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Abstract. This paper examines the relationship between capital regulation and default
risk prediction with the bank interest margin determination under the standard Merton-
type and Black-type structural models. The former can be identified as a narrow banking
framework while the latter can be identified as a synergy banking framework. In addi-
tion, we also introduce a Black-Merton-type structural model in a non-exclusive, narrow-
synergy framework. We compare the three structural models for their default prediction
capabilities under capital regulation. We find a consistent result from these three models:
higher capital requirements lead to lower default risks in the bank’s equity return. The
ranking of the significance effect on default risk is sorted in the following order: Merton-
type, Black-Merton-type and Black-type one. This analysis provides important strategic
and policy implications for bank managers and regulators.
Keywords: Bank spread behavior, Default risk, Capital regulation, Call option, Cap
option

1. Introduction. Motivated by the ongoing literature concerning the impact of capital
regulation on bank profits and risks, and the fact that the research thus far has primarily
focused on either narrowing banking or synergy banking, we assess the extent to which
risk-based capital requirements such as the Basel III system, affect bank profits and default
risks under a non-exclusive narrow-synergy banking proposal. The theoretical banking
literature is sharply divided on the effects of capital requirements on bank behavior and,
hence, on the risks faced by individual institutions and the banking system as a whole.
Some recent academic works indicates that capital requirements unambiguously contribute
to various possible measures of bank stability [3-5]. In contrast, other works conclude that,
if anything, capital requirements make banks riskier institutions than they would have
been in the absence of such requirements [6-8].

Our paper makes several important contributions to the literature due to the follow-
ing extensions in methodology and scope. First, on the methodological side, we propose
a framework of bank equity valuation based on a call-cap option model instead of the
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commonly-known call or cap approach. The standard contingent claim approach to cor-
porate security valuation views bank equity as a call option on the assets of the banking
firm with the strike price of the book value of the banks’ liabilities [1]. An alternative
contingent claims approach views bank equity as a cap option on the book-value equity
return of the banking firm with the strike price of the Libor rate [2]. The former “Merton-
type” approach is motivated based on a narrow banking proposal, which effectively calls
for the breaking-up of the bank into separate lending (the underlying assets in the call)
and deposit-taking (the strike price). The latter “Black-type” approach is motivated
based on a synergy banking proposal, which effectively calls for the integration of the
lending and deposit-taking activities (the underlying equity in the cap) and the opportu-
nity cost in terms of the Libor rate (the strike price). A substantial number of analyses
have been devoted to understanding the circumstances behind the narrow-banking or the
synergy-banking operations management. Much has been learned from this work but not
addressed in an alternative aspect: a bank may carry out both functions under a non-
exclusive, narrow-synergy banking structure since the valuation of bank equity and risk
are in general under the constraints of balance sheets. Banking firm theory, however, im-
plies that constraints of balance sheets in banks’ operation management must be satisfied
by Merton-type as well as Black-type prices. In this case, the equity of a bank creates the
need for model equity as a cap option on the market value rather than the book value of
the banks’ equity, while the strike price of the cap is referred to as the Libor rate. Such
approach is known as “Black-Merton-type” valuation.
Regarding scope, to the best of our knowledge, we are the first researchers to analyze

bank interest margin determination under capital regulation in the Black-Merton-type
valuation. The broader contingent claims approach has been found with a natural appli-
cation of commercial bank behavior in response to capital regulation. Commercial banks
are institutions that engage in two distinct types of activities, namely the balance sheet,
lending and deposit-taking, respectively. Lending involves acquiring costly information
on opaque borrowers and credit extension based on such information. Deposit-taking
involves issuing claims that are riskless and demandable; in other words, claims can be
recognized for a fixed value at any time [9,10]. The bank interest margin or, the spread
between the loan rate and the deposit rate is one of the principal elements of bank net
cash flows and earnings [11,12]. The bank interest margin conveys vital information on
the efficiency of financial operation management related to narrowing banking and/or
synergy banking [13]. It is interesting to study and compare contingent claims under the
Merton-type, Black-type and Black-Merton type frameworks in order to understand the
effect of capital regulation on bank spread behavior in return to the retail banking [14].
The purpose of this paper is to address this interest.
In light of previous works, the purpose of this paper is to use the various structural ap-

proaches to examine how bank interest margin is determined when the banks’ alternative
objectives admit the Merton-type, the Black-type and the Black-Merton-type equity rep-
resentations under capital regulation. Bank claims are evaluated with alternative options
under three frameworks, thus providing more suitable, alternative views of bank equity
and debts while further exhibiting a strong link to the alternatives inducing probability of
default. In this paper, we compare structural models, including Merton-type, Black-type
and Black-Merton-type based on their default prediction capability with bank interest
determination under capital regulation. It is consistently found that higher capital re-
quirements lead to lower loan volume at an increased margin and further lower default
risks of the banks’ equity return in Merton-type, Black-type and Black-Merton-type of
structural frameworks. Our results are considerably supported by the empirical evidence
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of Kashyap et al. [3], Slovik and Cournede [4], and Cosimano and Hakura [5]. A fur-
ther contribution of the paper shows that the ranking of the significant degree of capital
regulation effects on the default risk includes the Merton-type, Black-Merton-type and
Black-type. This ranking explains a real synergy or narrow-synergy banking is a forced
switch narrowing banking that could lead to large inefficiencies. The effect of capital
regulation on default prediction which ignores the narrow banking functions in the syn-
ergy banking lead to overestimation. In general, we conclude that capital requirements
contribute to various possible measures of bank stability.

One immediate application of this paper is to evaluate the plethora of bank equity
valuation arrangements under the capital regulation proposed as alternatives for future
lending activities which are related to the issues of efficiency and effectiveness. One tends
to be sympathetic to a narrow banking proposal, which effectively calls for the breaking up
of banks into separate lending and deposit-taking operations that would resemble finance
companies and mutual funds, respectively. Under this view, it may be appropriate to
define bank equity as the Merton-type value of the call option effectively purchased by
the shareholders of the bank. One tends to be sympathetic to a synergy banking proposal,
which effectively calls for the integration of the two activities that would resemble credit
or liquidity providers. Under this view, it may be appropriate to define bank equity as
the Black-type value of the cap option effectively purchased by the shareholders of the
bank. Finally, one tends to be sympathetic to a narrow-synergy banking proposal, which
effectively calls for the breaking up as well as the integration of the two activities that
would resemble conglomerate banks under the Gramm-Leach-Bliley Act. Under this view,
it may be appropriate to define bank equity as the Black-Merton-type value of the cap-call
option effectively purchased by the shareholders of the bank. Across the types of financial
institution, we could observe bank equity valuation arrangements to avoid substantial
inefficiencies. Our argument is applicable to bank analysts supervising agencies, and
policy makers.

The rest of the paper is organized as follows. Section 2 briefly reviews the related
literature. Section 3 outlines the theoretical foundations of the three alternative contin-
gent claims approaches to bank equity valuation and further to default risks. Section 4
derives equilibrium solutions and comparative static results. Section 5 presents numerical
analyses to explain and compare the possible comparative static results. We draw our
conclusions in the last section.

2. Background. There is an approach in pricing credit risk, the structural approach
pioneered by Merton [1] which regards default and recovery endogenously as a result of a
bad operation of the firm. The principal advantage of this approach is that equity prices
carry useful credit information which can be used to price credit derivatives. Vassalou
and Xing [15] calculate default risk using Merton’s [1] model and find the size and the
book-to-market of a firm exhibiting a strong link to the default probability. This paper
attempts to fill the void in the literature by applying the received theory of Merton [1]
and then Vassalou and Xing [15] to the case of a regulated bank.

