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Abstract. The problem of constrained model predictive control on a class of stochastic
linear parameter varying systems is discussed. First, constant coefficient matrices are
obtained at each vertex in the interior of system, and then, by considering semi-definite
programming constraints, weight coefficients between each vertex are calculated, and the
equal coefficient matrices for the time variant system are obtained. Second, in the given
receding horizon, for each mode sequence of the stochastic system, the optimal control
input sequences are designed in order to make the states into a terminal invariant set.
Outside of the receding horizon, stability of the system is guaranteed by searching a state
feedback control law. Finally, constraints on both inputs and outputs are considered for
such system and predictive controller is designed in terms of linear matrix inequality.
Simulation example shows the validity of this method.
Keywords: Constrained predictive control, Convex polyhedron, Linear parameter vary-
ing systems, Markov jump parameters

1. Introduction. The last several decades have witnessed rapid growing of research
interests on Markov jump systems (MJSs) since the pioneering work in [1]. The reasons
are given twofold: (1) MJSs have great application in modeling parameter-variation or
structure-variation in many practical systems, which are caused by component failures
or repairs, sudden environmental disturbance, or change of operation points. (2) The
dynamical behaviors of MJSs have been found in many fields: such as aerospace industry,
manufacturing systems, economic systems and electrical systems. Under the assumption
that the parameters in MJSs are time-invariant, analysis and control of MJSs have received
much attention, for example, the problems of worst case control [2], slide mode control
[3], sampled-data control [4], guaranteed cost control [5], fault detection and filtering
[6, 7, 8, 9].

However, the assumption that the jump parameters are time invariant is not realistic
in many practical situations. One typical example is in chemical system, the chemical
reaction is not fixed, such that the parameters cannot be time-invariant, and another
example is the VOTL (vertical take-off landing) helicopter system, the multiple airspeeds
are varying when the surrounding environment changes. Therefore, it is full of practical
meaning to study MJSs with time-varying parameters. Although the jumping parameters
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of the Markov process is not known and fixed, but one can evaluate some values in some
working points, so we can model these time-varying parameters by a polytope, which
belongs to a convex set. This motivated us to apply this kind of set to time-varying MJSs.
On another research front line, model predictive control (MPC) is an effective control

algorithm to deal with multi-variable control problems in various fields, such as in chemical
process, which also has great potential to deal with input and output constraints. The
model information of dynamic process is used to predict the future behavior of the plant
over the prediction horizon, so as to compute control inputs. Normally more than one
input is computed at the current sampling time, however, only the first controller input
will be implemented to the plant. At the next sequential sampling time, these actions
will be repeated, that is why MPC is also called receding horizon control (MPC). More
precisely, for a constrained finite input horizon MPC, a standard MPC approach can
be formulated as a compact quadratic program (QP) that is online calculated at each
sampling time [10]. Some work on model predictive control has been done, in [11], a
disturbance attenuation problem is proposed for discrete systems using receding horizon
control technique, and there is also a great deal of research work has been done focusing
on predictive control for discrete MJSs [12, 13, 14], in which a nonlinear control sequence
is obtained by solving a finite horizon optimal control problem, and there are also some
work on predictive control for linear parameter varying systems [15, 16], however, there
is little work done on predictive problems for MJSs with time varying parameters, not
to mention the multistep receding horizon control for such systems. Thus, it is full
of application meaning to focus on the problem of multistep receding horizon control
problem for discrete time stochastic linear time varying systems.
Motivated by the aforementioned points, in this paper, we focus on the design of a

predictive controller for a class of MJSs with time-varying parameters. The rest of the
paper is organized as follows. Problem statement and preliminaries of this paper are
given in Section 2. In Section 3, model predictive control problem is given. In Section
4, constrained predictive controller is designed here. A numerical example is given to
illustrate the effectiveness of our approach in Section 5. Finally, some concluding remarks
are given in Section 6.
In the sequel, the notation Rn stands for an n-dimensional Euclidean space, the trans-

pose of a matrix A is denoted by AT; E{·} denotes the mathematical statistical expecta-
tion; a positive-definite matrix is denoted by P > 0; I is the unit matrix with appropriate
dimension, and ∗ means the symmetric term in a symmetric matrix.

