
International Journal of Innovative
Computing, Information and Control ICIC International c©2014 ISSN 1349-4198
Volume 10, Number 4, August 2014 pp. 1413–1433

IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING
USING STATE FEEDBACK CONTROLLER

Yousef Alipouri1, Javad Poshtan1 and Hasan Alipour2

1Department of Electrical Engineering
Iran University of Science and Technology

Narmak, Tehran 16846-13114, Iran
{ yalipouri; jposhtan }@iust.ac.ir

2Department of Electrical Engineering
University of Tabriz

Tabriz 51666-14766, Iran
hasan.alipour2006@gmail.com

Received October 2012; revised October 2013

Abstract. In evolutionary programming, each parent has two pieces of information:
location and cost. The cost of parent specifies whether its location is suitable for breeding
offspring or not. If the parent’s cost is an acceptable value, producing offspring (or even
steering other offspring) in the parent’s area is advisable. This information is used in
estimating the region of global minimum; then, using the state feedback controller, the off-
spring is steered to the optimal region. In the proposed method, the cost and coordination
of parents have been used for breeding more elite individuals. Many (sixty-five) well-
known cost functions have been selected from different references to reveal the pros and
cons of our algorithms. In the first stage, the proposed algorithm has been compared in-
side the EP family. This stage shows promising results for the proposed algorithm. In the
second stage, comparison has been performed out of the EP frontiers in which algorithms
are state-of-the-art in the optimization field, and are well known inside and outside of
their own families. The statistic test has been performed among the algorithms. CPU
time and its sensitivity to variable bounds, population and cost function dimensions have
been studied. Finally, the proposed method is used in designing the nonlinear minimum
variance controller for CSTR (Continuous Stirred-Tank Reactor) benchmark system.
Keywords: Evolutionary programming, Weighted mean point, State feedback con-
troller, Global optimization, CSTR benchmark system

1. Introduction. In the case of evolutionary computation, there are four historical
paradigms which have served as the basis for many of the activities in the field: Genetic
Algorithms (GA) (Holland and Harbor, 1975) [1], Genetic Programming (GP) (Koza,
1992) [2], Evolutionary Strategies (ES) (Recheuberg, 1973) [3] and Evolutionary Pro-
gramming (EP) (Fogel et al., 1966) [4]. The basic differences between the paradigms lie
in the nature of the representation schemes, reproduction operators and selection methods
[5].

In conventional EAs, there is no feedback from the produced or cached information in
deciding the coordinate of the new offspring. In addition, in conventional EAs, especially
in EP, the region of each parent is the location for breeding the related offspring [6]; thus,
the place and cost of other parents are not effective in deciding the coordinate of the
offspring. However, the cost of parent specifies whether its location is suitable for breeding
offspring or not. Using this information, an algorithm can enhance its performance.

In this paper, an improved version of CEP (Classic EP) is introduced in order to boost
EP’s performance in searching for the global minimum of multimodal cost functions. The

1413



1414 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

proposed method attempts to benefit from more information found in each iteration. If
the parent’s cost is acceptable among others, producing offspring near to its area and even
steering other offspring toward that area is advisable. This approach enhances elitism in
searching the cost plate.
The proposed algorithm is compared in and out of the evolutionary programming family.

Inside the EP family, some well-known algorithms are selected for comparison. Outside
the EP family, three groups of families are selected for comparison. Each family has one
candidate for comparison. An attempt is made to select the algorithms that are highly
capable and similar to the proposed method in methodology and style of searching the
global minimum.
The organization of this paper is as follows. Section 2 presents a brief explanation on

the background of algorithms. Section 3 introduces the basic ideas behind the Weighted
Mean Classical Evolutionary Programming (WMCEP). Section 4 gives some details on
test functions, and shows and compares simulation results. Section 5 includes statistic
test of “Contrast Estimation of Median” among the algorithms. Section 6 tests sensi-
tivity of CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [7] and WMCEP
methods on changes in parameters and compares the methods concerning CPU time. Sec-
tion 7 presents an application of designing nonlinear minimum variance controller using
WMCEP, and finally, Section 8 presents the conclusions and summarizes the simulation
results.

2. Problem Statement and Preliminaries. The CEP can be implemented as follows
[8] (This is the algorithm of EP as implemented in this paper.):

1) Generate the initial population of µ individuals and set k = 1. Each individual is taken
as a pair of real valued vectors, (xi, ηi), ∀i ∈ {1, . . . , µ}, where xis are objective vari-
ables and ηis are standard deviations for Gaussian mutations (also known as strategy
parameters in self-adaptive evolutionary algorithms).

2) Evaluate the fitness score for each individual (xi, ηi), ∀i ∈ {1, . . . , µ} of the population
based on the objective function f(xi).

3) Each parent (xi, ηi), i = 1, . . . , µ creates a single offspring (x′
i, η

′
i) by: j = 1, . . . , n

4)

x′
i(j) = xi(j) + ηi(j)Nj(0, 1) (1)

η′i = ηi(j) exp(τ
′N(0, 1) + τNj(0, 1)) (2)

where xi(j), x
′
i(j), ηi(j) and η′i(j) denote the jth component of the vectors xi, x

′
i, ηi

and η′i, respectively. N(0, 1) denotes a normally distributed one-dimensional random
number with the mean of zero and standard deviation of one. Nj(0, 1) indicates that
the random number is generated anew for each value of j. The factors τ and τ ′ are
commonly set to (

√
2
√
n)−1 and (2

√
n)−1.

5) Calculate the fitness of each offspring (x′
i, η

′
i), ∀i ∈ {1, . . . , µ}.

6) Conduct a pairwise comparison over the union of parents (xi, ηi) and offspring (x′
i, η

′
i),

∀i ∈ {1, . . . , µ}. For each individual, q opponents are chosen uniformly at random
from all the parents and offsprings. For each comparison, if the individual’s fitness is
not smaller than the opponent’s, it will receive a “win”.

7) Select µ individuals out of (xi, ηi) and (x′
i, η

′
i), ∀i ∈ {1, . . . , µ}, that have the most wins

to be the parents of the next generation.
8) Stop if the halting criterion is satisfied; otherwise, k = k + 1 and go to Step 3.



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1415

Many variants of EP have attempted to boost performance of the CEP [8-13]. They
have usually changed Equations (1) and (2) in Step 3. Yao et al. [8] proposed a Cauchy-
mutation-based EP, called fast EP (FEP). Fast EP (FEP) is similar to CEP, but uses a
Cauchy function instead of a Gaussian function mutation as the primary search operator
in Equations (1) and (2).

LEP (Levy distributed Evolutionary Programming) is a variant of EP, which is similar
to CEP and FEP. The difference is in the mutation function; LEP uses a Levy distribution
function in place of Gaussian for mutation function (Equation (2)) [9].

