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Abstract. This paper investigated the problem of decentralized robust stabilization for
a class of uncertain nonlinear descriptor similar large-scale composite systems with input
saturation. Based on decomposing theory of large-scale systems, Lyapunov stable theory
and matrix theory, a kind of decentralized robust stabilization controller is designed which
ensures asymptotic stability of the closed-loop systems for these systems and the closed-
loop systems for their isolated subsystems. Since the similar structures of the controllers,
all controllers can be obtained by only one controller and similar parameters; thus, they
are easy to perform in engineering practice. Further, a numerical example is given to
demonstrate the effectiveness of the proposed methods.
Keywords: Robust stabilization, Similar structure, Input saturating actuation, De-
scriptor composite system, Decentralized control

1. Introduction. Decentralized control has drawn more and more attention in recent
decades, and many results about it have been obtained (see, for example, [1-7] and the
references therein). On the other hand, in practical control systems, input with saturation
is a common phenomenon, such as, the communicative satellite attitude regulation sys-
tems [8]. Without consideration of input saturation in the design controllers, the stability
of closed-loop system cannot be ensured. In the past several years, the analysis and design
for normal system with input saturation have been extensively investigated [9-13]. De-
centralized control for nonlinear lager-scale interconnected systems with input saturation
is reported in [9]. The control synthesis problem for a class of linear time-delay systems
with actuator saturation is investigated in [10]. A novel decentralized adaptive neural
control scheme is proposed for a class of interconnected large-scale uncertain nonlinear
time-delay systems with input saturation in [11]. In [12], a novel and elegant approach
to solving the problem of global stabilization for a chain of integrators in the presence of
input saturation and disturbances is brought up. The attitude tracking control problem
for rigid spacecraft with actuator saturations, inertia uncertainties and external distur-
bances is considered in [13]. The decentralized control for composite systems with input
saturation is studied in [14].

In recent years, the researchers discussed the stabilization problem for descriptor lin-
ear system with input saturation [15-19]. For example, the simultaneous semi-global
Lp-stabilization and asymptotic stabilization in both semi-global and global cases were
considered for continuous-time linear singular systems subject to input saturation in [17].
In [18], a linear feedback control law is designed for the step tracking control problem
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of linear singular systems subject to input saturation. Then, based on this linear feed-
back gain, a CNF control law is constructed to improve the transient performance of the
closed-loop system. In [19], a sufficient condition is obtained which guarantees that the
discrete-time singular Markov jump system with actuators saturation is regular, causal,
bounded state stable, and satisfies the H∞ performance. However, little attention has
been paid to the study of stabilization with input saturation for the nonlinear descriptor
system, especially for uncertain nonlinear composite descriptor system. Similar composite
system has been applied in the fields of communicative systems, manual nerve cell net-
works, electric power system and so on [20-22]. Thus, the study of decentralized control
for nonlinear descriptor similar composite large-scale system with input saturation has
important theoretical and practical meaning.
Due to these, in the paper, we consider a class of uncertain nonlinear descriptor similar

composite large-scale system with input saturation. A sufficient condition for asymptotic
stability of the closed-loop systems for these systems and the closed-loop systems for
their isolated subsystems is obtained by using decomposing theory of large-scale systems,
Lyapunov stable theory and matrix theory. By similar structure, a concise design method
for decentralized robust stabilization controller is given. The design results show that this
design is easy to calculate and the controllers have similar structure, so it is easy to realize
project. Without consideration of the nonlinearity, the interconnection is considered in
[14]; neither the nonlinearity nor the interconnection is considered in [15,16]. However, in
this paper, the uncertainty, the nonlinearity, and the interconnection are all considered,
so the application of this paper is more widely than them of reference [14,15,16].
Introduce the following marks: ‖ • ‖ shows spectral norm. λmax(A) and λmin(A) show

the maximum and minimum eigenvalues of symmetric matrix A. In this paper, the system
(4) possesses the PS similar structure and S(i, 1) = (Ti, Si, Ki), 1 ≤ i ≤ N .

2. Problem Statement and Assumptions. Consider the following descriptor large-
scale systems composed of N regular subsystems:

Eiẋi = Aixi +∆fi(xi, t) +Biui +
N∑

j=1,j 6=i

∆Hi,j(xj), 1 ≤ i ≤ N (1)

where xi ∈ Rn, ui ∈ Rm are state and input for the i-th subsystem, respectively; Ei, Ai ∈
Rn×n, Bi ∈ Rn×m are constant value matrixes, respectively; rankEi < n, det(sEi−A) 6= 0;

∆fi(xi, t) shows the structure uncertain term of the i-th subsystem;
∑N

j=1,j 6=i∆Hi,j(xj),
1 ≤ i ≤ N shows the uncertain unmatched interconnection of the i-th subsystem. We
suppose that every descriptor subsystem is regular and ∆fi(0, t) = ∆Hij(0) = 0, 1 ≤ i,
j ≤ N , j 6= i.
The system:

Eiẋi = Aixi +Biui (2)

is said to be the nominal system of the i-th subsystem and simply denoted as (Ei, Ai, Bi),
1 ≤ i ≤ N .

