, PK
(2)
idi

), Certidi} is a
consistent set of private key, public key and certificate values for the identity idi.

H 2-queries: ARSA maintains a list H2List of tuples <idi, PK
(1)
idi

, PK
(2)
idi

, ei >. On

receiving such a query on (idi, PK
(1)
idi

, PK
(2)
idi

), ARSA retrieves a tuple of the form <idi,

PK
(1)
idi

, PK
(2)
idi

, ei > from H2List and returns ei to AI .

H 3-queries: ARSA maintains a list H3List of tuples < M , σ, idi, PK
(1)
idi

, PK
(2)
idi

, r >.

On receiving such a query on (M , σ, idi, PK
(1)
idi

, PK
(2)
idi

), ARSA responds as follows. (1)

If (M , σ, idi, PK
(1)
idi

, PK
(2)
idi

) already appears on H3List in a tuple < M , σ, idi, PK
(1)
idi

,

PK
(2)
idi

, r >, it returns r to AI . (2) Otherwise, it returns a random r ∈ Z∗
n to AI and

inserts < M , σ, idi, PK
(1)
idi

, PK
(2)
idi

, r > into H3List.
H 4-queries: ARSA maintains a list H4List of tuples < k1, k2, h4 >. On receiving

such a query on (k1, k2), ARSA responds as follows. (1) If (k1, k2) already appears on
H4List in a tuple < k1, k2, h4 >, it returns h4 to AI . (2) Otherwise, it returns a random
h4 ∈ {0, 1}lm+lr to AI and inserts < k1, k2, h4 > into H4List.

CreateUser: ARSA maintains a list UserList of tuples <idi, SKidi , PK
(1)
idi

, PK
(2)
idi

,
Certidi >. On receiving such a query on idi, if idi already appears on UserList in a

tuple <idi, SKidi , PK
(1)
idi

, PK
(2)
idi

, Certidi >, ARSA returns PK
(1)
idi

to AI . Otherwise, it
should first query H1(idi) to generate a set of private key, partial public key, public key
and certificate for the identity idi.
RequestPublicKey: On receiving such a query on idi, ARSA retrieves a tuple of

the form <idi, SKidi , PK
(1)
idi

, PK
(2)
idi

, Certidi > from UserList and returns PKidi =

(PK
(1)
idi

, PK
(2)
idi

) to AI .
ExtractPrivateKey: On receiving such a query on idi, ARSA retrieves a tuple of the

form <idi, SKidi , PK
(1)
idi

, PK
(2)
idi

, Certidi > from UserList and returns SKidito AI .
RequestCertificate: On receiving such a query on idi, if i = I, ARSA aborts. Other-

wise, it retrieves a tuple of the form <idi, SKidi , PK
(1)
idi

, PK
(2)
idi

, Certidi > from UserList
and returns Certidi to AI .
Decrypt: On receiving such a query on (idi, C = (U, V )), ARSA responds as follows.

(1) If i 6= I, then ARSA decrypts C in the normal way since it knows the private key
SKidi and the certificate Certidi for the identity idi. (2) Otherwise, ARSA retrieves a
tuple of the form <idI , eI , h1,I > from H1List and then searches in H3List for all tuples

of the form < M , σ, idI , PK
(1)
idI

, PK
(2)
idI

, r >. If no such tuple is found in H3List, then

ARSA returns an invalid symbol ⊥. Otherwise, for each < M , σ, idI , PK
(1)
idI

, PK
(2)
idI

, r >∈
H3List, ARSA checks whether (h1,I)

r = U . If it holds, ARSA computes k1 = (PK
(1)
idI

)eIr

and k2 = (PK
(2)
idI

)eIr, retrieves a tuple of the form < k1, k2, h4 > from H4List, and checks



CONSTRUCTING PAIRING-FREE CERTIFICATE-BASED ENCRYPTION 4515

whether M ||σ = V ⊕ h4. If it holds, ARSA returns M to AI as the decryption of C. If no
tuple in H3List passes the above verifications, ARSA returns an invalid symbol ⊥.