All three Gaussian, Cauchy, and Levy distribution functions are special cases of stable
distributions. These distribution functions can be produced by Equation (3) in which x
and y are Gaussian random numbers.

p =
x

y
1
α

(3)

if α = 2 ⇒ p is Guassian random number

if α = 1 ⇒ p is Cauchy random number

if 1 < α < 2 ⇒ p is Levy random number

Three algorithms CEP, FEP and LEP are the most famous algorithms inside the EP
family and new introduced variants are usually compared with these algorithms. For an
in-depth review on EP variants, refer to [10].

3. The Proposed Method: Weighted Mean Classical Evolutionary Program-
ming (WMCEP). Conceptually, each individual of one generation can be considered
as a person looking for the coordinate of an unknown place (the global minimum). Each
individual would want to approach a point, which does not have any previous records,
information, or maps. The winner, which is named “the best individual”, is the individual
who can achieve the best estimation of the coordinate. Individuals are ranked according
to their closeness to the global minimum, sorting individuals from low to high cost. At
the end of each iteration, after a big tournament between new individuals and parents,
some of the individuals are discarded because of their low ranks. It is necessary to say
that parents are those who have won the last iteration. This is the approach of CEP,
which may be regarded as blind searching.

When the new individual enters the tournament, the logical decision is to use the
remaining information from the previous searching team (parents). If parents have found
the proper region with low cost, it is advisable to search the same area and recede from
areas that have high costs. However, care must be taken for avoiding trapping inside
the local minimum. This approach is similar to the method called MCEP (Momentum
Coefficient Evolutionary Programming) recently proposed in [6]. However, MCEP uses
only the location of parents, and not their costs. One disadvantage of disregarding the
cost of parents is pulling both best and worst individuals toward the same region. This
means that best individuals do not have the opportunity to search their own area. Our
scope in this paper is to add the information of individual costs in determining the mean
point by steering offspring toward the best individuals’ area (those with best costs) and
prevent them from getting close to the worst ones. Figure 1 shows this strategy.

For implementing this idea (Figure 1), two changes have been performed on CEP: 1)
Weighted Mean Point (WMP) is defined as an estimation of the global minimum and 2)
An approach similar to state feedback is used for steering offspring toward WMP.



1416 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

Figure 1. Steering the offspring toward Weighted Mean Point (WMP).
Ellipses are contours of a cost function with one global minimum.

3.1. Determining the WMP. In the proposed method, individuals are ranked using
their cost; then a weight is allotted for each individual according to its rank. The individ-
ual that has the best cost attains a higher weight than others do, and vice versa. Thus,
the proposed method introduces the weighted average of individuals for determining the
location of WMP. Equation (4) shows the procedure of calculating WMP. Figure 2 shows
a curve of weight versus rank, which is used in this study. Weighting leads WMP closer
to the individuals with higher ranks. Therefore, they have more shares in determining the
place of WMP. Steering the offspring toward WMP causes the offspring to move toward
the best individuals, and prevents them from getting close to the parents with low ranks
(Figure 1). By increasing the slope of curve in Figure 2, WMCEP becomes more elite,
which may cause it to be trapped inside the local minimums.

Wmean =
n∑

i=1

wixi,

n∑
i=1

wi = 1, w1 ≥ w2 ≥ . . . ≥ wµ > 0 (4)

where

wi =
ea(i)

n∑
i=1

ea(i)

a (i) = 3− i× 6

n
where n is the population size.



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1417

Figure 2. Curve of weights via the individual’s rank

Figure 3. WMCEP extends the offspring region by steering the offspring
toward WMP

WMCEP extends the offspring region by steering the offspring toward WMP. Figure
3 shows the breeding region in the WMCEP algorithm. This region is larger than the
region defined for CEP (see Figure 4). Thus, it is more probable that the global minimum
is located inside the WMP region (depicted in Figure 3) and the probability of reaching
the global minimum is more than other EP variants (see Figure 4). Figure 5 shows the
offspring that was produced in the region near WMP.

Figure 5 shows that steering toward WMP can increase the convergence speed and
accuracy of the method. Nevertheless, producing all offspring near WMP can lead to
falling inside local minimums. Thus, the breading region must be controlled. The region
near the parent is more robust against falling into local minimums, because in this region
the step size for changing the offspring is small and most offspring are produced near their
own parents; however, searching speed is very low (see Figure 4). On the other hand, the
region near WMP gives a big step size for the offspring and, as a result, increases the



1418 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

Figure 4. In the conventional EP, offspring is produced using the infor-
mation of its own parent [6]

Figure 5. The results of WMCEP in producing offspring by steering them
toward the weighted mean point of the parents

speed of the algorithm; however, it may cause trapping inside the local minimum, because
most of the offsprings are produced in a small area near to WMP (see Figures 2 and 5).
Consequently, the optimal region must be selected between parents and WMP regions.
State feedback determines this optimal region.

3.2. Designing state feedback controller. WMCEP faces two challenges: 1) The
weighted mean point may be far from the global minimum in the last iterations (if it
falls in the local minimum, then it will mislead the offspring), and 2) speeding up the
algorithms can cause premature convergence. The method that is more capable has more
speed while it avoids being trapped in local minimums.
Using information has been obtained from the previous iteration can simultaneously

fulfill both criteria of speed and accuracy. For solving both introduced issues, the speed



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1419

of the algorithm must be controlled while getting close to the WMP. A controller similar
to state feedback controls regions for breeding.

State feedback is a terminology used in control engineering (see block diagram in Figure
6).

Figure 6. Block diagram of the state feedback controller

State feedback is a kind of controller in which states of the system are measured and
the control signal is produced by feedback gain. In state feedback, the value of the state
vector is fed back to the input of the system. State feedback has an input, r, and defines
the following relationship [11]:

u(t) = r(t) +Kx(t) (5)

K is a constant matrix that is external to the system.
The searching process of EAs can be defined using the control block diagram. Figure

7 shows the searching scheme of conventional EAs which is similar to the open loop
configuration. In this scheme, there is no control and feedback on the searching process.

Figure 7. Block diagram of conventional EAs searching process

WMP is far from the global minimum in the first iterations, but gets closer to it over
time provided the algorithm be not trapped in local minimum. Hence, WMP can be used
as the estimated coordinate of the global minimum. This estimation can be used as a
basis for drawing feedback and designing the state feedback controller. Figure 8 shows
the diagram of this process.

Similar to Equation (5), the controller similar to state feedback can be defined for
WMCEP. Therefore, the offspring can be produced by Equation (6).

x′
i(j) = xi(j) + ηi(j)Nj(0, 1) +K ×WMP (j) (6)

where the WMP (j) is the j element of WMP coordination. Now, the value of k must
be determined. In state feedback, the value of K is extremely dependent on the system.