2. Problem Statement and Preliminaries. Consider a class of stochastic system with
time-varying parameters:

xk+1 = Arkxk +Brkuk

yk = Crkxk
(1)

where xk ∈ Rn is the state vector of the system, uk ∈ Rm is the input vector of the
system, yk ∈ Rp is the output vector and {rk, k ≥ 0} is the concerned time-discrete
Markov stochastic chain which takes values in a finite state set Λ = {1, 2, 3, . . . , N}, and r0
represents the initial mode, the transition probability matrix is defined as Π(k) = {πij(k)},
i, j ∈ Λ, πij(k) = P (rk+1 = j|rk = i) is the transition probability from mode i at time k

to mode j at time k+1, which satisfies πij(k) ≥ 0 and
N∑
j=1

πij(k) = 1, Ark =
m∑
l=1

blArk(wl),

Brk =
m∑
l=1

blBrk(wl), Crk =
m∑
l=1

blCrk(wl), where Ark(wl), Brk(wl) and Crk(wl) are coefficient
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matrices of each vertex for the stochastic polyhedron linear parameter time-varying (LPV)

system, l ∈ [1,m], where 0 ≤ bl ≤ 1 and
m∑
l=1

bl = 1.

Definition 2.1. The stochastic LPV system (1) (setting uk = 0) is said to be stochastically
stable, if for any initial state x0 and mode r0, then

lim
T→∞

E

{
T∑

k=0

xT
k xk|x0, r0

}
< ∞ (2)

In this paper, we discuss the problem of model predictive control for LPV system (1), as
the predictive model relies not only on the state equations of system (1), but also relies on
the Markov jump modes, so multistep model predictive traces of such system are defined
in Definition 2.2.

Definition 2.2. Suppose that multistep mode trace set as M = {rk, rk+1, · · · , rk+N−1|rk ∈
Λ}, and transition probability at step N is

pλ = p(rk, rk+1)p(rk+1, rk+2) · · · p(rk+N−2, rk+N−1), λ ∈ M

Then, the N steps predictive model of the states can be shown as:
x(k + 1| k)
x(k + 2| k)

...
x(k +N | k)

 =


Ark

Ark+1
Ark

...
Ark+N−1

Ark+N−2
· · ·Ark

x(k| k)+


Brk 0 · · · 0

Ark+1
Brk Brk+1

· · · 0
...

...
...

...
Ark+N−1

· · ·Ark+1
Brk Ark+N−1

· · ·Ark+2
Brk+1

· · · Brk+N−1

 ·


u(k| k)

u(k + 1| k)
...

u(k +N − 1| k)


(3)

which equals to:[
x̂(k)

x(k +N | k)

]
=

[
Â

Ark+N−1
Ark+N−2

· · ·Ark

]
x(k| k) +

[
B̂

B̂rk+N−1

]
û(k) (4)

or, equivalently,

x̃(k + 1) = Ãx(k|k) + B̃û(k) (5)

Remark 2.1. Beyond the N steps predictive horizon, state feedback controller given below
is applied to system (4)

u(k + j|k) = Kx(k + j|k), ∀j ≥ N (6)

And then, dynamic equation on k +N + 1 step is

x(k +N + 1|k) =
∑
i∈Λ

p(rk+N , i)P
λ
i (Ark+N

+Brk+N
K)x(k +N |k) (7)

where P λ
i is a positive definite matrix in the trace of λ.

Lemma 2.1. Suppose there exists a trace of λ, stochastic LPV system x̃(k + 1) =

Ãx(k|k) + B̃û(k) is stochastically stable after N steps, if there exists a set of matrices
P λ
i > 0 such that

P λ
rk+N

− (Ark+N
+Brk+N

K)T
∑
i∈Λ

p(rk+N , i)P
λ
i (Ark+N

+Brk+N
K) ≥ Q+KTRK (8)
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Proof: Given N steps predictive horizon and the mode trace λ = rk, rk+1, · · · , rk+N−1,
then there exists the following state equation:

x(k +N |k) = Ark+N−1
, · · · , Arkx(k|k) + B̂rk+N−1

û(k) (9)

Then, x(k +N |k) can be obtained at the instant k following the mode trace λ, so the
dynamic equation at instant k +N + 1 is

x(k +N + 1|k) =
∑
i∈Λ

p(rk+N , i)P
λ
i (Ark+N

+Brk+N
K)x(k +N |k) (10)

It is known from [17] that the system is stochastically stable in λ, if and only if there
exists a set of symmetric matrices P λ

i > 0, such that

P λ
rk+N

− (Ark+N
+Brk+N

K)T
∑
i∈Λ

p(rk+N , i)P
λ
i (Ark+N

+Brk+N
K) > 0 (11)

The proof is thus completed.