At the challenge phase, AI outputs two messages M0 and M1 of equal length and an
identity id∗. If id∗ 6= idI , then ARSA aborts. Otherwise, ARSA sets U∗ = bα where
α is the value obtained during the H1 query corresponding to idI , chooses a random
V ∗ ∈ {0, 1}lm+lr , and then returns C∗ = (U∗, V ∗) to AI as the challenge ciphertext.

Observe that the decryption of C∗ is V ∗ ⊕H4((U
∗)SKidI

·eI , (U∗)Certid·eI

U∗ ).
At the guess phase, AI outputs a bit which is ignored by ARSA. It is clear that AI

cannot recognize that C∗ is not a valid ciphertext unless it queries H4 on ((U∗)SKidI
·eI ,

(U∗)Certid·eI

U∗ ). Standard arguments can show that a successful AI is very likely to make
such a query if the simulation is indistinguishable from a real attack environment. To
produce a result, ARSA checks whether ke

2 = b for each tuple < k1, k2, h4 > in H4List,
and outputs the k2 value in the tuple passing the above test as the solution for the given
RSA problem instance. We show that the k2 value obtained as above is indeed a such that
ae = b (mod n). Recall that the second part of the public key corresponding to idI is set to

be PK
(2)
idI

= γI . Since H1(idI) = h1,I = γαe2

I , we get γI = (H1(idI))
α−1e−2

= (H1(idI))
α−1d2

(because d ≡ e−1 (mod φ(n))) and thus CertidI = α−1d2 + d. Therefore, we have

(U∗)CertidI ·eI

U∗ =
(bα)(α

−1d2+d)e

bα
= bd = a (since d ≡ e−1 (modφ(n))).

We now derive the advantage of ARSA in solving the given RSA problem. From the
above construction, the simulation fails if any of the following events occurs: (1) E1: AI

does not choose to be challenged on idI ; (2) E2: AI made a RequestCertificate query
on idI . We clearly have that Pr[¬E1] = 1/qcu and ¬E1 implies ¬E2. Thus, we have that
Pr[¬E1 ∧ ¬E2] ≥ 1/qcu. Therefore, the advantage of ARSA is ε′ ≥ ε/qcu.

This completes the proof of Lemma 5.1.

Lemma 5.2. Suppose that H1∼ H4 are random oracles and AII is a Type-II adversary
against the IND-CBE-CCA2 security of our CBE scheme with advantage ε when run-
ning in time τ , making qcu CreateUser queries, qpri ExtractPrivateKey queries, qdec
Decrypt queries and qi random oracle queries to Hi (1 ≤ i ≤ 4). Then there exists
an algorithm ACDH to solve the CDH problem in Z∗

n with advantage ε′ ≥ ε/(qcuq4) and
running time τ ′ ≤ τ + (q1 + q2 + q3 + q4 + qpri)O(1) + qcuτexp +O(1)) + qdec(3τexp +O(1)),
where τexp denotes the time for computing a modular exponentiation in Z∗

n.

Proof: Assume that ACDH is given a random instance (p, q, n, g, ga, gb) of the CDH
problem in Z∗

n. Its goal is to find gab (mod n) by interacting with AII as follows:
In the setup phase, ACDH randomly chooses an index I with 1 ≤ I ≤ qcu and simulates

the setup algorithm by supplying AII with params = {n, H1, H2, H3, H4} and the master
key msk = (p − 1)(q − 1), where H1 ∼ H4 are random oracles controlled by ACDH . AII

can make queries to these random oracles at any time during the game. ACDH responds
AII ’s various queries as follows:

H 1-queries: ACDH maintains a list H1List of tuples <idi, h1,i >. On receiving such
a query on idi, ACDH responds as follows: (1) If a tuple of the form <idi, h1,i > already
exists in H1List, it returns h1,i to AII . (2) Else, if i = I, then it sets h1,I = g, inserts
<idI , h1,I > into H1List and returns h1,I to AII . (3) Otherwise, it returns a random
h1,i ∈ Z∗

n to AII and inserts <idi, h1,i > into H1List.