1420 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

Figure 8. Block diagram of the state feedback control used in WMCEP

Consequently, the value of K in Equation (6) depends on the shape of cost functions.
This dependence damages the generality of the algorithm. However, this value can be
designed in such a way to be suitable for most kinds of cost functions (Equations (7) and
(8)). Coefficient S is used for avoiding producing points out of the variable’s boundaries.
Thus, consider S +K = 1. Then,

x′
i(j) = S × xi(j) + ηi(j)Nj(0, 1) +K ×Wmean(j) (7)

S =
(total iter − iter)

total iter
, K =

iter

total iter
(8)

In Equation (8), total iter is the abbreviation for the total number of iterations, which is
specified by the user, and iter is the abbreviation for the current iteration.
Equation (8) introduces descending and ascending coefficients S and K. Defining S

and K by (8) has some advantages. In the first iterations, the algorithm does not have
any estimation of the global minimum, so as far as WMP is considered as the initial des-
tination, the offspring can be given a known target. Consequently, speed can be increased
by steering offsprings toward this destination. This is a goal of introducing WMP, but
over time, the algorithm can find its way toward the global minimum. Therefore, by
defining the descending coefficient for the weighted mean value (K in Equation (8)); the
effectiveness of the WMP will be decreased. This strategy enables the algorithm to change
its way toward the global minimum after finding good estimation of the global minimum.
In other words, over time, the necessity for the weighted mean value decreases and the
algorithm is able to find points near the global minimum.
At first glance, it may seem that this strategy is only possible when the global minimum

is in the center of the search plate. However, searching with a high number of individuals
helps in contemplating on all parts of the map simultaneously. The results of this paper
indicate that this method is capable of finding the global minimum located anywhere on
the search map.
In brief, WMCEP has two main differences with CEP: 1) Giving weights to the individ-

uals by their rank, and defining WMP, which is the weighted average of the individual’s
location, and 2) Controlling the region of breeding offspring with regard to WMP. There-
fore, the pseudo code of WMCEP is as follows.
Choose the initial population of individuals
Produce strategy parameters by any mutation function
Evaluate the cost of each individual in that population
Repeat this generation until termination: (time limit, sufficient cost achieved, etc.)

Rank individuals using their cost and give them weights
Update the weighted mean point using (4)
Breed individuals through mutation (Equation (7)) to give birth to the offspring
Evaluate the cost of the offspring



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1421

Raise tournament to decide the next generation members
End
Figure 9 shows the flowchart of WMCEP.

Figure 9. Flowchart of WMCEP

4. Results. Nine algorithms of CEP, FEP [8], LEP [9], EEP (Exponential Evolutionary
Programming) [12], RLEP (Evolutionary Programming based on Reinforcement Learn-
ing) [13], CMA-ES [7], JG-GA (Jumping Gene GA) [14,15], IW-PSO (Increasing Inertia
Weight PSO) [16] and WMCEP are compared in this section. These algorithms consist of
two groups: algorithms are and are not considered as evolutionary programming variants.
An attempt has been made to select the algorithms, which are known in and out of their
own families and have some similarities to the proposed method. No attempt was made
to optimize algorithms against cost functions.

Table 1 shows the name and references of cost functions. Their parameters, dimensions
and variable bounds are the same as the references. The source codes of these cost
functions are available in [17]. A detailed explanation of cost functions can be found
in the references cited in Table 1. All parameters of the algorithms are the same as
introduced in Table 2.

The algorithms have been tested on the 65 cost functions. Each test has been repeated
50 times and the average results are shown in Table 3. This table compares the accuracy
of the methods in obtaining the global minimum.

Distances between the optimal points found by WMCEP and other algorithms show
that the performance of the proposed method is notable. This can be an effect of imple-
menting the strategy of using information of the best individual’s costs and locations in
producing offspring.



1422 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

Table 1. Description of the sixty-five cost functions used in this study

Cost
Name Dimension (n) Bounds

Global
Reference

function minimum

F1 Sphere Model 10 [−10, 10]n −92.65 [18]
F2 Ellipsoidal Function 10 [−10, 10]n 276.32 [18]

F3 Rastrigin Function 10 [−10, 10]n 20.91 [18]
F4 Buche-Rastrigin Function 10 [−10, 10]n 20.91 [18]
F5 Linear Slope 10 [−10, 10]n 51.53 [18]
F6 Attractive Sector Function 10 [−10, 10]n 83.48 [18]

F7 Step Ellipsoidal Function 10 [−10, 10]n −83.87 [18]
F8 Rosenbrock Function, original 10 [−10, 10]n −135 [18]
F9 Rosenbrock Function, rotated 10 [−10, 10]n −359 [18]

F10 Ellipsoidal Function 10 [−10, 10]n −78.98 [18]
F11 Discus Function 10 [−10, 10]n −101 [18]
F12 Bent Cigar Function 10 [−10, 10]n 295.1 [18]
F13 Sharp Ridge Function 10 [−10, 10]n −51.73 [18]

F14 Different Powers Function 10 [−10, 10]n −57.90 [18]
F15 Rastrigin Function 10 [−10, 10]n −44.77 [18]
F16 Weierstrass Function 10 [−10, 10]n −260 [18]
F17 Schaffers F7 Function 10 [−10, 10]n −38.72 [18]

F18 Schaffers F7 Function, moderately ill-conditioned 10 [−10, 10]n −38.72 [18]
F19 Composite Griewank-Rosenbrock Function F8F2 10 [−10, 10]n 40.46 [18]
F20 Schwefel Function 10 [−10, 10]n 183.1 [18]
F21 Gallagher’s Gaussian 101-me Peaks Function 10 [−10, 10]n 310.6 [18]

F22 Gallagher’s Gaussian 21-hi Peaks Function 10 [−10, 10]n 42.97 [18]
F23 Katsuura Function 10 [−10, 10]n 210.4 [18]
F24 Lunacek bi-Rastrigin Function 10 [−10, 10]n 47.56 [18]

F25 Generalized Schwefel’s Problem 2.26 30 [−500, 500]n −12569.5 [8]

F26 Generalized Rastrigin’s Function 30 [−5.12, 5.12]n 0 [8]
F27 Ackley’s Function 30 [−32, 32]n 0 [8]
F28 Generalized Griewank Function 30 [−600, 600]n 0 [8]
F29 Generalized Penalized Functions 30 [−50, 50]n 0 [8]

F30 Generalized Penalized Functions2 30 [−50, 50]n 0 [8]
F31 Shekel’s Foxholes Function 2 [−65.53, 65.53]n 1 [8]
F32 Kowalik’s Function 4 [−5, 5]n 0.0003075 [8]
F33 Six-Hump Camel-Back Function 2 [−5, 5]n −1.0316285 [8]

F34 Branin Function 2 [−5, 10]× [0, 15] 0.398 [8]
F35 Goldstein-Price Function 2 [−2, 2]n 3 [8]
F36 Hartman’s Family1 3 [0, 1]n −3.86 [8]

F37 Hartman’s Family2 6 [0, 1]n −3.32 [8]
F38 Shekel’s Family1 4 [0, 10]n −10 [8]
F39 Shekel’s Family2 4 [0, 10]n −10 [8]
F40 Shekel’s Family3 4 [0, 10]n −10 [8]