Remark 2.2. It can be seen from Lemma 2.1 that, the conditions are given which guar-
antee the stability of the system (5) at the instant k+N after N steps predictive horizon.

3. Multistep Predictive Control Problem. Quadratic performance function for sto-
chastic LPV system (5) is defined:

min
Λ,û(k),K,Pλ

i

max
Ã,B̃,p(i,j),x(k|k)

J(x(k|k), û(k), λ,K, P λ
i , k) (12)

where

J(x(k|k), û(k), λ,K, P λ
i , k)

=E

{
∞∑
n=0

[xT(k + n|k)Qx(k + n|k) + uT(k + n|k)Ru(k + n|k)]

}
(13)

Q and R are selected weighting coefficient matrices.

Definition 3.1. For given matrices Q > 0 and R > 0 for system (5), if there exists a set
of matrices P λ

i > 0 such that

P λ
rk+N

− (Ark+N
+Brk+N

K)T
∑
i∈Λ

p(rk+N , i)P
λ
i (Ark+N

+Brk+N
K) ≥ Q+KTRK (14)

then, the above min-max optimal problem can be cast into

min
Λ,û(k),K,Pλ

i

max
Ã,B̃,p(i,j),x(k|k)

J1(x(k), λ, û(k), P
λ
i , k) + J2(x(k), λ, û(k), k) (15)

where

J1(x(k), λ, û(k), P
λ
i , k)

=E

{
N−1∑
n=0

[xT(k + n|k)Qx(k + n|k) + uT(k + n|k)Ru(k + n|k)]

}
(16)

J2(x(k), λ, û(k), k) = E{xT(k +N |k)P λ
rk+N

x(k +N |k)} (17)

Lemma 3.1. The multistep predictive controller or sequence is obtained for system (5),
if and only if û∗(k), K and P λ

rk+N
x(k + N |k) are the optimal solutions for the following

SDP problem

min
λ,û(k),K,Pλ

i

ρ1 + ρ2 (18)
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s.t.
max

Ã,B̃,p(i,j),x(k|k)
J1(x(k), λ, û(k), P

λ
i , k) ≤ ρ1 (19)

max
Ã,B̃,p(i,j),x(k|k)

J2(x(k), λ, û(k), k) ≤ ρ2 (20)

P λ
rk+N

− (Ark+N
+Brk+N

K)T
∑
i∈Λ

p(rk+N , i)P
λ
i (Ark+N

+Brk+N
K) ≥ Q+KTRK (21)

Proof: First, by condition (14), we have

xT(k + j|k)P λ
rk+N

x(k + j|k)− xT(k + j + 1|k)
∑
i∈Λ

p(rk+N , i)P
λ
i x(k + j + 1|k)

≥ xT(k + j|k)Qx(k + j|k) + uT(k + j|k)Ru(k + j|k), j ∈ [0,∞]
(22)

and then, it follows

E{xT(k +N |k)P λ
rk+N

x(k +N |k)}

≥E

{
N−1∑
n=0

[xT(k + n|k)Qx(k + n|k) + uT(k + n|k)Ru(k + n|k)]

}
(23)

Second, suppose ρmin is the optimal solution of the SDP problem, and then û(k) can
be expressed as û∗(k), and

Jmin = min
Λ,û(k),K,Pλ

i

max
Ã,B̃,p(i,j),x(k|k)

J(x(k|k), û(k), λ,K, P λ
i , k) (24)

If

max
Ã,B̃,p(i,j),x(k|k)

J(x(k|k), λ′
, û

′
(k), K

′
, P λ

′

i , k) < max
Ã,B̃,p(i,j),x(k|k)

J(x(k|k), λ∗, û∗(k), K∗, P λ∗

i , k)

(25)
then

max
Ã,B̃,p(i,j),x(k|k)

J(x(k|k), λ′
, û

′
(k), K

′
, P λ

′

i , k)

≤ ρ
′
< max

Ã,B̃,p(i,j),x(k|k)
J(x(k|k), λ∗, û∗(k), K∗, P λ∗

i , k) = ρmin

(26)

Obviously, ρ
′
< ρmin opposites with the fact that ρmin is the optimal solution of the

semi-definite programming problem, so ρmin ≤ Jmin.
On the other hand,

max
Ã,B̃,p(i,j),x(k|k)

J(x(k|k), û(k), λ,K, P λ
i , k)

≤ max
Ã,B̃,p(i,j),x(k|k)

J1(x(k), λ, û(k), P
λ
i , k) + max

Ã,B̃,p(i,j),x(k|k)
J2(x(k), λ, û(k), k) = ρmin

(27)

and then Jmin ≤ ρ, so Jmin = ρ.