H 2-queries: ACDH maintains a list H2List of tuples <idi, PK
(1)
idi

, PK
(2)
idi

, ei >. On

receiving such a query on (idi, PK
(1)
idi

, PK
(2)
idi

), ACDH responds as follows: (1) If a tuple

of the form <idi, PK
(1)
idi

, PK
(2)
idi

, ei > already exists in H2List, it returns ei to AII . (2)



4516 Y. LU AND J. LI

Otherwise, it returns a random ei ∈ Zodd
n to AII and inserts <idi, PK

(1)
idi

, PK
(2)
idi

, ei > into
H2List.
H 3-queries: ACDH maintains a list H3List of tuples < M , σ, idi, PK

(1)
idi

, PK
(2)
idi

, r >.

On receiving such a query on (M , σ, idi, PK
(1)
idi

, PK
(2)
idi

), ACDH responds as follows. (1) If

a tuple of the form < M , σ, idi, PK
(1)
idi

, PK
(2)
idi

, r > already exists in H3List, it returns r

to AII . (2) Otherwise, it returns a random r ∈ Z∗
n to AII and inserts < M , σ, idi, PK

(1)
idi

,

PK
(2)
idi

, r > into H3List.
H 4-queries: ACDH maintains a list H4List of tuples < k1,k2, h4 >. On receiving

such a query on (k1, k2), ACDH responds as follows. (1) If a tuple of the form < k1, k2,
h4 > already exists in H4List, it returns h4 to AII . (2) Otherwise, it returns a random
h4 ∈ {0, 1}lm+lr to AII and inserts < k1, k2, h4 > into H4List.
CreateUser: ACDH maintains a list UserList of tuples < idi, SKidi , PPKidi >. On

receiving such a query on idi, ACDH responds as follows. (1) If a tuple of the form < idi,
SKidi , PPKidi > already exists in UserList, it returns PPKidi to AII . (2) Else, if i = I,
then it sets PPKidI = ga, inserts < idI ,−, PPKidI > into UserList and returns PPKidI

to AII . (3) Otherwise, it randomly chooses xi ∈ Z∗
n, sets SKidi = xi and PPKidi = (h1,i)

xi ,
inserts < idi, SKidi , PPKidi > into UserList and returns PPKidi to AII .
ExtractPrivateKey: On receiving such a query on idi, ACDH responds as follows.

(1) If i = I, then it aborts. (2) Otherwise, it retrieves a tuple of the form < idi, SKidi ,
PPKidi > from UserList and returns SKidi to AII .
Decrypt: On receiving such a query on (idi, Certidi , C = (U, V )), ACDH responds as

follows. (1) If i 6= I, ACDH decrypts the ciphertext C in the normal way since it knows
the private key SKidi and AII provides the certificate Certidi for the identity idi. (2)
Otherwise, ACDH first retrieves a tuple of the form < idI , h1,I > from H1List. It then

searches in H3List for all tuples of the form < M , σ, idI , PK
(1)
idI

, PK
(2)
idI

, r >. If no such

tuple is found, it returns an invalid symbol ⊥. Otherwise, for each < M , σ, idI , PK
(1)
idI

,

PK
(2)
idI

, r >∈ H3List, ACDH checks whether (h1,I)
r = U . If it holds, ACDH computes

k1 = (PK
(1)
idI

)eIr, k2 = (PK
(2)
idI

)eIr and searches a tuple of the form < k1, k2, h4 > in
H4List. If such a tuple exists, ACDH retrieves the h4 value from the tuple and checks
whether M ||σ = V ⊕ h4. If it holds, ACDH returns M to AII as the decryption of C. If
no tuple in H3List passes the above verifications, then ACDH returns an invalid symbol
⊥.
At the challenge phase, AII outputs < id∗, PKid∗ , M0, M1 > where PKid∗ = (PK