Definition 2.1. [22] To the nominal system (Ei, Ai, Bi) and (Ej, Aj, Bj) of the i-th
subsystem and the j-th subsystem for the system (1), if there exists a constant matrix
K ∈ Rm×n and nonsingular matrixes T, S ∈ Rn×n, such that

TEiS = Ej, T (Ai +BiK)S = Aj, TBi = Bj (3)

then the nominal systems of the i-th subsystem and the j-th subsystem are said to be
proportional state feedback similar. Simply denote it as (Ei, Ai, Bi)

PS (Ej, Aj, Bj), and
(T, S,K) is said to be similar parameter.



DECENTRALIZED ROBUST CONTROL 3993

Definition 2.2. [22] If there exists j, 1 ≤ j ≤ N , such that (Ei, Ai, Bi)
PS (Ej, Aj, Bj),

and similar parameters are Ti, Si, Ki, 1 ≤ i ≤ N , i 6= j, then the system (1) is said to be
PS similar structure, and S(i, j) = (Ti, Si, Ki), 1 ≤ i, j ≤ N , i 6= j is said to be similar
index.

Then we have the following results [22]: the similar relation “PS” is equivalent relation;
if the system (1) with PS similar structure has the concurrence of the stable, R-stable
and impulse controllable nominal systems, then all of the nominal systems (Ei, Ai, Bi) are
stable, R-stable and impulse controllable.

Consider the following nonlinear descriptor composite large-scale system:∑
i

: Eiẋi = Aixi +∆fi(xi, t) +Biσi(ui) +
N∑

j=1,j 6=i

∆Hij(xj), 1 ≤ i ≤ N (4)

where σi(ui) is saturating function, 1 ≤ i, j ≤ N , we suppose that every descriptor
subsystem is regular.

The system (2) is said to be the reference system of the i-th subsystem for the system
(4).

Our problem is: The system (4) should satisfy what condition, can we find state feed-
back:

ui = Kixi, i = 1, 2, · · · , N
such that

Question 1: For the i-th closed-loop subsystem

Eiẋi = Aixi +∆fi(xi, t) +Biσi(Kixi) (5)

is asymptotic stable about xi = 0, 1 ≤ i ≤ N .
Question 2: For the absolute closed-loop systems

Eiẋi = Aixi +∆fi(xi, t) +Biσi(Kixi) +
N∑

j=1,j 6=i

∆Hij(xj), 1 ≤ i ≤ N, (6)

is asymptotic stable about x = 0.

Lemma 2.1. [9] If σ is saturating actuators, then∥∥∥∥12S − σ(S)

∥∥∥∥ ≤ 1

2
‖S‖, ∀S ∈ Rm.

Assumption 2.1. (E1, A1, B1) is stable and impulse controllable.

By Assumption 2.1, there exists matrix K ∈ Rm×n and nonsingular matrixes T, S ∈
Rn×n, such that

TE1S =

(
Ir 0
0 0

)
, T (A1 +B1K)S =

(
A(1) 0
0 In−r

)
(7)

where r = rankE1, A(1) is Hurwitz stable matrix, then to arbitrary positive definite
matrix Q ∈ Rr×r, Lyapunov equation

AT
(1)P + PA(1) = −Q (8)

has unique positive definite solution P . Denote as

T =

(
T(1)

T(2)

)
, T−1 =

(
T[1] T[2]

)
, S−1 =

(
S(1)

S(2)

)
. (9)

T(1), S(1) ∈ Rr×n; S(2) ∈ R(n−r)×n; T[1] ∈ Rn×r, T[2] ∈ Rn×(n−r).



3994 Y. MA, N. ZHANG AND X. ZHONG

Assumption 2.2.

‖∆fi(xi, t)‖ ≤ βi‖Eixi‖, 1 ≤ i ≤ N ;

‖∆Hij(xj)‖ ≤ αij‖Ejxj‖, 1 ≤ i, j ≤ N, i 6= j;

r = max
1≤i≤N

ri, r < 1

where ri = ‖T(2)B1‖‖KS−1
i +Ki‖‖SSi‖.