F41 Corana’s parabola 4 [−1000, 1000]n 0 [19]

F42 deceptive function 10 [0, 1]n −16 [19]

F43 Sum of different power 30 [−1, 1]n 0 [20]
F44 Beale function 10 [-5,10]n 0 [20]
F45 Alpine function 10 [−10, 10]n 0 [20]

F46 Inverted cosine wave function (Masters) 10 [−5, 5]n −n+ 1 [20]

F47 Hyper-Ellipsoid 10 [−100, 100]n 0 [21]
F48 Neumaier #3 30 [−900, 900]n −4930 [21]
F49 Salomon 10 [−10, 10]n 0 [21]
F50 Lennard-Jones 15 [−2, 2]n − [21]

F51 Odd Square 20 [−5π, 5π]n −1.14383 [21]
F52 Katsuura 10 [−1000, 1000]n 1 [21]

F53 Bohachevsky 1 Problem (BF1) 2 [−50, 50]n 0 [22]
F54 Camel Back – 3 Three Hump Problem (CB3) 2 [−5, 5]n 0 [22]

F55 Cosine Mixture Problem (CM) 10 [−100, 100]n − [22]
F56 Easom Problem (EP) 2 [−10, 10]n −1 [22]
F57 Epistatic Michalewicz Problem (EM) 10 [0, π]n −9.660152 [22]
F58 Exponential Problem (EXP) 30 [−1, 1]n −1 [22]

F59 Meyer and Roth Problem (MR) 3 [−10, 10]n 0.00004 [22]
F60 Modified Rosenbrock Problem (MRP) 2 [−5, 5]n 0 [22]
F61 Multi-Gaussian Problem (MGP) 2 [−2, 2]n 1.29695 [22]

F62 Paviani Problem (PP) 10 [2, 10]n −45.778 [22]
F63 Schaffer 2 Problem (SF2) 2 [−10, 10]n 0 [22]
F64 Shubert Problem (SBT) 2 [−10, 10]n −186.7309 [22]
F65 Sinusoidal Problem (SIN) 10 [0, 180]n −3.5 [22]



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1423

Table 2. Parameters of evolutionary programming’s variants

General

Population size 100
Number of repetition 50
Tournament size q 10

Initial standard deviation 3
FEP Parameter t for Cauchy distribution function 1
LEP Value of α for Levy distribution function in Equation (3) 1.5

CMA-ES All parameters are similar to the source codes in [8]
Number of transposon 1

JG Length of transposon 2
crossover Uniform

Mutation rate 0.1
Acceleration coefficients 2

IW-PSO Linearly increasing inertia weight From 0.5 to 1.5
Maximum velocity ±Xmax

It must be noticed that the RLEP is a fast and accurate algorithm, which produces
offspring by predicting the future performance of the algorithm. However, it needs many
calculations and evaluates many cost functions (at least four times more than CEP).
Therefore, in all comparisons of this paper, all the algorithms were run until the pre-
specified number of cost functions was evaluated.

5. Statistical Test. In recent years, use of statistical tests for improving performance
evaluation of a new method has become a widespread technique in computational intelli-
gence. In this section, a procedure is assigned to estimate the differences between several
algorithms. It is named the Contrast Estimation of Medians method. This method is very
recommendable if assumed that the global performance is reflected by the magnitudes of
differences between performances of the algorithms [23]. These estimators can be under-
stood as an advanced global performance measure. It is especially useful to estimate the
extent to which an algorithm outperforms another one [23].

In the current experimental analysis, the set of estimators of medians is calculated
directly from the average error results. Table 8 shows the estimations computed for each
algorithm. This comparison was performed in two groups: inside and outside of the EP
family. By focusing attention on the rows of the table, the performance of WMCEP may
be highlighted (all its related estimators are negative, i.e., it achieves very low error rates
considering median estimators). On the other hand, FEP achieves higher error rates
in this experimental study. Table 4 shows that WMCEP is most similar to CMA-ES
in error rate (performance), as the Contrast estimated method shows small difference
between error rate of WMCEP and CMA-ES. Thus, in next step, WMCEP and CMA-ES
are compared in terms of performance in more detail.

6. Comparing WMCEP and CMA-ES. In this section, the two algorithms of WM-
CEP and CMA-ES are compared in detail. CPU times and their sensitivities to variable
bounds, number of population and cost function dimensions are the issues of this section.

6.1. CPU time. It is predictable that CMA-ES requires more CPU time. This algo-
rithm has more complicated equations and needs many calculations [7]. Two algorithms,
WMCEP and CMA-ES, were tested on a 30 dimensional cost function. An iteration
of CMA-ES needs, in average, 0.0272 seconds, while WMCEP requires 0.012 seconds.