Definition 3.2. A set is defined as follows:

W :=
{
x(k +N |k) ∈ Rn|xT(k +N |k)S−1

rk+N
x(k +N |k) ≤ 1, Srk+N

> 0
}

then, the system states belong to such a set after k +N steps.

Corollary 3.1. Define P λ
rk+N

= ρ2S
−1
rk+N

, the states of system (5) belong to W through λ,
if there exists a set of symmetric matrices Srk+N

> 0, such that[
1 xT(k +N |k)

x(k +N |k) Srk+N

]
≥ 0. (28)
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Theorem 3.1. System (5) is stochastically stable under the predictive controller (29), if
the above semi-definite programming problem is feasible under the input sequence û(k) at
the instance k

u(k) =
∑
λ∈M

pλû(k) (29)

Proof: One can obtain the sequence [ρ∗1, ρ
∗
2, û

∗(k)], which makes the min-max per-
formance to be the optimal one, that is J∗

k , and the above semi-definite programming
problem is feasible by the input sequence û∗(k) at the instance k, meanwhile, state op-
timal sequence [x∗(k|k), x∗(k + 1|k), · · · , x∗(k + N − 1|k)] will be obtained. We define
Y ∗
rk+N

(S∗
rk+N

)−1 = K∗, and

u(k + i|k + 1) = u∗(k + i|k), i = 1, · · · , N − 1 (30)

u(k + i|k + 1) = Y ∗
rk+N

(S∗
rk+N

)−1x∗(k + j|k + 1), j ≥ N (31)

Suppose J∗
k is the optimal performance at the instance k, J∗

k+1 is the optimal perfor-
mance at the instance k + 1, under û∗(k), Jk+1 is the performance function at instant
k + 1 under û∗(k), and all these follows the trace λ.
It is obvious that Jk+1 ≥ J∗

k+1, then

E{J∗
k − J∗

k+1} ≥ E{J∗
k − Jk+1}

=
N−1∑
n=0

[
x∗(k + n|k)TQx∗(k + n|k) + u∗(k + n|k)TRu∗(k + n|k)

]
−

N−1∑
n=1

[
xT(k + n|k + 1)Qx(k + n|k + 1) + uT(k + n|k + 1)Ru(k + n|k + 1)

]
+ x∗(k + n|k)TP λ∗

rk+N
x∗(k + n|k)

− xT(k + n|k + 1)Qx(k + n|k + 1)

− uT(k + n|k + 1)Ru(k + n|k + 1)

− xT(k +N + 1|k + 1)P
λ∗
rk+N

x(k +N + 1|k + 1)

where P
λ

i =
l∑

j=1

pijP
λ
j .

Next, the following condition is derived from conditions (30) and (31)

E{J∗
k+1 − J∗

k} ≤ E{Jk+1} − J∗
k

=
N−1∑
n=1

[x∗(k + n|k)TQx∗(k + n|k) + u∗(k + n|k)TRu∗(k + n|k)]

+ u∗(k +N |k)TRu∗(k +N |k)

+ xT(k +N + 1|k + 1)P
λ∗
rk+N

x(k +N + 1|k + 1)

+ xT(k +N |k)Qx(k +N |k)
− x∗(k +N |k)TP λ∗

rk+N
x∗(k +N |k)

−
N−1∑
n=0

[x∗(k + n|k)TQx∗(k + n|k) + u∗(k + n|k)TRu∗(k + n|k)]
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Based on Lemma 2.1, it shows that

(S∗
rk+N

)−1 − (Ark+N
+Brk+N

Y ∗
rk+N

(S∗
rk+N

)−1)T∑
i∈Λ

p(rk+N , i)P
λ
i (Ark+N

+Brk+N
Y ∗
rk+N

(S∗
rk+N

)−1)