Assumption 2.3. Matrix (W T +W ) (W = (Wij)N×N) is positive definite. That is

Wij =


λmin(Q)− 2βi‖PT(1)Ti‖‖T−1

i T[2]‖ − 2‖PT(1)B1‖‖KS−1
i +Ki‖‖SSi‖

×
(
1 +

βi‖T(2)Ti‖‖T−1
i T[1]‖+ri

1−ri

)
, i = j;

−2αij

(
‖PT(1)Ti‖‖T−1

j T[1]‖+
‖PT(1)B1‖‖KS−1

i +Ki‖‖SSi‖
1−ri

‖T(2)Ti‖‖T−1
j T[1]‖

)
, i 6= j

where S1 = T1 = In, K1 = 0.

We design the following decentralized controller to the system (4):

u1(x1) = 2Kx1 (10)

by both Equation (10) and the similar parameter (Ti, Si, Ki), we construct decentralized
controller as follows:

ui(xi) = 2(KS−1
i +Ki)xi, 2 ≤ i ≤ N. (11)

3. Main Results.

Theorem 3.1. If Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold, then the
system (4) has decentralized stabilization controllers:

ui(xi) = 2(KS−1
i +Ki)xi, 1 ≤ i ≤ N.

Proof: For convenience, denote

T1 = S1 = In, K1 = 0.

By Assumptions 2.1, Definition 2.1 and its equivalent properties we know:

TiEiSi = E1, Ti(Ai +BiKi)Si = A1, TiBi = B1, (12)

TTiEiSiS =

(
Ir 0
0 0

)
,

TTi(Ai +BiKi +BiKS−1
i )SiS =

(
A(1) 0
0 In−r

)
, 1 ≤ i ≤ N. (13)

The closed-loop system composed of the i-th subsystem (4) and controller ui is

Eiẋi = (Ai +BiKi +BiKS−1
i )xi +Bi

(
σi(ui)−

1

2
ui

)
+∆fi(xi), 1 ≤ i ≤ N. (14)

Make nonsingular transform(
z(1)
z(2)

)
= S−1S−1

i xi =

(
S(1)

S(2)

)
S−1
i xi, 1 ≤ i ≤ N (15)

and make multiplication by TTi at the both sides of Equation (14), then we get(
Ir 0
0 0

)(
żi(1)
żi(2)

)
=

(
A(1) 0
0 In−r

)(
zi(1)
zi(2)

)
+ TTi∆fi(xi, t) + TB1

(
σi(ui)−

1

2
ui

)
(16)
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where T =

(
T(1)

T(2)

)
.

Equation (16) is equivalent to

żi(1) = A(1)zi(1) + T(1)Ti∆fi(xi, t) + T(1)B1

(
σi(ui)−

1

2
ui

)
(17)

0 = zi(2) + T(2)Ti∆fi(xi, t) + T(2)B1

(
σi(ui)−

1

2
ui

)
(18)

xi = SiS

(
zi(1)
zi(2)

)
Eixi =T−1

i T−1TTiEiSiS
−1S−1

i xi

=T−1
i

(
T[1] T[2]

)( Ir 0
0 0

)(
zi(1)
zi(2)

)
=T−1

i T[1]zi(1)

(19)

According to Lemma 2.1, we can get∥∥∥∥σi(ui)−
1

2
ui

∥∥∥∥ ≤ 1

2
‖ui‖ = ‖KS−1

i +Ki‖‖xi‖

≤ ‖SSi‖‖KS−1
i +Ki‖(‖zi(1)‖+ ‖zi(2)‖)

(20)

By Equation (18), we can get

−zi(2) = T(2)Ti∆fi(xi, t) + T(2)B1

(
σi(ui)−

1

2
ui

)
.

By Assumption 2.2 and Equation (20), we can get

‖zi(2)‖ ≤ ‖T(2)Ti‖‖T−1
i T[1]‖βi‖zi(1)‖+ ri(‖zi(1)‖+ ‖zi(2)‖)

where ri < 1.
So

‖zi(2)‖ ≤
βi‖T(2)Ti‖‖T−1

i T[1]‖+ ri
1− ri

‖zi(1)‖. (21)

We easily know: in the case when ri <1, the i-th isolated subsystem is impulse free.
For the system (17) we construct positive definite function

V (zi(1)) = zTi(1)Pzi(1)

differentiate V along trail of system (17); by Equation (20) and Equation (21), we have

V̇ = zTi(1)(A
T
(1)P + PA(1))zi(1) + 2zTi(1)PT(1)B1

(
σi(ui)−

1

2
ui

)
+ 2zTi(1)PT(1)Ti∆fi(xi, t)