1424 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

Table 3. Results of 50 repetitions of testing algorithms on 65 cost functions

CEP FEP LEP EEP RLEP CMAES IIW-PSO GA-JG WMCEP Global Generation

F1 525.0 −18.63 −37.83 −92.17 −91.70 −92.64 −90.94 −88.24 −92.64 −92.65 100

F2 27634 25192 70705 1016.9 515.24 276.32 11728 3728 276.32 276.32 100

F3 723 70.60 57.60 42.75 37.73 25.08 111.8 94.32 23.29 20.91 500

F4 53.96 906.2 35.19 24.88 27.11 30.85 133.6 117.2 29.77 20.91 500

F5 51.53 51.53 51.53 51.53 51.97 62.52 53.92 53.41 51.53 51.53 50

F6 2189 1883 86.06 102.4 85.46 83.48 144.7 112.3 83.49 83.48 500

F7 5052 1516 1.501 −61.07 −64.27 −83.87 −54.94 −63.69 −82.22 −83.87 100

F8 −10.29 1402 −3.37 −127.6 −120.8 −135 −113.2 153.5 −128.5 −135 500

F9 −349 800231 3646 −268.3 −250 −359.2 −318.1 −324.5 −351.2 −359 200

F10 80977 48179 70459 3940.2 886.51 −78.98 538.5 7664.5 975 −78.98 5000

F11 −7.05 20.29 −33.01 52.92 14.68 −101 −92.82 −56.44 −59.77 −101 1000

F12 342 11742 337 379.8 7225.8 295.1 341.8 1.8e + 6 299.6 295.1 500

F13 −6.32 17.77 −34.99 −48.47 −28.21 −51.73 −24.41 157 −51.15 −51.73 1000

F14 −57.87 −57.07 −57.84 −57.83 −56.40 −57.9 −57.87 −56.40 −57.9 −57.90 200

F15 −20.57 9.955 −30.84 −15.91 −36.59 −42.87 7.067 27.61 −41.57 −44.77 1000

F16 −257.5 −252.4 −257.4 −258.3 −258.4 −256.2 −254.9 −252.8 −259.3 −260 1000

F17 −37.25 −36.11 −38.29 −38.15 −38.22 −38.72 −36.59 −36.65 −38.60 −38.72 200

F18 −37.11 −29.53 −37.97 −37.89 −36.02 −38.72 −33.88 −33.46 −37.60 −38.72 500

F19 42.40 42.19 42.09 41.54 42.63 40.63 42.80 42.54 42.21 40.46 300

F20 1.842 215.8 184 184 185.2 184 184 186 184 183.1 200

F21 310.6 311.5 310.6 310.6 311.8 317 318 322 310.6 310.6 500

F22 53.33 46.54 45.18 52.57 45.78 58.10 57.19 52.22 47.96 42.97 500

F23 211.7 210.5 211.7 211.7 211.7 210.5 210.8 211.5 211.4 210.4 3000

F24 67.57 107.4 72.81 78.83 71.22 56.837 77.63 100 56.318 47.56 1000

F25 −8455 −12493 −12351 −11026 −11878.2 −2572 −8917 −7040 −8384 −12569.5 3000

F26 57.01 6.76 98.59 369.6 106.8 8.06 73.77 103 5.57 0 3000

F27 6.36 1.13 0.26 20.01 1.842 8e – 15 5 5.14 5e – 12 0 3000

F28 8.16 1.63 0.44 3.31 0.928 0 1.03 2.32 0 0 3000

F29 15.65 0.66 0.002 2.42 0.149 21.74 18.52 3.32 1.54e – 24 0 3000

F30 62.60 10.32 0.16 86.38 0.020 1.20 31.6 13.30 9.7e – 26 0 3000

F31 1 1 1 1.246 1 2.98 1 1 1 1 2000

F32 0.006 0.01 0.005 0.003 0.0056 0.01 0.02 0.006 0.004 0.0003075 400

F33 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −0.99 −1.031 −1.030 −1.031 −1.0316285 100

F34 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 100

F35 3 3 3 3 3 3 3 3 3 3 100

F36 −3.86 −3.86 −3.86 −3.86 −3.86 −3.862 −3.862 −3.862 −3.862 −3.86 100

F37 −3.298 −3.298 −3.274 −3.25 −3.32 −3.31 −3.28 −3.28 −3.26 −3.32 500

F38 −10.15 −10.15 −10.15 −7.17 −10.15 −5.74 −8.13 −7.31 −8.2 −10 100

F39 −9.50 −8.82 −9.01 −7.86 −8.91 −6.58 −8.43 −9.26 −9.47 −10 100

F40 −9.15 −8.71 −9.90 −8.55 −9.60 −5.73 −7.41 −9.59 −10.52 −10 100

F41 0 0 0 0 0 3.957 0 0 0 0 1000

F42 −16 −15.81 −12.33 −16 −13.55 −5.12 −16 −13.65 −16 −16 1000

F43 2.76e − 39 1.09e − 18 0.003 3.4e − 34 5.21e − 5 5.1e − 60 1.1e − 12 1.54e − 8 1.1e − 82 0 3000

F44 7.15e − 6 1.15 0.003 0.0011 0.0010 1e − 126 3.8e − 4 0.06 1e − 07 0 1000

F45 4.38e − 15 0.016 5e − 16 4.1e − 15 2.54e − 16 3.2e − 14 0.1 0.007 6.9e − 19 0 1000

F46 −7.191 −8.333 −8.257 −8.341 −8.341 −5.16 −6.90 −8.15 −8.34 −n+ 1 1000

F47 6.53e − 12 14.67 3e − 13 9.61e − 6 3.79e − 6 1e − 121 33.71 26.84 1.1e − 43 0 1000

F48 270736 51291 18935 127880 5951 −4930 15485 21654 −1053 −4930 3000

F49 0.195 0.980 0.190 0.599 0.199 0.14 0.48 0.22 0.10 0 1000

F50 −5.288 −5.286 −5.288 −5.11 −4.07 −5.28 −5.28 −4.73 −5.28 − 1000

F51 −0.03 −3.2e − 13 −0.06 −2.3e − 7 −0.085 −0.74 −0.001 −2.5e − 4 −0.63 −1.14383 2000

F52 1 7.07 1 4.093 1 1 5e + 11 3.4e + 10 1 1 1000

F53 5.4e − 13 0.032 5e − 12 5.5e − 17 2.96e − 7 0 2e − 5 0.08 0 0 100

F54 2.03e − 15 2.7e − 06 2e − 13 8.2e − 16 8.72e − 9 0.1 3e − 8 5.4e − 5 1.1e − 26 0 100

F55 −10e + 5 −99620 −99987 −92418 −10e + 5 −65299 −99999 −84095 −99999 − 1000

F56 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 100

F57 −7.287 −7.649 −5.921 −7.38 −7.724 −4.4 −5.77 −5.47 −7.67 −9.660152 1000

F58 −0.98 −0.974 −0.17 −0.97 −0.55 −1 −0.98 −0.97 −1 −1 1000

F59 0.0195 0.0021 0.0020 0.00190 0.00190 0.006 0.002 0.002 0.002 0.00004 300

F601.23e − 32 2.56e − 30 1.23e − 321.23e − 321.23e − 321.23e − 32 4e − 24 1.76e − 6 1.23e − 32 0 100

F61 −1.288 −1.279 −1.282 −1.286 −1.295 −1.22 −1.296 −1.261 −1.296 1.29695 200

F62 −45.77 −45.55 −45.77 −45.77 −45.77 −45.77 −45.77 −45.31 −45.77 −45.778 1000

F63 0.181 0.11 1.4e − 17 1.4e − 22 2.49e − 9 3.30 1.1e − 5 0.2 2.1e − 34 0 500

F64 −186 −186 −186 −186 −186 −185.4 −186.6 −186.5 −186.7 −186.730 100

F65 −3.5 −3.5 −3.5 −3.5 −3.5 −3.5 −2.951 −2.42 −3.5 −3.5 5000
∗Notation e−a means 10−a.



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1425

Table 4. Contrast estimation method results. Estimators highlight WM-
CEP as the best performing algorithm.

CEP FEP LEP EEP RLEP WMCEP CMA-ES IIW-PSO GA-JG WMCEP
CEP 0 −2.23 −1.03 −1 0.57 0.59 IIW-PSO 0 −76 −5.2 547e− 8
FEP 2.23 0 1.19 1.23 2.81 2.82 GA-IG 76 0 71.6 71
LEP 1.03 −1.19 0 0.033 1.61 1.63 CMA-ES 5.2 −71.6 0 5.2

EEP 1 −1.23 −0.033 0 1.58 1.59 WMCEP −547e−8 −71 −5.2 0
RLEP −0.57 −2.81 −1.61 −1.58 0 0.016

WMCEP −0.59 −2.82 −1.63 −1.59 −0.016 0

Therefore, the required time for CMA-ES to evaluate each iteration is 2.26 times more
than that of WMCEP. This difference is very crucial in real world applications where cost
functions require many iterations in order to reach the global minimum.