−Q− Y ∗
rk+N

((S∗
rk+N

)−1)TR(S∗
rk+N

)−1 ≥ 0

(32)

Multiply x∗(k+N |k)T on the left hand side of Equation (32) and multiply x∗(k+N |k)
on the right hand side, respectively, then

x(k +N + 1|k + 1)T(S∗
rk+N

)−1x(k +N + 1|k + 1)

≤ x∗(k +N |k)T(S∗
rk+N

)−1x∗(k +N |k)
(33)

Derived from conditions (32) and (33), we have

E{J∗
k+1 − J∗

k} ≤ E{Jk+1} − J∗
k ≤ −x∗(k|k)TQx∗(k|k)− u∗(k|k)TRu∗(k|k)

and then, E

{
∞∑
k=0

x∗(k|k)TQx∗(k|k) + u∗(k|k)TRu∗(k|k)
}

≤ J∗
0 − J∗

∞ ≤ J∗
0

Since J∗
0 is a finite constant parameter, and then, we can obtain lim

k→∞
E{x∗(k|k)} = 0;

therefore, the system is stochastically stable.

Remark 3.1. By Schur complement, (33) equals to (34), which means the states of system
(5) belong to the following ellipsoid invariant set after k +N steps through λ[

1 xT(k +N + 1|k + 1)
x(k +N + 1|k + 1) S∗

rk+N

]
≥ 0 (34)

4. Constrained Predictive Controller Design.

Theorem 4.1. For a given instant k and a state x(k|k), suppose that there exists a set
of positive definite symmetric matrices Si ∈ Rn×n, Yi ∈ Rn×n and a set of vectors ρ2,
b1, · · · , bm−1 ∈ R, i ∈ Λ, λ ∈ M , which optimize the above semi-definite programming
problem, then at instance k + i, the coefficient matrices of such convex polyhedral LPV
systems are described as follows:

Ark+i
= b1Ark+i

(w1)+b2Ark+i
(w2)+· · ·+bm−1Ark+i

(wm−1)+

(
1−

m−1∑
l=1

bl

)
Ark+i

(wm) (35)



Srk+N
∗ ∗ ∗ ∗ ∗√

p((rk+N), 1)(M̃rk+N
) S1 · · · ∗ ∗ ∗

...
...

. . .
...

...
...√

p((rk+N), h)(M̃rk+N
) 0 · · · Sh ∗ ∗

Srk+N
0 · · · · · · ρ2Q

−1 ∗
Yrk+N

0 · · · · · · . . . ρ2R
−1


≥ 0 (36)

where M̃rk+N
= M1(Ark+N

(w1) − (Ark+N
(wm)) + M2(Ark+N

(w2) − (Ark+N
(wm)) + . . . +

Mm−1(Ark+N
(wm−1)− (Ark+N

(wm)) + Ark+N
(wm)Srk+N

+Brk+N
(wm)Yrk+N

, Ml = blSrk+N
.

Proof: First, we consider the constraint problem of SDP

P λ
rk+N

− (Ark+N
+Brk+N

K)T
∑
i∈Λ

p(rk+N , i)P
λ
i (Ark+N

+Brk+N
K) ≥ Q+KTRK (37)
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By Schur complement, we obtain (38)

P λ
rk+N

∗ ∗ ∗ ∗ ∗√
p((rk+N), 1)(Ark+N

+Brk+N
K) (P λ

1 )
−1 · · · ∗ ∗ ∗

...
...

. . .
...

...
...√

p((rk+N), h)Ark+N
+Brk+N

K 0 · · · (P λ
h )

−1 ∗ ∗
1 0 · · · · · · Q−1 ∗
K 0 · · · · · · . . . R−1


≥ 0 (38)

By multiplying diag{ρ2(P λ
rk+N

)−1, ρ2I, · · · , ρ2I} on both sides of Equation (38), and

define Srk+N
= ρ2(P

λ
rk+N

)−1, Yrk+N
= KSrk+N

,

Ark+i
= b1Ark+i

(w1) + b2Ark+i
(w2) + · · ·+ bm−1Ark+i

(wm−1) +

(
1−

m−1∑
l=1

bl

)
Ark+i

(wm)

One can obtain the conditions (35) and (36). This completes the proof.