(1)
id∗ ,

PK
(2)
id∗). If id∗ 6= idI and PK

(1)
id∗ 6= PPKidI , then ACDH aborts. Otherwise, ACDH sets

U∗ = gb, chooses a random V ∗ ∈ {0, 1}lm+lr , and then returns C∗ = (U∗, V ∗) to AII

as the challenge ciphertext. Observe that the decryption of C∗ is V ∗ ⊕ H4((U
∗)SKidI

·eI ,
(U∗)

CertidI
·eI

U∗ ).
At the guess phase, AII outputs a bit which is ignored by ACDH . It is clear that AII

cannot recognize that C∗ is not a valid ciphertext unless it queries H4 on ((U∗)SKidI
·eI ,

(U∗)
CertidI

·eI

U∗ ). Standard arguments can show that a successful AII is very likely to make
such a query if the simulation is indistinguishable from a real attack environment. To
produce a result, ACDH randomly chooses a tuple < k1, k2, h4 > from H4List and

outputs k
e−1
I

1 as the solution for the given CDH problem. It is clear that k
e−1
I

1 = gab if
k1 = (U∗)SKidI

·eI = (gab)eI . Since H4List contains q4 tuples, the chosen tuple will contain
the correct k1 value with probability 1/q4.



CONSTRUCTING PAIRING-FREE CERTIFICATE-BASED ENCRYPTION 4517

We now derive the advantage of ACDH in solving the CDH problem. From the above
construction, the simulation fails if any of the following events occurs: (1) E1: AII does
not choose to be challenged on idI ; (2) E2: AII made a ExtractPrivateKey query on
idI . We clearly have that Pr[¬E1] = 1/qcu and ¬E1 implies ¬E2. Thus, we have that
Pr[¬E1 ∧ ¬E2] ≥ 1/qcu. Therefore, the advantage of ACDH is ε′ ≥ ε/(qcuq4).

This completes the proof of Lemma 5.2.

6. Performance Comparison. In this section, we make a comparison of our scheme
with the previous CBE schemes. The details of the compared CBE schemes are listed
in Table 1, where we compare the schemes on security model, computation efficiency
and underlying hard problems. Note that we do not list all known CBE schemes in the
literature but some secure and representative ones.

In the computation efficiency comparison, we consider three atomic operations: bilinear
pairing, modular exponentiation and multiplication. For simplicity, we denote the com-
putational cost of these operations by τp, τe and τm respectively. In addition, we denote
the computation cost of a one-time signature signing and verification algorithms used in
[6] by τs and τv respectively. As usual, some symmetric cryptographic operations (such
as hash, message authentication code) are ignored as they can be computed efficiently.
From the table, we can see that our scheme outperforms all the compared CBE schemes.
Due to avoiding the computationally-heavy bilinear paring operations, our scheme is more
suitable to be employed in the computation-limited mobile wireless networks.

Table 1. Comparison of the CBE schemes

Scheme
Without Encryption Decryption Underlying

Random Oracles? Cost Cost Hard Problems
Ours × 3τe 3τe RSA + CDH
[2] × 2τp + τm τp + τm BDH
[8] × 2τe + 2τm τp + τe + τm p-BDHI + 1-BDHI
[4]

√
5τm 3τp + 3τm DBDH

[6]
√

5τm + τs 3τp + 3τm + τv DBDH
[7]

√
8τe + 2τm 2τp + 2τe + τm q-ABDHE + DBDH

7. Conclusions. In this paper, we have presented a new CBE scheme that does not
depend on the bilinear pairings. We have proved in the random oracle model that our
scheme is chosen-ciphertext secure under the hardness of the RSA problem and the CDH
problem. As our scheme does not require any costly bilinear pairing operation, it is
particularly suitable to be employed in mobile wireless networks. However, a limitation
of our scheme is that its security can only be achieved in the random oracle model. So, it
is an interesting open problem to design a chosen-ciphertext secure CBE scheme without
bilinear pairings in the standard model.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China (No. 61272542) and the Fundamental Research Funds for the Central
Universities of China (No. 2010B06414). The authors also gratefully acknowledge the
helpful comments and suggestions of the reviewers, which have improved the presentation.