6.2. Variable bounds. Some applications force bounds on their parameters or coeffi-
cients, which must be adapted. As EAs search the map with a population, it is possible
that some variables of individuals are produced out of frontiers. In order to fix this prob-
lem, two decisions have usually been made. In the first one, the variable set to the frontier
value when it comes out. In the second decision, the variable set to the uniform random
number inside the searching map. The first decision for fixing this problem makes the
CMA-ES lose its destination (Figure 11). The second decision results in oscillation in the
algorithm output (Figure 10). It can be seen that the proposed method is not sensitive
to boundary limits, because by the normalized coefficient in Equation (8), the algorithm
prevents from producing offsprings out of boundaries.

6.3. Variable numbers. Table 6 compares performances of CMA-ES and WMCEP in
a higher number of variables on five functions while bound limitation is forced on both
algorithms. In part IV, bounds were not imposed on CMA-ES when the global minimum
was inside the searching map and there was no other better minimum outside the bounds.
However, in some cost functions like f25, there are deeper minimums out of bounds, so
the algorithm is forced to search inside the searching map. Thus, oscillation in results of
some algorithms (like CMA-ES) in Table 3 is due to this decision. It can be seen in Table
5 that the CMA-ES is sensitive to number of variables, but WMCEP is not.

Figure 10. Setting the value of variable to the frontier value



1426 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

Figure 11. Set uniform random value to the variable

Table 5. Test sensitivity of CMA-ES and WMCEP against forcing bound
limitations for variables

Dimension Generation CMA-ES WMCEP Dimension Generation CMA-ES WMCEP
Global

minimum

F1 40 400 863 −91.28 10 100 −92.64 −92.64 −92.65

F2 40 1000 276.32 276.32 10 100 276.32 276.32 276.32
F3 40 1000 2425 153 10 500 25.08 23.29 20.91
F4 40 1000 62.20 151 10 500 30.85 29.77 20.91
F5 40 100 564 51.53 10 50 62.52 51.53 51.53

6.4. Population size. Table 6 compares the two algorithms CMA-ES and WMCEP
with a certain population. Five functions were selected for this comparison. Tournament
size (q) in WMCEP is proportional to the population and is calculated by the equation
q = 10×population

100
.

Table 6. Test sensitivity of population size for CMA-ES and WMCEP

Function Population Generation WMCEP CMA-ES Global minimum
F1 20 500 −92.65 −92.65 −92.65

50 200 −92.65 −92.65 −92.65
100 100 −92.65 −92.65 −92.65
200 50 −92.62 −92.64 −92.65

F2 20 500 276.32 276.32 276.32
50 200 276.32 276.32 276.32
100 100 276.32 276.32 276.32
200 50 297.62 276.55 276.32

F3 20 1500 22.89 25.88 20.91
50 600 24.193 26.282 20.91
100 300 25.08 23.29 20.91
200 150 20.97 21.90 20.91

F4 20 2500 40.11 34.59 20.91
50 1000 30.85 31.25 20.91
100 500 29.77 30.85 20.91
200 250 25.93 26.87 20.91

F5 20 250 51.53 51.53 51.53
50 100 51.53 51.53 51.53
100 50 51.53 51.53 51.53
200 25 51.53 51.53 51.53



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1427

In this part, the number of recalling cost functions for all different populations is con-
sistent. As can be seen, both algorithms were slightly sensitive to population size. It is
predictable that increasing the number of individuals in each generation gives them more
information about better and worse places for breeding. Therefore, WMP will be more
accurate in estimating the global minimum.

7. Application. The MVC (Minimum Variance Controller), also referred to as optimal
H2 control and first derived in [24] by Astrom (1970) and Box and Jenkins (1970) [25],
is the best possible feedback control for linear systems in the sense that it achieves the
smallest possible closed-loop output variance [26]. When the model of the process are
known, or can be identified, MV controller can be designed to minimize the variance of
output. Although almost all real-world systems are nonlinear in behavior, most of the
introduced methods for estimating minimum variance use linear approaches and require
linear models [27]. MV controllers can be enhanced to deal with nonlinear systems if
nonlinear models are considered. However, designing nonlinear MVC especially using
Neural Network (NN-MVC) has some drawbacks:

1) In order to design MVC, the explicit relations between outputs and inputs must be
executable. This relation is defined implicitly in the nonlinear models [28,29]. Suppose
that the plant can be described by the following model,

y(t+ 1) = f(y(t), y(t− 1), . . . , y(t− ny), u(t), u(t− 1), . . . , y(t− nu)) (9)

where f(.) is a neural network, in which yt and ut denote the output and the input signal
vectors respectively. Inverse models of systems are necessary for designing MVC. The
input-output relation of the neural network modeling the plant inverse is:

u(t) = f−1(y(t+ 1), y(t), y(t− 1), . . . , y(t− ny), u(t− 1), . . . , y(t− nu)) (10)

Obtaining inverse of neural network has some difficulties such as: a) The actual oper-
ational inputs may be hard to define a priori; b) If a nonlinear system is not one-one,
then an incorrect inverse can be obtained; Finding inverse of nonlinear neural network is
a tedious task (if possible), and c) Control signal is not in hand before obtaining inverse
function, and the inverse function is not executable before having control signal (unless
function f(.) is known or can be estimated).

These problems cause that researchers define approximated form of neural networks for
NN-MVC designing. Some researchers have suggested the affine model of neural networks
in which the relation between input and output can be defined explicitly as follows [28]:

y(t+ 1) = f(X(t)) + g(X(t))u(t) + e(t) (11)

where e(t) is model mismatch and

X(t) = [y(t), y(t− 1), . . . , y(t− ny), u(t), u(t− 1), . . . , y(t− nu)]

In addition, the linear approximation has been used in literature such as bilinear approx-
imation of Equation (9) that may be parameterized as [29]:

y(t+ 1) = Ay(t) + Bu(t) + g(.) (12)

where an assumption is made that B is non-zero. A and B are unknown diagonal param-
eter matrices and g(.) is the nonlinear part of the equivalent model.

These models are not accurate and are not universal models. These methods can
be used in designing many kinds of controllers, but considering that the MVC is an
optimal controller that must be accurate in reaching minimum variance, it can be a big
disadvantage for these approximated methods. Even, these methods can be less accurate
than linear MV methods.



1428 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

2) Another drawback of using neural network is training issue. Training neural networks
is a high dimensional-multimodal optimization task and weight space can be extremely
rugged and has many local minima. This problem is avoiding using full neural network
model directly as a controller.
The strategy of this paper is to use evolutionary algorithms for weight optimization in

domains where gradient methods cannot be directly applied, or where gradient methods
are less effective than in simple supervised learning applications.
In this paper, for the first time, EA has been used for designing MVC by training full

neural network model. Based on authors’ information, the proposed method is a new idea
and has not been proposed in previous published literatures. In this regard, WMCEP is
used for optimizing the neural network weights. Obviously, a search method that cannot
escape from local minima will have difficulty in finding an optimal solution. This method
can fill up the gap between advantages of NN-MVC and difficulty in obtaining f�1(.).
Consider the neural model for the controller is represented by a two-layer artificial

neural network. The neural networks are then trained by WMCEP for a proper number
of iterations. After training is completed, the controller is applied on loop, and the output
variance is calculated for each individual and all the neural networks are ranked based
on the values of their fitness indexes. Figure 12 shows the flowchart of the mentioned
WMCEP procedure when the NN-MVC design is adopted.