In Merton’s [1] model, the equity of a firm is viewed as a call option on the firm’s
assets. It is assumed that asset market is perfectly competitive so that quantity-setting is
the relevant behavioral model in the market. This assumption is not applicable to a loan
market since such a market is virtually always highly concentrated whereas a bank sets
a loan rate [11,16]. This paper, first, allows the inclusion of more realistic market along
with the more appropriate behavioral modes of loan rate-setting in the contingent claim
approach to bank equity valuation under the capital regulation.
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The strike price of the call option on the bank’s assets is the book value of its liabilities.
This approach can be motivated based on a narrow banking proposal, which effectively
calls for the breaking-up of the bank into separate lending and deposit-taking operation
management, according to Kobayakawa and Nakamura [9] and Bossone [17]. Alternatively,
Kashyap et al. [10] suggested that there is a synergy effect between the liquidity needs in
the lending and deposit-taking activities.1 In the case of a real synergy, a forced switch
to narrow banking could lead to large inefficiencies. Under this view, Tsai and Hung [18]
indicated that a contingent claim approach to corporate security valuation views bank
equity as a cap option [2] on the underlying equity value of the bank, with its expected
investment opportunity cost of the strike price of the Libor rate. This paper secondly
argues that there may be some significant synergies between the lending and deposit-
taking while further examining the optimal loan rate (and thus the optimal bank interest
margin) under the capital regulation in the cap option framework.
Both the Merton-type and the Black-type contingent claim approaches in abovemen-

tioned showed a natural application in the bank interest margin determination under the
capital regulation. These models imply that both approaches are used to value bank eq-
uity specifically. Banking firm theory, however, implies that both approaches are subject
to a balance sheet constraint of the bank. In view of this, this paper develops a Black-
Merton-type model of bank behavior that integrates the narrow banking with the synergy
banking under capital regulation.
The three types of works have recognized that bank equity is viewed as a path-indepen-

dent option that its payoff depends on the underlying asset value or equity value only at
maturity.2 This fundamental concept of the path-independent structural approach allows
the application of Vassalou and Xing [15] assessing the effect of default risk on equity
returns under capital regulation. We select these particular three models that cover dis-
tinctly different assumptions so we can study how and why certain models can predict
default concerning different applications. Chen et al. [19] argued that the structural mod-
els do not price corporate securities well; however, they are quite effective in predicting
defaults. This paper, in fourth, aims to compare those three types of structural mod-
els for their default prediction capability through focusing on the bank interest margin
determination under the capital regulation.

3. Three Alternative Objectives. The basics of the modeling approach used in this
paper or, the industrial economics approach to banking, can be found in Freixas and
Rochet [20]. We applied the methodology in the literature and followed its lead with
respect to market structure, i.e., the consideration of a monopolistic bank.3 This enables
us to include market power without having to deal with strategic interaction in a banking
oligopoly. Our analysis includes capital regulation and banking lending, accounting for
their interaction and joint impact on default prediction.
Consider a bank that makes decisions on one-year period with 360 days and t ∈ [0, 360].

At t = 1, the bank has the following balance sheet:

L+B = D +K (1)

where L > 0 is the volume of loans, B > 0 is amount of liquid assets, D > 0 is the
quantity of deposits, and K > 0 is the stock of equity capital.

1This paper focuses on an alternative of synergy banking proposal. Recent related literature includes,
i.e., structural pricing model based on dynamic investment strategy [21], loan pricing model based on
recovery rate distribution [22], and real options analysis based on fuzzy random variables [23].

2We remain silent on the case of path dependence. See Episcopos [24] for bank capital regulation and
Tsai et al. [25] for bank interest margin determination in a path-dependent, barrier option framework.

3i.e., Wahl and Broll [26], Wong [11] and Pausch and Welzel [16].
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The bank enjoys market power in the loan market [16]. L can be interpreted as the
total number of homogenous loans. The decision on the loans is made via the setting of
loan rate RL at t = 1. The bank faces a loan demand function L(RL) with ∂L/∂RL < 0
and ∂2L/∂R2

L < 0. The demand for the loans is assumed to be a concave function. Loans
are risky in that they are subject to non-performance. In addition to loans, the bank can
also hold an amount B of liquid assets, i.e., bonds, on its balance sheet between dates 1
and 360. These assets earn the security-market interest rate of R. The bank’s deposits
are insured by a government-funded deposit insurance scheme. The supply of deposits is
perfectly elastic at the fixed deposit rate, RD > 0 [11]. K needs to satisfy the following
capital adequacy requirements by regulation, K ≥ qD, whereas the required capital-to-
deposits ratio q is assumed to be an increasing function of L specified as ∂q/∂L = q′ > 0.
q′ explicitly captures the operational risk as shown in the Basel Committee on Banking
Supervision [8]. When the capital is binding, Equation (1) can be further expressed as
L+B = K(1/q + 1).4

3.1. Merton-type objective. We apply Merton [1] and define the equity of a bank
viewed as a call option on the bank’s assets. The strike price of the call option is the
book value of the bank’s liabilities. Based on Equation (1), the capital structure of the
bank includes both the equity and debt. The market value of the bank’s underlying assets
follows a geometric Brownian motion of the form:

dV = µV dt+ σV dW (2)

where

V = (1 +RL)L

and V is the value of the bank’s loan repayments at t = 360, with an instantaneous drift
µ, and an instantaneous volatility σ. A standard Wiener process is known as W .

Z is denoted as the book value of the net debt at t = 1, which has maturity equal to
t = 360. The net debt is the difference value between the payments to depositors and
the repayments from the liquid assets held by the bank. As noted earlier, Z plays the
role of the strike price of the call option, since the market value of the bank’s equity can
be thought as a call option on V with t = 1 to expiration equal to t = 360. The market
value of equity, S, will be given by the Merton [1] formula for call options:

S = V N(d1)− Ze−δN(d2) (3)

where

Z =
(1 +RD)K

q
− (1 +R)

[
K

(
1

q
+ 1

)
− L

]
d1 =

1

σ

(
ln

V

Z
+ δ +

σ2

2

)
, d2 = d1 − σ

where δ = R − RD is the risk-free spread and N(·) is the cumulative density function of
the standard normal distribution. Under this Merton-type [1] contingent claim approach
to corporate security valuation, it is inevitable to be sympathetic to a narrow banking
proposal, which effectively calls for the breaking-up of S into V N(d1) and Ze−δN(d2) in
Equation (3).

The structural approach in pricing credit risk pioneered by Merton [1] regards default
endogenously as a result of a bad operation of the bank. Our approach in calculating
default risk measures using Equation (3) is very similar to the one used by Vassalou and
Xing [15]. The default risk in the bank’s equity return is the default probability that V is

4This is the case as long as R is sufficiently higher than RD.
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less than Z. We defined the distance to default d3 in order to capture the bad operation
of the bank as follows:

d3 =
1

σ

(
ln

V

Z
+ µ− σ2

2

)
(4)

Default occurs when the ratio of V to Z is less than 1, or when its log is negative. The
d3 tells us how many standard deviations the log of this ratio needs to deviate from its
mean before the occurrence of default. Note that although S in Equation (3) does not
depend on µ, d3 on the other hand does. This is because d3 depends on the future value
of V which is given in d1 and d2. In this case, the probability of default will be given by:

P = N(−d3) = 1−N(d3) (5)

3.2. Black-type objective. A cap is designed to provide insurance against the interest
rate on a floating rate rising from a certain level known as the opportunity cost of the
cap, usually denoted as the Libor rate [2]. We apply Black [2] and define the equity of
a bank viewed as a cap option on the bank’s equity returns, subject to Equation (1).
Specifically, the cap option gives to the bank’s equity holders a series of European call
options or caplets on the Libor rate, whereas each caplet has the same strike price as
the others, but a different expiration date. The expiration dates for the caplets are on
the same cycle as the frequency of the underlying Libor rate. Specifically, let Sb(1, 360)
denote the value at t = 1 with a discount bond maturing at t = 360, F (1, τ, 360), whereas
1 < τ < 360, denoting the value at t = 1 for the Libor forward rate applicable to the
period from t = τ to t = 360. Let a = 360 − τ be the actual number of days during the
period from t = τ to t = 360, and let G be the strike price. Applying the Black [2] model
to this forward rate will result in the following closed-form expression for the t = 1 value
of a caplet with expiration date, t = 360:

Sb(1, τ, 360) = Sb(1, 360)
360− τ

360
[F (1, τ, 360)N(b1)−GN(b2)] (6)

where

F (1, τ, 360) =
360

360− τ

(
Sb(1, τ)

Sb(1, 360)
− 1

)
Sb(1, 360) = (V − Z)e−ρ, ρ = RL +R−RD

Sb(1, τ) = (V − Z)e−τρ/360

b1 =
1√
σ2τ

(
ln

F (1, τ, 360)

G
+

√
σ2τ

2

)
, b2 = b1 −

√
σ2τ

and where σ is the volatility of changes in the logarithm of the forward rate. Under this
Black-type [2] contingent claim approach to corporate security valuation, it is inevitable
to be sympathetic to a synergy banking proposal, which effectively calls for the integration
of V and Z denoted as Sb(1, 360) and Sb(1, τ) in Equation (6).
We further apply Vassalou and Xing [15] to define the default risk in the bank’s equity

return by using information as shown in Equation (6). Again, equity price carries useful
credit information. The default probability is governed only by the underlying ratio of
F (1, τ, 360) and its strike price of G, since the term Sb(1, 360) is expressed as a book
value. Specifically, the default probability occurs when F (1, τ, 360) is less than G. Under
the circumstances, we define the probability of the distance to default b3 to capture the
probability of the bad operation of the bank as follows:

Pb = N(−b3) = 1−N(b3) (7)
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where

b3 =
1√
σ2τ

(
ln

F (1, τ, 360)

G
−

√
σ2τ

2

)
3.3. Black-Merton-type objective. The Merton-type [1] and the Black-type [2] frame-
work are generally used as separate contingent claim approaches for corporate security
valuation. Banking firm theory, however, implies that the constraint of balance sheet must
satisfy Merton-type and Black-type prices. The constraint of balance sheet in Equation
(1) captures the bank’s operations management in lending, since the total assets on the
left-hand side are financed by deposits and equity capital on the right-hand side. In view
of this, the lending function of the bank creates an alternative need for model equity
as a Black-Merton-type (a cap-call-type) option. Specifically, the Black-type [2] equity
valuation is based on the book value of Sb(1, 360) multiplied by the market value of the
caplet of (a/360) max [0, F (1, τ, 360) − G]. We replace this book-value term by S as
defined in Equation (3) and model equity as a Black-Merton-type form:

Sm(1, τ, 360) = S
360− τ

360
[F (1, τ, 360)N(b1)−GN(b2)] (8)

The form of the Black-Merton-type contingent claims approach for corporate secu-
rity valuation is multiplicative, whereas mentioned earlier, the term S = V N(d1) −
Ze−δN(d2) implies a monetary transmission mechanism of narrow banking and the term
[F (1, τ, 360)N(b1) − GN(b2)] implies that of synergy banking. Using the information
from Equation (8) above, we define an additive default probability as follows:

Pm = P + Pb (9)

It is interesting to compare default risk assessments based on the contingent claims
in the Merton-type, Black-type and Black-Merton-type frameworks. First, the concep-
tual transition from the Merton-type to the Black-Merton-type shows that the default
probability is increased additionally by Pb. This makes intuitive sense because, in the
Black-Merton-type framework, the bank has an additional option to consider the synergy
banking caused by the balance-sheet operation management. The Merton-type default
probability becomes a special case if this consideration is ignored. Second, in a conceptual
transition from the Black-type to the Black-Merton-type, it can be shown that the de-
fault probability is increased additionally by P . This is because, in the Black-Merton-type
framework, the bank has an additional option to consider the narrow banking operations
management. The Black-type default probability becomes a special case if this consider-
ation is ignored.

4. Solutions and Comparative Static Results.

4.1. Merton-type equilibrium and result. Partially differentiating Equation (3) with
respect to RL, the first-order condition is given by:

∂S

∂RL

=
∂V

∂RL

N(d1) + V
∂N(d1)

∂d1

∂d1
∂RL

− ∂Z

∂RL

e−δN(d2)− Ze−δ ∂N(d2)

∂d2

∂d2
∂RL

= 0 (10)

where

∂V

∂RL

= L+ (1 +RL)
∂L

∂RL

< 0,
∂Z

∂RL

=

[
(R−RD)Kq′

q2
+ (1 +R)

]
∂L

∂RL

< 0

V
∂N(d1)

∂d1

∂d1
∂RL

= Ze−δ ∂N(d2)

∂d2

∂d2
∂RL
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A sufficient condition for an optimum of Equation (10) is shown in ∂2S/∂R2
L < 0. The

sign of the term ∂V/∂RL is negative since the bank operates on the elastic portion of its
loan demand curve. The sign of the term ∂Z/∂RL is negative since the risk-free spread
is positive. The optimal loan rate is set as the equity return maximization in Equation
(3) where both risk-adjusted marginal values are equal. We can further substitute the
optimal loan rate to obtain the default risk in Equation (5) by staying on the maximization
optimization. The optimal bank interest margin is given by the difference between the
optimal loan rate and the fixed deposit rate. Since the deposit rate is not a choice variable,
the examination of the impact of capital regulation on the optimal bank interest margin
is tantamount to examining that on the optimal loan rate.
Consider next the impact on the optimal bank interest margin from changes in the

capital-to-deposits ratio. The implicit differentiation of Equation (10) shown in the form
of Merton-type valuation with respect to q, yields as follows:

∂RL

∂q

∣∣∣∣
Merton

= − ∂2S

∂RL∂q

/
∂2S

∂R2
L

(11)

where

∂2S

∂RL∂q
=

∂2V

∂RL∂q
N(d1)−

∂2Z

∂RL∂q
e−δN(d2) +

∂V

∂RL

(
1− V N(d1)

Ze−δN(d2)

)
∂N(d1)

∂d1

∂d1
∂q

∂2V

∂RL∂q
= 0,

∂2Z

∂RL∂q
= −2(R−RD)Kq′

q3
∂L

∂RL

∂d2
∂q

=
∂d1
∂q

= − 1

σZ

∂Z

∂q
,

∂Z

∂q
=

(R−RD)K

q2

The first two terms on the right-hand side of ∂2S/∂RL∂q can be interpreted as the
mean profit effect on ∂S/∂RL form a change in q, while the third term can be interpreted
as the variance or risk effect.
We further consider the impact on the default risk in the bank’s equity return changes

in terms of the capital-to-deposits ratio. The differentiation of Equation (5) evaluated at
the optimal loan rate with respect to q yields:

dP

dq
=

∂P

∂q
+

∂P

∂RL

∂RL

∂q

∣∣∣∣
Merton

(12)

where

∂P

∂q
= −∂N(d3)

∂d3

∂d3
∂q

,
∂P

∂RL

= −∂N(d3)

∂d3

∂d3
∂RL

,
∂d3
∂RL

=
1

σRL

(
RL

V

∂V

∂RL

− RL

Z

∂Z

∂RL

)
In Equation (12), the first term on the right-hand side is identified as the direct effect

while the second term is identified as the indirect effect. The direct effect captures the
changes in the default risk due to the increase in the capital-to-deposits ratio, holding the
optimal loan rate constant. The indirect effect arises because an increase in q changes the
default risk by L(RL) in every possible state.
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4.2. Black-type equilibrium and result. For the partial differentiation of Equation
(6) with respect to RL, the first-order condition is given as:

∂Sd(1, τ, 360)

∂RL

=
∂Sb(1, 360)

∂RL

360− τ

360
[F (1, τ, 360)N(b1)−GN(b2)]

+ Sb(1, 360)
360− τ

360

[
∂F (1, τ, 360)

∂RL

N(b1)

+ F (1, τ, 360)
∂N(b1)

∂b1

∂b1
∂RL

−G
∂N(b2)

∂b2

∂b2
∂RL

]
= 0

(13)

where
∂Sb(1, 360)

∂RL

=

[(
∂V

∂RL

− ∂Z

∂RL

)
− (V − Z)

]
e−ρ

∂F (1, τ, 360)

∂RL

=
360

360− τ

1

Sb(1, 360)

(
∂Sb(1, τ)

∂RL

− Sb(1, τ)

Sb(1, 360)

∂Sb(1, 360)

∂RL

)
∂Sb(1, τ)

∂RL

=

[(
∂V

∂RL

− ∂Z

∂RL

)
− (V − Z)

( τ

360

)]
e−τρ/360

F (1, τ, 360)
∂N(b1)

∂b1

∂b1
∂RL

= G
∂N(b2)

∂b2

∂b2
∂RL

A sufficient condition for an optimum of Equation (13) is ∂2Sb(1, τ, 360)/∂R2
L < 0.