Theorem 4.2. For a given instant k and a state x(k|k), consider the input constraints
|uk| ≤ umax and output constraints |yk| ≤ ymax, suppose that there exist feasible solutions
of b1, b2, · · · , bm−1 ∈ R in Theorem 4.1, then, if there exist a set of positive definite
symmetric matrices Si ∈ Rn×n, Yi ∈ Rm×n, and vectors û(k) ∈ RN×1, K, ρ1, ρ2, i ∈ Λ,
λ ∈ M , which optimize the above SDP problem, then under controller û(k), the system is
stochastically stable, and ûopt(k) =

∑
pλû(k) is the optimal predictive input after N steps

min

{∑
λ∈M

pλ(ρ1 + ρ2)

}
(39)

s.t. 

Srk+N
∗ ∗ ∗ ∗ ∗√

p((rk+N), 1)(M̃rk+N
) S1 · · · ∗ ∗ ∗

...
...

. . .
...

...
...√

p((rk+N), h)(M̃rk+N
) 0 · · · Sh ∗ ∗

Srk+N
0 · · · · · · ρ2Q

−1 ∗
Yrk+N

0 · · · · · · . . . ρ2R
−1


≥ 0 (40)

 ρ1 ∗ ∗
Âx(k|k) + B̂û(k) Q̃−1 ∗

û(k) 0 R̃−1

 ≥ 0 (41)

[
1 ∗

x(k +N |k) Srk+N

]
≥ 0 (42)[

u2
max ∗

M(α1)û(k) I

]
≥ 0 (43)[

u2
max ∗

Y T
rk+N

Srk+N

]
≥ 0 (44)[

y2max ∗
M(α2)Ĉ(Âx(k|k) + B̂û(k)) I

]
≥ 0 (45)[

y2max Crk+N
(Ark+N

Srk+N
+Brk+N

Yrk+N
)

∗ Srk+N

]
≥ 0 (46)
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where α1 = 1, · · · , N, α2 = 1, · · · , N − 1

Ark+i
= b1Ark+i

(w1) + b2Ark+i
(w2) + · · ·+ bm−1Ark+i

(wm−1) +

(
1−

m−1∑
l=1

bl

)
Ark+i

(wm)

Ark+N
Srk+N

=M1(Ark+N
(w1)− (Ark+N

(wm)) +M2(Ark+N
(w2)− (Ark+N

(wm)) + . . .

+Mm−1(Ark+N
(wm−1)− (Ark+N

(wm)) + Ark+N
(wm)Srk+N

Ml = blSrk+N
, Q̃ = QI, R̃ = RI, Mα = [

N︷ ︸︸ ︷
0, · · · , 0, I︸ ︷︷ ︸

α

, 0, · · · , 0], Ĉ = [Crk+N
, · · · , Crk+N−1

].

Proof: First, the proof of (40) is the same with Theorem 4.1. Next, we consider the
function:

J1(x(k), λ, û(k), P
λ
i , k)

=
∑
λ∈M

pλ

{
N−1∑
n=0

[
xT(k + n|k)Qx(k + n|k) + uT(k + n|k)Ru(k + n|k)

]}
≤ ρ̃1

(47)

It equals to∑
λ∈M

pλ{xT(k|k)Qx(k|k) + (Âx(k|k) + B̂û(k))TQ̃(Âx(k|k) + B̂û(k)) + ûT(k)R̃û(k)} ≤ ρ̃1

(48)
As xT(k|k)Qx(k|k) is a constant value, we suppose that ρ̃

′
1 = ρ̃1−xT(k|k)Qx(k|k), then

ρ̃1 −
∑
λ∈M

pλ{(Âx(k|k) + B̂û(k))TQ̃(Âx(k|k) + B̂û(k)) + ûT(k)R̃û(k)} ≥ 0 (49)

If we suppose ρ̃
′
1 =

∑
λ∈M

pλρ1, then, (49) is described as

ρ1 −
∑
λ∈M

pλ{(Âx(k|k) + B̂û(k))TQ̃(Âx(k|k) + B̂û(k)) + ûT(k)R̃û(k)} ≥ 0 (50)

By Schur complement, (41) is obtained.
Then, we consider the function:

J2(x(k), λ, û(k), k) = E{xT(k +N |k)P λ
rk+N

x(k +N |k)} ≤ ρ2 (51)

That is
ρ2 − xT(k +N |k)P λ

rk+N
x(k +N |k) ≥ 0 (52)

Define P λ
rk+N

= ρ2S
−1
rk+N

, by Schur complement, (42) is obtained.
Consider the input constraints:

|uα| ≤ umax, α ∈ 1, · · · , N − 1 (53)

That is
uT
αuα ≤ u2

max (54)

Define uα = M(α)û(k), by using Schur complement, condition (43) is obtained. For
the terminal instance k +N

|u(k +N |k)| ≤ umax (55)

That is
|Kx(k +N |k)| ≤ umax (56)

From reference [18], inequality (57) is derived from (56).