Figure 12. Pseudo-code for NN-MVC design by MCEP

A block scheme of the heuristic neural network process model is shown in Figure 13.

Figure 13. The process modelling block scheme using heuristic NN-MVC

7.1. Simulation result. The study example is a CSTR (Continuous Stirred-Tank Re-
actor) with a first-order exothermic reaction provided in [30]. It is a typical chemical
engineering process which is intensively studied at the control and system identification



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1429

areas. The dynamic behavior for this CSTR (Figure 14) can be described using the
following nondimensional normalized equations:

ẋ1 = −x1 +Da(1− x1)e
x2

1+x2/λ ẋ2 = −x2 +BDa(1− x1)e
x2

1+x2/λ − β(x2 − xc) (13)

where x1 and x2 are the reactor dimensionless concentration and temperature respectively.
The case study under consideration is a regulation of outlet reactant concentration x1.
Coolant temperatures xc is the manipulated variable. One set of parameter values B =
1.0, β = 0.3, λ = 20.0 and Da = 0.072 which yields an open-loop system with a single
stable steady state for all fixed values of the input is selected in [0 23] ([31]). The detailed
nomenclature for this exothermic CSTR can be found in [32].

Figure 14. Cross-sectional diagram of continuous stirred-tank reactor

The input range real value range is [0 23]. The output is bounded at range [0 1] for
introduced input range [31]. The starting situation is a stable steady situation with the
initial states x1 = 0.6219 and x2 = 3.7092 and input ut = 14.

The output Yt with an additive linear disturbance is

Y t = (x1)t+Dt (14)

where Dt is an additive disturbance. The disturbance model is an AR (AutoRegressive)
model defined as:

Dt =
et

1− 0.95q−1
(15)

where et is a Gaussian white noise with zero mean and variance 0.001.
NN-MVC has been designed using the WMCEP method for reducing output variance

of the benchmark system. Population size for WMCEP is equal to 100; and it is repeated
20 times for reducing the effect of the chance and increasing the reliability in the results.
The best results among 20 ones are included in this paper. They are run until the pre-
specified generation (100) is reached. The initial population is generated randomly with
variance 3. The weight values (genes) are bounded in range [−10 10]. Fitness is given by
cost function J for each individual of the population, where J is the variance of output
as shown in Equation (16), where the summation is performed on overall output samples



1430 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

y and yd is the desired or target value of output for a given input vector.

J = σ2
y =

1

N − 1

N∑
k=1

(y(k)− ȳ − yd)
2, ȳ =

1

N

N∑
k=1

y(k) (16)

The introduced algorithms are used to evolve the weights of the feedforward neural net-
work with two layered structures. The input layer has eight nodes; the hidden layer has
10 hidden nodes; the output layer has one output nodes. Hidden transfer function is
sigmoid function, and the output transfer function is a linear activation function.
Figure 15 shows the cost curve corresponding to the best cost value found in the last

generation. This figure shows that the WMCEP can find the acceptable network weights
in a shorter number of iterations. It admits the capability of this method in fast training
the neural network MVC. The minimum variance (minimum cost) found by this the
proposed algorithm is 9.37× 10−5.

Figure 15. Cost values via iteration

Figure 16 shows disturbance, control signal and output data of the NN-MV designed
controller by WMCEP. Optimized weights values found by WMCEP are included in Ap-
pendix A.
The optimality of the designed controller by WMCEP can be analyzed using a tool-

box. The multivariate controller performance assessment toolbox was developed by the
Computer Process Control Group at the University of Alberta to allow performance as-
sessment of linear controller using the Filtering and Correlation (FCOR) Algorithm [33].
The control performance index is a single scalar usually scaled to lie within [0, 1], where
values close to 0 indicate poor performance, and values close to 1 mean better/tighter
control. This indeed holds when perfect control is considered as a benchmark. Here, the
performance of the designed NN-MVC will be assessed by the performance assessment
toolbox. The CSTR is linearized around the operating point. Then the linear model and
output data of NN-MVC is applied to the performance assessment toolbox. Figure 17
shows the result of assessing the designed controller. It shows that the minimum variance
index of the designed controller is 1.0281, which is higher than one, so the controller is
better than optimal linear MV controller is. Moreover, this result can be admitted by
the approach used in [32] for this system in the similar situation, in which linear method
reaches the variance 3.51 × 10−3, which is higher than that of the proposed method. In
other words, the designed nonlinear controller has been reached to the minimum variance
is lower than that of the optimal linear methods.



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1431

Figure 16. Realizations of disturbance, NN-MVC control signal and out-
put data

Figure 17. Realizations of disturbance, NN-MVC control signal and out-
put data



1432 Y. ALIPOURI, J. POSHTAN AND H. ALIPOUR

8. Conclusions. In this paper, a developed version of CEP was proposed. There was an
attempt to use the location and cost information of each parent for determining the best
area for breeding the offspring. It was tried to steer the offspring toward the best parents’
areas and they were prevented from getting close to worst parents using the state feedback
controller. Two groups of algorithms from in and out of the EP family were selected for
comparison. WMCEP had noticeable results against other EP variants. It had the best
results for almost all cost functions (about 90 percent of the cost functions) in comparison
with CEP, LEP, EEP, RLEP and FEP. It also demonstrated acceptable results outside
the EP frontier. The proposed method was compared with eight well-known algorithms.
Only CMA-ES had comparable results with WMCEP. However, CMA-ES needed heavy
computation and higher CPU time for evaluating each generation. It also had problems
with bounds of the variables that were not seen in the WMCEP performance. Many cost
functions were selected from several references, which all of them are well-known func-
tions in the optimization field. The proposed method is used in designing the nonlinear
minimum variance controller for CSTR (Continuous Stirred-Tank Reactor) benchmark
system. The designed nonlinear controller has been reached to minimum variance which
is lower than that of existing methods. The future prospect of the approach proposed
here is to study the accuracy of the WMCEP for obtaining better results and test it on
real-world applications.

REFERENCES

[1] J. H. Holland and A. Harbor, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

[2] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection,
MIT Press, 1992.

[3] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme Nach PrinzISien der Biolo-
gischen Evolution, Frommann-Holzboog, Stuttgart, 1973.