The first term on the right-hand side of Equation (13) can be interpreted as the marginal
book-value equity associated with the caplet, while the second term as the marginal
market-value caplet associated with the book-value equity. Equation (13) defines the
optimal loan rate when both the marginal values are equal. We can further substitute the
optimal loan rate to obtain the default risk in Equation (7) by staying on the optimization.

The implicit differentiation of the Black-type Equation (3) with respect to q yields:

∂RL

∂q

∣∣∣∣
Black

= −∂2Sb(1, τ, 360)

∂RL∂q

/
∂2Sb(1, τ, 360)

∂R2
L

(14)

where

∂2Sb(1, τ, 360)

∂RL∂q
=

360− τ

360

{
∂2Sb(1, 360)

∂RL∂q
[F (1, τ, 360)N(b1)−GN(b2)]

+
∂Sb(1, 360)

∂RL

∂F (1, τ, 360)

∂q
N(b1) +

∂Sb(1, 360)

∂q

∂F (1, τ, 360)

∂RL

N(b1)

+ Sb(1, 360)

[
∂2F (1, τ, 360)

∂RL∂q
N(b1) +

∂F (1, τ, 360)

∂RL

∂N(b1)

∂b1

∂b1
∂q

]}
∂2Sb(1, 360)

∂RL∂q
=

(
− ∂2Z

∂RL∂q
+

∂Z

∂q

)
e−ρ

∂F (1, τ, 360)

∂q
=

360

360− τ

1

Sb(1, 360)

(
∂Sb(1, τ)

∂q
− Sb(1, τ)

Sb(1, 360)

∂Sb(1, 360)

∂q

)
∂Sb(1, τ)

∂q
= −∂Z

∂q
e−τρ/360 < 0

∂Sb(1, 360)

∂q
= −∂Z

∂q
e−ρ < 0

The sign of Equation (14) is governed by its numerator due to the validity of the second-
order condition of ∂2Sb(1, τ, 360)/∂R

2
L < 0. The first term on the right-hand side of the

numerator explains the effect on the marginal book-value equity from a change in q, the
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second term captures the effect on the caplet, the third term demonstrates the effect on
the marginal caplet, and the last term indicates the effect on the book-value equity.
The differentiation of Equation (7) evaluated at the optimal loan rate with respect to

q yields:
dPb

dq
=

∂Pb

∂q
+

∂Pb

∂RL

∂RL

∂q

∣∣∣∣
Black

(15)

where
∂Pb

∂q
=

1√
σ2τ

1

F (1, τ, 360)

∂F (1, τ, 360)

∂q

∂Pb

∂RL

=
1√
σ2τ

1

F (1, τ, 360)

∂F (1, τ, 360)

∂RL

In Equation (15), the first term on the right-hand side is identified as the direct ef-
fect, while the second term is identified as the indirect effect through optimal loan rate
adjustments.

4.3. Black-Merton-type equilibrium and result. For the partial differentiation of
Equation (8) with respect to RL, the first-order condition is given as:

∂Sm(1, τ, 360)

∂RL

=
360− τ

360

{
∂S

∂RL

[F (1, τ, 360)N(b1)−GN(b2)] + S
∂F (1, τ, 360)

∂RL

}
= 0

(16)
A sufficient condition for an optimum of Equation (16) is ∂2Sm(1, τ, 360)/∂R2

L < 0.
The first term on the right-hand side of Equation (16) can be identified as the marginal
market-value equity associated with the caplet, while the second term as the marginal
market-value capital with the market-value equity. Equation (16) defines the optimal
loan rate for the Black-Merton-equity maximizations whereas both the marginal values
are equal. We can further substitute the optimal loan rate to obtain the default risk of
Equation (9) by staying on the optimization.
The implicit differentiation of Equation (16) with respect to q yields:

∂RL

∂q

∣∣∣∣
Black-Merton

= −∂2Sm(1, τ, 360)

∂RL∂q

/
∂2Sm(1, τ, 360)

∂R2
L

(17)

where

∂2Sm(1, τ, 360)

∂RL∂q
=

360− τ

360

{
∂2S

∂RL∂q
[F (1, τ, 360)N(b1)−GN(b2)]

+
∂S

∂RL

∂F (1, τ, 360)

∂q
N(b1) +

∂S

∂q

∂F (1, τ, 360)

∂RL

+ S
∂2F (1, τ, 360)

∂RL∂q

}
The sign of Equation (17) is determined by its numerator due to the second-order

condition of Equation (16) while the denominator of Equation (17) should be negative
in sign. The interpretation of the numerator follows a similar argument as in the case of
Equation (14) but with basis on the market value of the bank’s equity rather than the
book value of the bank’s equity.
The differentiation of Equation (9) evaluated at the optimal loan rate with respect to

q yields:
dPm

dq
=

(
∂P

∂q
+

∂Pb

∂q

)
+

(
∂P

∂RL

+
∂Pb

∂RL

)
∂RL

∂q

∣∣∣∣
Black-Merton

(18)

The first term on the right-hand side of Equation (18) can be identified as the direct
effect, while the second term can be identified as the indirect effect. The direct effect
includes the impacts on the default risk from changes in the capital-to-deposits ratio
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based on both the Merton-type and Black-type approaches. The indirect effect includes
the impact on the loan rate from changes in the capital-to-deposits ratio based on the
Black-Merton-type approach as well as the impacts on the default from changes in the
loan rate based on the Merton-type and Black-type approaches.

5. Numerical Examples. In the bank risk management under capital regulation, com-
puting changes in the option value to small changes in constituent variables is essential
for risks hedging. To work toward that end, we compute partial derivatives of the value
functions of Merton-type, Black-type and Black-Merton-type options. The numerical ex-
amples are non-exhaustive and they provide intuition regarding the problems at hand.
The added complexity of the structural options, in general, does not always lead to clear-
cut results, but we can certainly speak of tendencies for reasonable parameter levels
corresponding roughly to a bank with rather risky assets.

Unless otherwise indicated, the parameter values and assume to be R = 3.00%, RD =
2.50%, D = 200, σ = 0.20 and µ = 0.10. Let (RL%, L) change from (4.50, 200) to
(6.00, 179) due to the conditions of ∂L/∂RL < 0 and ∂2L/∂R2

L < 0 in the model, and
let q increase from 8.0% to 13.0%. Note that (i) the condition of RL > RD indicates
the positive interest margin as a proxy for the efficiency of financial intermediation [13],
(ii) the constant value of RD = 2.50% is not a choice variable of the bank [11], (iii)
the condition of RL > R = 3.00% implies asset substitution in the bank’s earning-asset
portfolio [10], (iv) the condition of R > RD indicates a possible binding case of the capital
requirement constraint [27], and (v) the specification of capital adequacy requirement is
consistent with the approach of the Basel [8]. The numerical parameters used above
can be given with an intuitive interpretation roughly approaching to a real state of a
hypothetical bank.