4518 Y. LU AND J. LI

REFERENCES

[1] A. Shamir, Identity-based cryptosystems and signature schemes, Proc. of CRYPTO 1984, Santa
Barbara, CA, USA, pp.47-53, 1984.

[2] C. Gentry, Certificate-based encryption and the certificate revocation problem, Proc. of EURO-
CRYPT 2003, Warsaw, Poland, pp.272-293, 2003.

[3] S. S. Al-Riyami and K. G. Paterson, CBE from CL-PKE: A generic construction and efficient
schemes, Proc. of PKC 2005, Les Diablerets, Switzerland, pp.398-415, 2005.

[4] P. Morillo and C. Ràfols, Certificate-based encryption without random oracles, Cryptology ePrint
Archive, Report 2006/12, 2006.

[5] C. Sur, C. D. Jung and K. H. Rhee, Multi-receiver certificate-based encryption and application to
public key broadcast encryption, Proc. of 2007 ECSIS Symposium on Bio-Inspired, Learning, and
Intelligent Systems for Security, Edinburgh, UK, pp.35-40, 2007.

[6] D. Galindo, P. Morillo and C. Ràfols, Improved certificate-based encryption in the standard model,
Journal of Systems and Software, vol.81, no.7, pp.1218-1226, 2008.

[7] J. K. Liu and J. Zhou, Efficient certificate-based encryption in the standard model, Proc. of the
6th International Conference on Security and Cryptography for Networks, Amalfi, Italy, pp.144-155,
2008.

[8] Y. Lu, J. Li and J. Xiao, Constructing efficient certificate-based encryption with paring, Journal of
Computers, vol.4, no.1, pp.19-26, 2009.

[9] Y. Lu and J. Li, Forward-secure certificate-based encryption and its generic construction, Journal
of Network, vol.5, no.5, pp.527-534, 2010.

[10] Z. Shao, Enhanced certificate-based encryption from pairings, Computers and Electrical Engineering,
vol.37, no.2, pp.136-146, 2011.

[11] B. G. Kang, J. H. Park and S. G. Hahn, A certificate-based signature scheme, Proc. of the Cryptog-
raphers’ Track at the RSA Conference 2004, San Francisco, CA, USA, pp.99-111, 2004.

[12] M. H. Au, J. K. Liu, W. Susilo and T. H. Yuen, Certificate based (linkable) ring signature, Proc.
of the 3rd Information Security Practice and Experience Conference, Hong Kong, China, pp.79-92,
2007.

[13] J. Li, X. Huang, Y. Mu, W. Susilo and Q. Wu, Certificate-based signature: Security model and
efficient construction, Proc. of the 4th European PKI Workshop, Palma De Mallorca, Spain, pp.110-
125, 2007.

[14] J. K. Liu, J. Baek, W. Susilo and J. Zhou, Certificate based signature schemes without pairings or
random oracles, Proc. of the 11th International Conference on Information Security, Taipei, China,
pp.85-297, 2008.

[15] J. Li, X. Huang, Y. Mu, W. Susilo and Q. Wu, Constructions of certificate-based signature secure
against key replacement attacks, Journal of Computer Security, vol.18, no.3, pp.421-449, 2010.

[16] P. S. L. M. Barreto, B. Lynn and M. Scott, Efficient implementation of pairing-based cryptosystems,
Journal of Cryptology, vol.17, no.4, pp.321-334, 2004.

[17] I. Blake, V. Murty and G. Xu, Refinements of Miller’s algorithm for computing the Weil/Tate
pairing, Journal of Algorithms, vol.58, no.2, pp.134-149, 2006.

[18] E. Okamoto and K. Tanaka, Key distribution system based on identification information, IEEE
Journal on Selected Areas in Communications, vol.7, no.4, pp.481-485, 1989.

[19] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient proto-
cols, Proc. of the 1st ACM CCCS, Fairfax, VA, USA, pp.62-73, 1993.