KTρ2(P
λ
rk+N

)−1K ≤ u2
max (57)
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By Schur complement inequality, (58) is obtained from (57)[
u2
max K
KT ρ−1

2 (P λ
rk+N

)

]
≥ 0. (58)

Multiply diag{I, ρ2(P λ
rk+N

)−1} on the left hand side and right hand side, respectively,

and define Srk+N
= ρ2(P

λ
rk+N

)−1, Yrk+N
= KSrk+N

, condition (44) is obtained.
Consider the output constraints:

|y(t)| ≤ ymax, t ∈ k, · · · , k +N − 1 (59)

That is

yT(t)y(t) ≤ y2max (60)

One can define y(t) = M(t)Ĉ(Âx(k|k) + B̂û(k)), by using Schur complement to (60),
for the N step, we obtain:

|y(k +N |k)| ≤ ymax (61)

That is

|Crk+N
(Ark+N

+Brk+N
K)x(k +N |k)| ≤ ymax (62)

Using the terminal invariant set, we can obtain

x(k +N |k)TP λ
rk+N

x(k +N |k)| ≤ 1 (63)

From reference [18], Equation (64) equals to (63):

(Crk+N
(Ark+N

+Brk+N
K))Tρ2(P

λ
rk+N

)−1(Crk+N
(Ark+N

+Brk+N
K)) ≤ 1 (64)

By Schur complement to (64), inequality (65) is obtained:[
y2max Crk+N

(Ark+N
+Brk+N

K)
∗ ρ−1

2 P λ
rk+N

]
≥ 0 (65)

And by multiply diag{I, ρ2(P λ
rk+N

)−1} on both sides of Equation (65), and define

Srk+N
= ρ2(P

λ
rk+N

)−1, Yrk+N
= KSrk+N

, inequality (46) can be obtained. This completes
the proof.

Remark 4.1. As well known, in practice, almost all actuators and outputs have their
limited working region, if the input of system exceeds the maximal capacity or lower than
the minimal capacity, then, it will lead to some damages, so the constraints in our paper
are full of practical meaning. It is worth mentioning that, in many real systems, especially
in chemical reaction systems, the parameters are time-varying, and we set a numerical
example to illustrate the effectiveness. In our future work, we will try to do some predictive
work on networked control systems, time delay and nonlinear systems [19, 20, 21].

5. Simulation Example. The matrices of Markov jump LPV systems are given below:

A1 =

[
0 − sin(w)

sin(w) 0

]
, A2 =

[
0 −2 sin(w)

2 sin(w) 0

]
B1 =

[
1
−2

]
, B2 =

[
1
1

]
C1 =

[
1 2

]
, C2 =

[
1 0

]
Transition probability matrix is described as

Π =

[
0.8 0.2

0.3 0.7

]
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Figure 1. The trajectory of states x1, x2, input u, output y and jump modes

One can select wl as wl =
[

π
6

π
3

π
2

]
, from Theorem 4.1, we have b1 = 0.3249,

b2 = 0.017, b3 = 0.658. The parameters and initial condition are given as Q =

[
1 0
0 1

]
,

R = [1], x0 =
[
2 2

]
, N = 2, |umax| = 1, |ymax| = 6, then, the trajectory of states x1,

x2, input u, output y and jump modes are given in Figure 1.

6. Conclusions. In this paper, multistep predictive controller is designed for a class
of Markov jump convex polyhedron LPV systems with both constraints on inputs and
outputs. First, the stochastic LPV system is expressed by some linear time-invariant
systems at different selected working points, next, in the given receding horizon, the
optimal control inputs are designed in order to make the states into a terminal invariant
set. Outside of the receding horizon, state feedback controller is designed to guarantee
the stability of the system. Finally, constraints on both inputs and outputs are considered
for such system and receding horizon predictive controller is designed in terms of linear
matrix inequality. The simulation shows the effectiveness of our method.
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