5.1. Merton-type case. In this subsection, we compute the Merton-type value of the
bank’s equity based on Equation (3). Using the information on Equation (10), we further
calculate ∂2S/∂RL∂q and ∂2S/∂R2

L to obtain the comparative static results of ∂RL/∂q in
Equation (11), which will be used to compute the indirect effect of Equation (12). The
findings are summarized in Table 1.

In Table 1, we have the result of S > 0, ∂2S/∂RL∂q > 0, ∂2S/∂R2
L < 0 and ∂RL/∂q > 0.

Note that ∂2S/∂R2
L < 0 confirms the second-order condition. It is interesting that, as the

capital-to-deposits ratio increases, the loan rate (the bank interest margin) is increased.
Intuitively, as the bank is forced to increase its capital relative to its deposit level, it must
now provide a return to a larger equity base. One way that the bank may attempt to
augment its total returns, is to shift its investments to the liquid assets and away from its
loan portfolio. If loan demand is relatively rate-elastic, a less loan portfolio is possible at
an increased loan rate. This result is consistent with the empirical findings of Cosimano
and Hakura [5] and Pausch and Welzel [16] that capital regulation as such makes the
bank more prudent and less prone to risk-taking. In addition, this result is supported by
Kobayakawa and Nakamura [9] that a desirable narrow bank is one that carries out both
deposit-taking and lending activities, though restrictively, and allowed to invest in safe
assets.

In Table 2, we have the negative direct effect on the second panel, the negative indirect
effect on the third panel, and the total negative effect on the last panel. The direct effect
captures the change in the default risk due to an increase in q, holding the optimal loan
rate constant. It is unambiguously negative because an increase in the capital makes the
bank less prone to risk-taking and thus resulting in less default risk in the bank’s equity
returns, ceteris paribus. The indirect effect arises because an increase in q changes the
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Table 1. Values of S and ∂RL/∂q in the Merton-type case∗

q%
(RL%, L)
(4.50, 200) (4.75, 199) (5.00, 197) (5.25, 194) (5.50, 190) (5.75, 185) (6.00, 179)
S

8.0 28.7486 29.0323 29.2267 29.3278 29.3316 29.2344 29.0329
8.5 29.4406 29.7295 29.9301 30.0382 30.0500 29.9619 29.7706
9.0 30.1427 30.4368 30.6436 30.7588 30.7786 30.6997 30.5188
9.5 30.8547 31.1541 31.3670 31.4894 31.5174 31.4478 31.2775
10.0 31.5767 31.8813 32.1004 32.2299 32.2663 32.2061 32.0466
10.5 32.3084 32.6182 32.8435 32.9804 33.0251 32.9745 32.8258
11.0 33.0499 33.3649 33.5964 33.7405 33.7936 33.7527 33.6151
11.5 33.8009 34.1211 34.3588 34.5102 34.5718 34.5407 34.4142
12.0 34.5615 34.8867 35.1306 35.2894 35.3596 35.3382 35.2230
12.5 35.3314 35.6617 35.9118 36.0779 36.1566 36.1452 36.0413
13.0 36.1106 36.4458 36.7021 36.8756 36.9629 36.9614 36.8689

∂2S/∂RL∂q
8.0∼8.5 0.0053 0.0061 0.0070 0.0080 0.0090 0.0102
8.5∼9.0 0.0053 0.0062 0.0071 0.0081 0.0092 0.0104
9.0∼9.5 0.0052 0.0062 0.0072 0.0082 0.0093 0.0106
9.5∼10.0 0.0052 0.0062 0.0072 0.0083 0.0095 0.0108
10.0∼10.5 0.0052 0.0062 0.0073 0.0084 0.0096 0.0109
10.5∼11.0 0.0052 0.0062 0.0073 0.0084 0.0097 0.0110
11.0∼11.5 0.0051 0.0062 0.0073 0.0085 0.0098 0.0111
11.5∼12.0 0.0051 0.0062 0.0073 0.0085 0.0098 0.0112
12.0∼12.5 0.0050 0.0062 0.0074 0.0086 0.0099 0.0113
12.5∼13.0 0.0050 0.0062 0.0074 0.0086 0.0099 0.0114

∂2S/∂R2
L

8.0 – –0.0892 –0.0933 –0.0973 –0.1010 –0.1043 –
8.5 – –0.0884 –0.0924 –0.0963 –0.0999 –0.1032 –
9.0 – –0.0875 –0.0915 –0.0953 –0.0988 –0.1019 –
9.5 – –0.0865 –0.0905 –0.0943 –0.0977 –0.1007 –
10.0 – –0.0856 –0.0895 –0.0932 –0.0965 –0.0994 –
10.5 – –0.0845 –0.0885 –0.0921 –0.0953 –0.0980 –
11.0 – –0.0835 –0.0874 –0.0910 –0.0941 –0.0967 –
11.5 – –0.0824 –0.0863 –0.0898 –0.0928 –0.0953 –
12.0 – –0.0813 –0.0851 –0.0886 –0.0915 –0.0939 –
12.5 – –0.0802 –0.0840 –0.0874 –0.0902 –0.0924 –
13.0 – –0.0790 –0.0828 –0.0861 –0.0889 –0.0910 –

∂RL/∂q = −(∂2S/∂RL∂q)/(∂
2S/∂R2

L)
8.0∼8.5 – 0.0694 0.0760 0.0828 0.0903 0.0989 –
8.5∼9.0 – 0.0704 0.0775 0.0849 0.0929 0.1021 –
9.0∼9.5 – 0.0714 0.0790 0.0869 0.0954 0.1052 –
9.5∼10.0 – 0.0725 0.0805 0.0889 0.0979 0.1082 –
10.0∼10.5 – 0.0734 0.0820 0.0908 0.1004 0.1113 –
10.5∼11.0 – 0.0744 0.0834 0.0927 0.1028 0.1142 –
11.0∼11.5 – 0.0753 0.0848 0.0946 0.1051 0.1170 –
11.5∼12.0 – 0.0763 0.0862 0.0964 0.1074 0.1198 –
12.0∼12.5 – 0.0771 0.0875 0.0981 0.1096 0.1224 –
12.5∼13.0 – 0.0780 0.0888 0.0998 0.1117 0.1250 –
∗Parameter values, unless stated otherwise, R = 3.00%, RD = 2.50%, D = 200, K = qD, σ = 0.20,
µ = 0.10, and L+B = D +K.
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Table 2. Impact on P from changes in q in the Merton-type case∗

q%
(RL%, L)

(4.50, 200) (4.75, 199) (5.00, 197) (5.25, 194) (5.50, 190) (5.75, 185) (6.00, 179)
P%

8.0 17.9925 17.6204 17.1926 16.7080 16.1642 15.5569 14.8799
8.5 17.2829 16.9164 16.4921 16.0089 15.4645 14.8548 14.1736
9.0 16.5877 16.2271 15.8066 15.3254 14.7813 14.1701 13.4862
9.5 15.9071 15.5525 15.1363 14.6578 14.1147 13.5032 12.8179
10.0 15.2414 14.8932 14.4816 14.0063 13.4650 12.8543 12.1689
10.5 14.5909 14.2492 13.8427 13.3711 12.8325 12.2237 11.5396
11.0 13.9558 13.6208 13.2198 12.7525 12.2174 11.6113 10.9299
11.5 13.3364 13.0083 12.6130 12.1506 11.6197 11.0175 10.3400
12.0 12.7328 12.4117 12.0226 11.5657 11.0397 10.4423 9.7700
12.5 12.1451 11.8313 11.4487 10.9977 10.4774 9.8858 9.2198
13.0 11.5736 11.2671 10.8914 10.4468 9.9329 9.3480 8.6896