= − zTi(1)Qzi(1) + 2zTi(1)PT(1)B1

(
σi(ui)−

1

2
ui

)
+ 2zTi(1)PT(1)Ti∆fi(xi, t)

V̇ ≤− λmin(Q)‖zi(1)‖2 + 2‖PT(1)B1‖‖KS−1
i +Ki‖‖SSi‖(‖zi(1)‖+ ‖zi(2)‖)‖zi(1)‖

+ 2βi‖PT(1)Ti‖‖T−1
i T[1]‖‖zi(1)‖2

≤ −
[
λmin(Q)− 2βi‖PT(1)Ti‖‖T−1

i T[1]‖ − 2‖PT(1)B1‖‖KS−1
i +Ki‖‖SSi‖

×
(
1 +

βi‖T(2)Ti‖‖T−1
i T[1]‖+ ri

1− ri

)]
‖zi(1)‖2
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According to Assumption 2.3, since W T +W is positive definite, Wii > 0, 1 ≤ i ≤ N
and V̇ is negative definite, then Question 1 can be solved.
The closed-loop composed of system (4) and controller ui is:

Eiẋi = (Ai +BiKi +BiKS−1
i )xi +Bi

(
σi(ui)−

1

2
ui

)
+∆fi(xi) +

N∑
j=1,j 6=i

∆Hij(xj) (22)

Make a nonsingular transform(
zi(1)
zi(2)

)
= S−1S−1

i xi =

(
S(1)

S(2)

)
S−1
i xi, 1 ≤ i ≤ N

and multiplication by TTi at the both sides of Equation (22), then we get(
Ir 0
0 0

)(
żi(1)
żi(2)

)
=

(
A(1) 0
0 In−r

)(
zi(1)
zi(2)

)
+ TTi∆fi(xi, t) + TB1

(
σi(ui)−

1

2
ui

)
+ TTi

N∑
j=1,j 6=i

∆Hij(xj)

(23)

where T =

(
T(1)

T(2)

)
.

Equation (23) is equivalent to

żi(1) = A(1)zi(1) + T(1)Ti∆fi(xi, t) + T(1)B1

(
σi(ui)−

1

2
ui

)
+ T(1)Ti

N∑
j=1,j 6=i

∆Hij(xj) (24)

0 = zi(2) + T(2)Ti∆fi(xi, t) + T(2)B1

(
σi(ui)−

1

2
ui

)
+ T(2)Ti

N∑
j=1,j 6=i

∆Hij(xj),

i = 1, 2, · · · , N.

(25)

By Equation (25), we can get

−zi(2) = T(2)Ti∆fi(xi, t)+T(2)B1

(
σi(ui)−

1

2
ui

)
+T(2)Ti

N∑
j=1,j 6=i

∆Hij(xj), i = 1, 2, · · · , N

(26)
By Assumption 2.2 and Equation (20), we have

‖zi(2)‖ ≤ βi‖T(2)Ti‖‖T−1
i T[1]‖‖zi(1)‖+ ri

(
‖zi(1)‖+ ‖zi(2)

)
‖

+
N∑

j=1,j 6=i

‖T−1
j T[1]‖‖T(2)Ti‖αij‖zj(1)‖

where ri < 1.
So

‖zi(2)‖ ≤
βi‖T(2)Ti‖‖T−1

i T[1]‖+ ri
1− ri

‖zi(1)‖+
N∑

j=1,j 6=i

αij‖T(2)Ti‖‖T−1
j T[1]‖

1− ri
‖zj(1)‖. (27)

For the system (24) we construct positive definite function

V (z1(1), z2(1), · · · , zN(1)) =
N∑
i=1

zTi(1)Pzi(1)
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differentiate V along trail of system (24); by Equation (20) and Equation (27), we can
get

V̇ =−
N∑
i=1

zTi(1)Qzi(1) +
N∑
i=1

2zTi(1)PT(1)B1

(
σi(ui)−

1

2
ui

)
+

N∑
i=1

2zTi(1)PT(1)Ti∆fi(xi, t)

+
N∑
i=1

N∑
j=1,j 6=i

2zTi(1)PT(1)Ti∆Hij(xj)