[4] L. J. Fogel et al., Artificial Intelligence Through Simulated Evolution, New York, Wiley, 1966.
[5] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, Springer, pp.2-5, 2008.
[6] Y. Alipouri, J. Poshtan, Y. Alipouri and M. R. Alipour, Momentum coefficient for promoting ac-

curacy and convergence speed of evolutionary programming, Applied Soft Computing, vol.12, no.6,
pp.1765-1786, 2012.

[7] N. Hansen, The CMA Evolution Strategy: A Tutorial, www.bionik.tu-berlin.de/user/niko/cmatut
orial.pdf, 2010.

[8] X. Yao, Y. Liu and G. Lin, Evolutionary programming made faster, IEEE Trans. on Evolutionary
Computation, vol.3, no.2, pp.82-102, 1999.

[9] C. Y. Lee and X. Yao, Evolutionary programming using mutations based on the levy probability
distribution, IEEE Trans. on Evolutionary Programming, vol.8, no.1, pp.1-13, 2004.

[10] Y. Alipouri, J. Poshtan and Y. Alipouri, A modification to classical evolutionary programming by
shifting strategy parameters, Applied Intelligence, vol.38, no.2, pp.175-192, 2013.

[11] C. T. Chen, Linear System Theory and Design, 3rd Edition, Oxford University Press, 1999.
[12] H. Narihisa, K. Kohmoto, T. Taniguchi, M. Ohta and K. Katayama, Evolutionary programming

with only using exponential mutation, IEEE Congress on Evolutionary Computations, Sheraton
Vancouver, Canada, 2006.

[13] H. Zhang and J. Lu, Adaptive evolutionary programming based on reinforcement learning, Informa-
tion Sciences, vol.178, no.4, pp.971-984, 2008.

[14] K. S. Ripon, S. Kwong and K. F. Man, A real-coding jumping gene genetic algorithm (RJGGA) for
multiobjective optimization, Information Sciences, vol.177, no.2, pp.632-654, 2007.

[15] K. S. Tang, S. Kwong and K. F. Man, A jumping gene paradigm: Theory, verification, and applica-
tions, IEEE Circuits and Systems Magazine, 2008.

[16] M. D. Oca, T. Stützle, M. Birattar and M. Dorigo, Frankenstein’s pso: A composite particle swarm
optimization algorithm, IEEE Trans. on Evolutionary Computation, vol.13, no.5, pp.1120-1132,
2009.

[17] http://coco.gforge.inria.fr/doku.php?id=bbob-2009-downloads.



IMPROVEMENT OF CLASSICAL EVOLUTIONARY PROGRAMMING 1433

[18] S. Finck, N. Hansen, R. Ros and A. Auger, Real-parameter black-box optimization benchmarking
2009: Presentation of the noiseless functions, Working Paper, GECCO, 2009.

[19] G. B. Fogel, G. W. Greenwood and K. Chellapilla, Evolutionary computation with extinction: Ex-
periments and analysis, piscataway, Congress on Evolutionary Computation, USA, 2000.

[20] S. Rahnamayan, H. R. Tizhoosh and M. A. Salama, Opposition-based differential evolution, IEEE
Trans. on Evolutionary Computation, vol.12, no.1, pp.64-79, 2008.

[21] K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A Practical Approach to Global
Optimization, Berlin Heidelberg, Springer, 2005.

[22] M. Montaz, C. Khompatraporn and Z. B. Zabinsky, A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems, Journal of Global Optimization,
vol.31, no.4, pp.635-672, 2005.

[23] J. Derrac, S Garćıa, D. Molina and F. Herrera, A practical tutorial on the use of on parametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,
Swarm and Evolutionary Computation, vol.1, pp.3-18, 2011.

[24] K. J. Astrom, Introduction to Stochastic Control Theory, New York, Academic Press, 1970.
[25] G. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, 1970.
[26] J. Martensson, C. R. Rojas and H. Hjalmarsson, Conditions when minimum variance control is

the optimal experiment for identifying a minimum variance controller, Automatica, vol.47, no.3,
pp.578-583, 2011.

[27] M. Jelali, Control System Performance Monitoring Assessment, Diagnosis and Improvement of Con-
trol Loop Performance in Industrial Automation, Springer, 2010.

[28] J. Q. Gong and B. Yao, Neural network adaptive robust control of nonlinear systems in semi-strict
feedback form, Automatica, vol.37, no.8, pp.1149-1160, 2001.

[29] D. Sbarbaro, R. M. Smith and A. Valdes, Multivariable generalized minimum variance control based
on artificial neural networks and gaussian process models, Advances in Neural Networks, pp.52-58,
2004.

[30] F. J. Doyle, A. Packard and M. Morari, Robust controller design for a nonlinear CSTR, Chemical
Engineering Science, vol.44, no.9, pp.1929-1947, 1989.

[31] T. D. Knapp and H. M. Budman, Robust control design of non-linear processes using empirical state
affine models, Int. J. Control, vol.73, no.17, pp.1525-1535, 2000.

[32] W. Yu, Variance Analysis for Nonlinear Systems, Ph.D. Thesis, Queen’s University Kingston, 2007.
[33] CPC Control Group, University of Alberta, Multivariate Controller Performance Assessment pro-

gram, University of Alberta Computer Process Control Group, Limited Trial Version, Version 2.1,
2010.

Appendix A.

Table 7. Optimized weights values found by WMCEP

W ij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

i = 1 −2.7763 −6.1925 −1.9250 3.8635 −9.1758 6.4905 −1.2005 1.4717 −8.5236 −5.9282
i = 2 −9.4702 −3.9335 3.8145 9.3231 −9.1604 −8.2248 3.2686 2.4480 −3.8139 7.6736
i = 3 −2.3129 3.4643 −4.2889 −7.7741 9.0812 9.7962 10.441 −3.6376 −2.9007 3.3854
i = 4 −8.8890 1.6644 −1.9433 −1.3899 −5.0392 −7.2601 0.4129 −2.6124 −2.4283 −0.7510

i = 5 −2.8017 8.3229 −2.0793 4.4994 −4.6531 −5.2277 −6.6811 1.9210 1.9698 10.059
i = 6 8.8527 5.9410 2.1878 8.4467 0.6824 0.7140 −5.3913 6.1774 1.6181 −10.700
i = 7 3.5483 9.7259 0.0255 0.0473 3.5124 −9.5840 −7.6692 7.0161 5.6355 8.9759
i = 8 −3.8701 6.6945 5.9696 6.2335 −1.9470 2.2898 7.3698 1.8640 −9.8845 −5.5877

W 1j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

o = 1 −6.0359 4.6606 −9.6462 0.0184 3.5209 0.5573 −7.1110 −8.0571 −6.6251 −3.7482

bj j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

8.6359 1.5325 −7.5322 3.5676 −2.8395 5.1268 −4.1412 1.5594 9.1530 4.3419

b11 9.1845

where wij is the connection weight from the ith node of input layer to the jth node of
hidden layer, bj is the threshold of the jth hidden layer input, w1j is the connection weight
from the jth hidden node to the output node, and b11 is the threshold of the output unit.