∂P/∂q(%)
8.0∼8.5 –0.7096 –0.7040 –0.7005 –0.6991 –0.6997 –0.7021 –0.7063
8.5∼9.0 –0.6952 –0.6894 –0.6855 –0.6835 –0.6833 –0.6846 –0.6874
9.0∼9.5 –0.6806 –0.6745 –0.6702 –0.6676 –0.6666 –0.6669 –0.6683
9.5∼10.0 –0.6657 –0.6594 –0.6547 –0.6515 –0.6497 –0.6489 –0.6489
10.0∼10.5 –0.6505 –0.6440 –0.6389 –0.6352 –0.6325 –0.6307 –0.6294
10.5∼11.0 –0.6351 –0.6284 –0.6229 –0.6186 –0.6152 –0.6123 –0.6097
11.0∼11.5 –0.6194 –0.6125 –0.6067 –0.6019 –0.5977 –0.5938 –0.5899
11.5∼12.0 –0.6036 –0.5966 –0.5904 –0.5850 –0.5800 –0.5752 –0.5700
12.0∼12.5 –0.5877 –0.5804 –0.5739 –0.5680 –0.5623 –0.5565 –0.5501
12.5∼13.0 –0.5715 –0.5642 –0.5573 –0.5509 –0.5445 –0.5378 –0.5302

(∂P/∂RL)(∂RL/∂q)(%)
8.0∼8.5 – –0.0294 –0.0367 –0.0451 –0.0551 –0.0674 –
8.5∼9.0 – –0.0296 –0.0373 –0.0462 –0.0568 –0.0698 –
9.0∼9.5 – –0.0297 –0.0378 –0.0472 –0.0584 –0.0721 –
9.5∼10.0 – –0.0298 –0.0383 –0.0481 –0.0598 –0.0742 –
10.0∼10.5 – –0.0299 –0.0387 –0.0489 –0.0611 –0.0761 –
10.5∼11.0 – –0.0298 –0.0390 –0.0496 –0.0623 –0.0778 –
11.0∼11.5 – –0.0298 –0.0392 –0.0502 –0.0633 –0.0793 –
11.5∼12.0 – –0.0297 –0.0394 –0.0507 –0.0641 –0.0805 –
12.0∼12.5 – –0.0295 –0.0395 –0.0511 –0.0648 –0.0815 –
12.5∼13.0 – –0.0293 –0.0395 –0.0513 –0.0653 –0.0823 –

dP/dq
8.0∼8.5 – –0.0073 –0.0074 –0.0074 –0.0076 –0.0077 –
8.5∼9.0 – –0.0072 –0.0072 –0.0073 –0.0074 –0.0076 –
9.0∼9.5 – –0.0070 –0.0071 –0.0071 –0.0073 –0.0074 –
9.5∼10.0 – –0.0068 –0.0069 –0.0070 –0.0071 –0.0072 –
10.0∼10.5 – –0.0067 –0.0067 –0.0068 –0.0069 –0.0071 –
10.5∼11.0 – –0.0065 –0.0066 –0.0066 –0.0067 –0.0069 –
11.0∼11.5 – –0.0064 –0.0064 –0.0065 –0.0066 –0.0067 –
11.5∼12.0 – –0.0062 –0.0062 –0.0063 –0.0064 –0.0065 –
12.0∼12.5 – –0.0060 –0.0061 –0.0061 –0.0062 –0.0063 –
12.5∼13.0 – –0.0059 –0.0059 –0.0060 –0.0060 –0.0061 –
∗Parameter values, unless stated otherwise, R = 3.00%, RD = 2.50%, D = 200, K = qD, σ = 0.20,
µ = 0.10, and L+B = D +K.

default risk by L(RL) in every possible state. As observed from Table 2, this indirect effect
is negative in sign. The indirect effect reinforces the direct effect to give an overall negative
response of P to an increase in q. We thus have the following result: an increase in the
capital-to-deposits ratio decreases the default risk in the bank’s equity returns. This result
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is consistent with the findings of Wang [6] and VanHoose [28] that capital regulation as
such makes the bank less prone to risk-taking, thereby resulting in decreasing the default
risk in the bank’s equity returns and contributing to the stability of the banking system.
This result may be resulted from a desirable narrow banking proposal as mentioned by
Kobayakawa and Nakamura [9].

5.2. Black-type case. In this case, we compute the Black-type value of the bank’s equity
based on Equation (6). Using the information on Equation (13), we further compute
∂2Sb(1, τ, 360)/∂RL∂q and ∂2Sb(1, τ, 360)/∂R

2
L to obtain the result of ∂RL/∂q in Equation

(14) which will be used to compute the indirect effect in Equation (15). The findings are
summarized in Table 3.

Table 3. Values of Sb(1, τ, 360) and ∂RL/∂q in the Black-type case∗

q%
(RL%, L)
(4.50, 200) (4.75, 199) (5.00, 197) (5.25, 194) (5.50, 190) (5.75, 185) (6.00, 179)
Sb(1, τ, 360)

8.0 0.4792 0.5214 0.5645 0.6083 0.6522 0.6960 0.7391
8.5 0.5033 0.5470 0.5917 0.6370 0.6825 0.7278 0.7724
9.0 0.5274 0.5727 0.6188 0.6656 0.7127 0.7595 0.8058
9.5 0.5515 0.5983 0.6460 0.6943 0.7429 0.7913 0.8391
10.0 0.5756 0.6239 0.6731 0.7230 0.7731 0.8231 0.8724
10.5 0.5997 0.6495 0.7003 0.7517 0.8033 0.8548 0.9057
11.0 0.6239 0.6751 0.7274 0.7804 0.8336 0.8866 0.9390
11.5 0.6480 0.7008 0.7546 0.8090 0.8638 0.9184 0.9723
12.0 0.6721 0.7264 0.7817 0.8377 0.8940 0.9501 1.0057
12.5 0.6962 0.7520 0.8089 0.8664 0.9242 0.9819 1.0390
13.0 0.7203 0.7776 0.8360 0.8951 0.9544 1.0137 1.0723

∂2Sb(1, τ, 360)/∂RL∂q
1.5181 1.5263 1.5336 1.5401 1.5458 1.5509

∂2Sb(1, τ, 360)/∂R
2
L

8.0 – 0.0009 0.0006 0.0002 –0.0002 –0.0007 –
8.5 – 0.0009 0.0006 0.0002 –0.0002 –0.0006 –
9.0 – 0.0010 0.0006 0.0002 –0.0002 –0.0006 –
9.5 – 0.0010 0.0006 0.0003 –0.0002 –0.0006 –
10.0 – 0.0010 0.0006 0.0003 –0.0002 –0.0006 –
10.5 – 0.0010 0.0006 0.0003 –0.0002 –0.0006 –
11.0 – 0.0010 0.0007 0.0003 –0.0002 –0.0006 –
11.5 – 0.0010 0.0007 0.0003 –0.0001 –0.0006 –
12.0 – 0.0010 0.0007 0.0003 –0.0001 –0.0006 –
12.5 – 0.0010 0.0007 0.0003 –0.0001 –0.0006 –
13.0 – 0.0010 0.0007 0.0003 –0.0001 –0.0006 –

∂RL/∂q = −(∂2Sb(1, τ, 360)/∂RL∂q)/(∂
2Sb(1, τ, 360)/∂R

2
L)

8.0∼8.5 – 8.4894 2.3907 –
8.5∼9.0 – 8.7652 2.4094 –
9.0∼9.5 – 9.0595 2.4284 –
9.5∼10.0 – 9.3743 2.4478 –
10.0∼10.5 – 9.7117 2.4675 –
10.5∼11.0 – 10.0743 2.4874 –
11.0∼11.5 – 10.4651 2.5077 –
11.5∼12.0 – 10.8873 2.5284 –
12.0∼12.5 – 11.3451 2.5494 –
12.5∼13.0 – 11.8431 2.5707 –
∗Parameter values, unless stated otherwise, R = 3.00%, RD = 2.50%, D = 200, K = qD, σ = 0.20,
τ = 90, G = 4.25%, and L+B = D +K.
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In Table 3, we observe the positive value of equity of the bank on the first panel. On
the second panel, we have the result of ∂2Sb(1, τ, 360)/∂RL∂q > 0, which is not invariant
but very insignificant based on the parameter values assumed in the numerical exercise.
On the third panel, the term ∂2Sb(1, τ, 360)/∂R

2
L indicates a sufficient condition for an

optimum of Equation (13). According to the numerical case, the valid range for lending
is no less than (RL%, L) = (5.25, 194), since the sign of the sufficient condition should
be negative. Thus, the result of ∂RL/∂q on the last panel is presented and is limited to
the range from (RL%, L) = (5.25, 194) to (6.00, 176). We have the result of ∂RL/∂q > 0:
higher capital requirements will lead to higher loan rates. The interpretation of this
result follows a similar argument as in the case of a change in q, under a narrow banking
proposal. Capital regulation may lead to superior performance under a synergy banking
proposal and based on an efficient liquidity provision argument in the spirit of Kashyap
and Stein [29] and Kashyap et al. [10].