≤
N∑
i=1

−λmin(Q)‖zi(1)‖2 +
N∑
i=1

2‖PT(1)B1‖‖KS−1
i +Ki‖‖SSi‖(‖zi(1)‖+ ‖zi(2)‖)‖zi(1)‖

+
N∑
i=1

N∑
j=1,j 6=i

2αij‖PT(1)Ti‖‖T−1
j T[1]‖‖zi(1)‖‖zj(1)‖

+
N∑
i=1

2βi‖PT(1)Ti‖‖T−1
i T[1]‖‖zi(1)‖2

≤−
N∑
i=1

[
λmin(Q)− 2βi‖PT(1)Ti‖‖T−1

i T[1]‖ − 2‖PT(1)B1‖‖SSi‖‖KS−1
i +Ki‖

×
(
1 +

βi‖T(2)Ti‖‖T−1
i T[1]‖+ ri

1− ri

)]
‖zi(1)‖2 +

N∑
i=1

N∑
j=1,j 6=i

2αij

(
‖PT(1)Ti‖‖T−1

j T[1]‖

+ ‖PT(1)B1‖‖SSi‖‖KS−1
i +Ki‖ ×

‖T(2)Ti‖‖T−1
j T[1]‖

1− ri

)
‖zi(1)‖‖zj(1)‖

=− Y TWY

=− 1

2
Y T (W T +W )Y

where
Y = (‖z1(1)‖, ‖z2(1)‖, · · · , ‖zN(1)‖)T .

By Assumption 2.3, W T+W is positive definite, so V̇ is negative definite, then Question
2 can be solved.

Corollary 3.1. If Assumption 2.1 and Assumption 2.2 hold, then the i-th subsystem for
the system (4) is impulse free.

The design process of decentralized robust stabilization controller:
1) According to Assumption 2.1, we choose k, then get T and S.
2) We choose Q, get the positive solution of the Lyapunov Equation (8).
3) Design the stabilization controller Equation (11) (1 ≤ i ≤ N).

Remark 3.1. Compared with reference [15,16], the uncertainty, nonlinearity and inter-
connection of the system are considered in this paper, so it is of more importance.

Remark 3.2. In the system (4) of this paper, let Ei = I, Ai = A1, Bi = B1, ∆Hij(xj) =
A12xj, ∆fi(xi, t) = 0, then the system (4) could be reduced to the system (5) in reference
[14], so the Theorem 2 in reference [14] is an exception of Theorem 3.1 in this paper.



3998 Y. MA, N. ZHANG AND X. ZHONG

4. Numerical Example.

Example 4.1. Consider following uncertain descriptor large-scale composite systems
composed of two subsystems:(

1 0
0 0

)
ẋ1 =

(
−0.9 0.1
0 1

)
x1 +

(
1
0

)
σ1(u1) + ∆f1(x1, t) + ∆H12(x2) (28)(

1 0
0 0

)
ẋ2 =

(
−0.9 0.1
0 1

)
x2 +

(
1
0

)
σ2(u2) + ∆f2(x2, t) + ∆H12(x1) (29)

where

‖∆f1(x1, t)‖ ≤ 1

4
‖Ex1‖, ‖∆f2(x2, t)‖ ≤ 1

4
‖Ex2‖;

‖∆H12(x2)‖ ≤ 1

4
‖Ex2‖, ‖∆H21(x1)‖ ≤ 1

4
‖Ex1‖.

The system (28) is similar with the system (29), similar parameter is (T, S,K) =
(I2, I2, 0).

1) rank(sE − A,B) = 2, rank

(
E 0 0
A E B

)
= 2 + rankE.

The system (28) and system (29) are R-stable and impulse controllable.

Let K = (−0.1− 0.1), A+ BK =

(
−1 0
0 1

)
, A(1) = −1. Let Q = 4, solve Lyapunov

equation

(−1)TP + P (−1) = −4, P = 2, T = S =

(
1 0
0 1

)
= T−1 = S−1.

S(1) = T(1) =
(
1 0

)
, S(2) = T(2) =

(
1 0

)
, T[1] =

(
1
0

)
, T[2] =

(
1
0

)
,

T1 = T2 = S1 = S2 = I2.

2) T(2)B1 = 0, so ri = 0, ri < 1, i = 1, 2.

3) W =

(
2.2929 −1.1414
−1.1414 2.2929

)
is positive definite.

So

u1 =
(
−0.2 −0.2

)
x1,

u2 =
(
−0.2 −0.2

)
x2,

is decentralized robust controller of this system.
The result of the numerical example is obtained by Theorem 3.1; however, it could not

be solved by the reference [14-16].

5. Conclusions. In this paper, a class of descriptor similar large-scale composite systems
with input saturation is considered. By using decomposing theory of descriptor systems,
Lyapunov stable theory and matrix theory, a design method for a kind of decentralized ro-
bust stabilization controller is given. Finally, a numerical example is given to demonstrate
the effectiveness of the results obtained in this paper.
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Figure 1. The state feedback response for the closed-loop system
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