Table 4. Impact on Pb from changes in q in the Black-type case∗

q%
(RL%, L)
(4.50, 200) (4.75, 199) (5.00, 197) (5.25, 194) (5.50, 190) (5.75, 185) (6.00, 179)
Pb%

8.0 62.9027 62.0331 61.1924 60.3789
8.5 62.9027 62.0331 61.1924 60.3789
9.0 62.9027 62.0331 61.1924 60.3789
9.5 62.9027 62.0331 61.1924 60.3789
10.0 62.9027 62.0331 61.1924 60.3789
10.5 62.9027 62.0331 61.1924 60.3789
11.0 62.9027 62.0331 61.1924 60.3789
11.5 62.9027 62.0331 61.1924 60.3789
12.0 62.9027 62.0331 61.1924 60.3789
12.5 62.9027 62.0331 61.1924 60.3789
13.0 62.9027 62.0331 61.1924 60.3789

∂Pb/∂q
8.0∼8.5 0.0000 0.0000 0.0000 0.0000
8.5∼9.0 0.0000 –0.0000 0.0000 0.0000
9.0∼9.5 0.0000 0.0000 0.0000 0.0000
9.5∼10.0 0.0000 0.0000 0.0000 0.0000
10.0∼10.5 0.0000 –0.0000 0.0000 0.0000
10.5∼11.0 –0.0000 0.0000 0.0000 –0.0000
11.0∼11.5 0.0000 0.0000 0.0000 0.0000
11.5∼12.0 0.0000 0.0000 0.0000 0.0000
12.0∼12.5 0.0000 0.0000 0.0000 0.0000
12.5∼13.0 0.0000 0.0000 0.0000 0.0000

(∂Pb/∂RL)(∂RL/∂q) ≈ dPb/dq
8.0∼8.5 – –0.0714 –0.0194 –
8.5∼9.0 – –0.0737 –0.0196 –
9.0∼9.5 – –0.0762 –0.0198 –
9.5∼10.0 – –0.0788 –0.0199 –
10.0∼10.5 – –0.0816 –0.0201 –
10.5∼11.0 – –0.0847 –0.0202 –
11.0∼11.5 – –0.0880 –0.0204 –
11.5∼12.0 – –0.0915 –0.0206 –
12.0∼12.5 – –0.0954 –0.0207 –
12.5∼13.0 – –0.0996 –0.0209 –
∗Parameter values, unless stated otherwise, R = 3.00%, RD = 2.50%, D = 200, K = qD, σ = 0.20,
τ = 90, G = 4.25%, and L+B = D +K.
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We use the computed results in Table 4 to explain Equation (15). On the first panel,
we have Pb > 0 limited to the range from (RL%, L) = (5.25, 194) to (6.00, 179) due to
the validness of the second-order condition in Equation (14). Again, the value of Pb is
not constant but insignificantly various at different levels of q. Thus, the direct effect
presented on the second panel, ∂Pb/∂q, is either positively or negatively approaching to
zero. The total effect is dominated by the indirect effect, (∂Pb/∂RL)(∂RL/∂q) ≈ dPd/dq,
and is negative in sign presented on the last panel. Note that the term ∂RL/∂q is obtained
from Table 3. As in Table 2, we conclude that higher capital requirements will lead to
lower default risk in the bank’s equity returns. Capital regulation as such may produce
superior performance and greater safety for the bank, which is consistent with the findings
of Wang [6] and VanHoose [28]. Our result indicates the efficient provision of liquidity
under a synergy banking proposal by Kashyap et al. [10], which enables us to better
understand the impact of capital requirements on lending strategies and default risks in
the Black-type bank equity valuation.

5.3. Black-Merton-type case. In this case, we compute the Black-Merton-type value
of the bank’s equity based on Equation (8). Using the information on Equation (16), we
further calculate the terms of ∂2Sm(1, τ, 360)/∂RL∂q and ∂2Sm(1, τ, 360)/∂R

2
L to obtain

the result of ∂RL/∂q in Equation (17). This result is used to compute the indirect effect
in Equation (18). The findings are summarized in Table 5.
In this case, we have the results of Sm(1, τ, 360) > 0, ∂2Sm/∂RL∂q > 0, ∂2Sm/∂R

2
L < 0,

and ∂RL/∂q > 0. Again, the term of ∂2Sm/∂R
2
L < 0 confirms the second-order condition

of Equation (16). As in Table 1, we show that capital adequacy regulation increases
the interest on loans (and thus the bank interest margin) and lowers loan volume. The
interpretation of this result follows a similar argument as in the case of a change in q
under a synergy banking proposal. Capital regulation may lead to superior performance
for the bank, which is consistent with the findings of Cosimano and Hakura [5] and
Pausch and Welzel [16]. In particular, the superior performance from an efficient liquidity
provision is associated with narrow banking operation in the Black-Merton-type bank
equity valuation.
In Table 6, we observe the following results: (i) Pm is consistently positive in sign; (ii)

∂P/∂q is negative in sign obtained from the second panel of Table 2; (iii) the sign of
the term ∂Pb/∂q is indeterminable but also very insignificant; (iv) the term in the fourth
panel can be explained as the negative indirect effect where the term ∂RL/∂q is obtained
from the last panel of Table 5; (iv) the result presented in the last panel denoted by
Equation (18) is the negative total effect on the default risk due to an increase in the
capital-to-deposits ratio. Again, we have the following result: higher capital requirements
lead to lower default risk in the bank’s equity returns. Capital requirements as such may
produce superior performance and greater safety for the bank, which is largely supported
by Wang [6] and VanHoose [28].

5.4. Comparison of predicting defaults under capital regulation. In the three
cases (Tables 2, 4 and 6) reported, we have consistent results of the negative impact on
the default risk in the bank’s equity returns due to an increase in the capital requirements.
Furthermore, the Merton-type estimates of the negative effects are less significant than
the Black-type estimates and the Black-Merton-type estimates. Nonetheless, the Black-
type estimates of the negative effects are more significant than the Black-Merton-type
estimates. The reasons that explain the differences are as follows. The market value of the
bank’s equity in the Merton-type valuation is the call on its underlying assets with t = 1 to
expiration to t = 360. In this call valuation, the actual number of days is 360. The market
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Table 5. Values of Sm(1, τ, 360) and ∂RL/∂q in the Black-Merton-type case∗

q%
(RL%, L)
(4.50, 200) (4.75, 199) (5.00, 197) (5.25, 194) (5.50, 190) (5.75, 185) (6.00, 179)
Sm(1, τ, 360)

8.0 0.7072 0.7611 0.8139 0.8650 0.9138 0.9598 1.0022
8.5 0.7242 0.7794 0.8334 0.8859 0.9362 0.9836 1.0277
9.0 0.7415 0.7979 0.8533 0.9072 0.9589 1.0079 1.0535
9.5 0.7590 0.8167 0.8735 0.9287 0.9819 1.0324 1.0797
10.0 0.7768 0.8358 0.8939 0.9506 1.0052 1.0573 1.1062
10.5 0.7948 0.8551 0.9146 0.9727 1.0289 1.0826 1.1331
11.0 0.8130 0.8747 0.9355 0.9951 1.0528 1.1081 1.1604
11.5 0.8315 0.8945 0.9568 1.0178 1.0771 1.1340 1.1879
12.0 0.8502 0.9146 0.9783 1.0408 1.1016 1.1602 1.2159
12.5 0.8692 0.9349 1.0000 1.0640 1.1264 1.1866 1.2441
13.0 0.8883 0.9554 1.0220 1.0876 1.1516 1.2134 1.2727

∂2Sm(1, τ, 360)/∂RL∂q
8.0∼8.5 0.0013 0.0013 0.0014 0.0014 0.0015 0.0016
8.5∼9.0 0.0013 0.0013 0.0014 0.0014 0.0015 0.0016
9.0∼9.5 0.0013 0.0013 0.0014 0.0015 0.0015 0.0016
9.5∼10.0 0.0013 0.0014 0.0014 0.0015 0.0016 0.0017
10.0∼10.5 0.0013 0.0014 0.0014 0.0015 0.0016 0.0017
10.5∼11.0 0.0013 0.0014 0.0015 0.0015 0.0016 0.0017
11.0∼11.5 0.0013 0.0014 0.0015 0.0015 0.0016 0.0017
11.5∼12.0 0.0014 0.0014 0.0015 0.0016 0.0016 0.0017
12.0∼12.5 0.0014 0.0014 0.0015 0.0016 0.0017 0.0018
12.5∼13.0 0.0014 0.0015 0.0015 0.0016 0.0017 0.0018

∂2Sm(1, τ, 360)/∂R2
L

8.0 – –0.0011 –0.0017 –0.0023 –0.0029 –0.0035 –
8.5 – –0.0010 –0.0016 –0.0022 –0.0028 –0.0035 –
9.0 – –0.0010 –0.0015 –0.0021 –0.0027 –0.0034 –
9.5 – –0.0009 –0.0015 –0.0021 –0.0027 –0.0033 –
10.0 – –0.0009 –0.0014 –0.0020 –0.0026 –0.0032 –
10.5 – –0.0008 –0.0014 –0.0019 –0.0025 –0.0031 –
11.0 – –0.0008 –0.0013 –0.0019 –0.0024 –0.0030 –
11.5 – –0.0007 –0.0012 –0.0018 –0.0024 –0.0029 –
12.0 – –0.0006 –0.0012 –0.0017 –0.0023 –0.0028 –
12.5 – –0.0006 –0.0011 –0.0016 –0.0022 –0.0027 –
13.0 – –0.0005 –0.0010 –0.0016 –0.0021 –0.0026 –

∂RL/∂q = −(∂2Sm(1, τ, 360)/∂RL∂q)/(∂
2Sm(1, τ, 360)/∂R2

L)
8.0∼8.5 – 1.2631 0.8511 0.6496 0.5322 0.4575 –
8.5∼9.0 – 1.3496 0.8955 0.6789 0.5545 0.4760 –
9.0∼9.5 – 1.4477 0.9441 0.7104 0.5782 0.4956 –
9.5∼10.0 – 1.5599 0.9975 0.7444 0.6034 0.5162 –
10.0∼10.5 – 1.6894 1.0563 0.7810 0.6302 0.5380 –
10.5∼11.0 – 1.8404 1.1214 0.8207 0.6589 0.5611 –
11.0∼11.5 – 2.0189 1.1940 0.8637 0.6895 0.5856 –
11.5∼12.0 – 2.2329 1.2753 0.9106 0.7224 0.6116 –
12.0∼12.5 – 2.4943 1.3671 0.9618 0.7577 0.6391 –
12.5∼13.0 – 2.8205 1.4713 1.0180 0.7958 0.6684 –
∗Parameter values, unless stated otherwise, R = 3.00%, RD = 2.50%, D = 200, K = qD, σ = 0.20,
µ = 0.10, τ = 90, G = 4.25%, and L+B = D +K.
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value of the bank’s equity in the Black-type valuation as well as that in the Black-Merton-
type valuation is the cap on its underlying assets with t = 90 (τ = 90) to expiration to
t = 360. In both types, the actual number of days is 360 − τ . The default risk in the
Merton-type estimates is expected to be lower than that in the Black-type estimates and

Table 6. Impact on Pm from changes in q in the Black-Merton-type case∗

q%
(RL%, L)
(4.50, 200) (4.75, 199) (5.00, 197) (5.25, 194) (5.50, 190) (5.75, 185) (6.00, 179)
Pm%

8.0 83.6978 82.3571 80.9958 79.6108 78.1973 76.7493 75.2588
8.5 82.9882 81.6531 80.2953 78.9117 77.4976 76.0472 74.5525
9.0 82.2929 80.9637 79.6098 78.2282 76.8144 75.3625 73.8651
9.5 81.6123 80.2892 78.9396 77.5605 76.1478 74.6956 73.1968
10.0 80.9467 79.6298 78.2849 76.9090 75.4981 74.0467 72.5479
10.5 80.2962 78.9858 77.6459 76.2738 74.8656 73.4161 71.9185
11.0 79.6611 78.3575 77.0230 75.6552 74.2505 72.8037 71.3088
11.5 79.0416 77.7449 76.4163 75.0534 73.6528 72.2099 70.7189
12.0 78.4380 77.1484 75.8259 74.4684 73.0728 71.6347 70.1489
12.5 77.8503 76.5679 75.2519 73.9004 72.5105 71.0782 69.5988
13.0 77.2788 76.0038 74.6946 73.3495 71.9660 70.5404 69.0686

∂P/∂q(%)
8.0∼8.5 –0.7096 –0.7040 –0.7005 –0.6991 –0.6997 –0.7021 –0.7063
8.5∼9.0 –0.6952 –0.6894 –0.6855 –0.6835 –0.6833 –0.6846 –0.6874
9.0∼9.5 –0.6806 –0.6745 –0.6702 –0.6676 –0.6666 –0.6669 –0.6683
9.5∼10.0 –0.6657 –0.6594 –0.6547 –0.6515 –0.6497 –0.6489 –0.6489
10.0∼10.5 –0.6505 –0.6440 –0.6389 –0.6352 –0.6325 –0.6307 –0.6294
10.5∼11.0 –0.6351 –0.6284 –0.6229 –0.6186 –0.6152 –0.6123 –0.6097
11.0∼11.5 –0.6194 –0.6125 –0.6067 –0.6019 –0.5977 –0.5938 –0.5899
11.5∼12.0 –0.6036 –0.5966 –0.5904 –0.5850 –0.5800 –0.5752 –0.5700
12.0∼12.5 –0.5877 –0.5804 –0.5739 –0.5680 –0.5623 –0.5565 –0.5501
12.5∼13.0 –0.5715 –0.5642 –0.5573 –0.5509 –0.5445 –0.5378 –0.5302

∂Pb/∂q
8.0∼8.5 0.0000 –0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8.5∼9.0 –0.0000 0.0000 0.0000 0.0000 –0.0000 0.0000 0.0000
9.0∼9.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9.5∼10.0 0.0000 0.0000 –0.0000 0.0000 0.0000 0.0000 0.0000
10.0∼10.5 –0.0000 0.0000 0.0000 0.0000 –0.0000 0.0000 0.0000
10.5∼11.0 0.0000 0.0000 0.0000 –0.0000 0.0000 0.0000 –0.0000
11.0∼11.5 0.0000 0.0000 –0.0000 0.0000 0.0000 0.0000 0.0000
11.5∼12.0 0.0000 –0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12.0∼12.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12.5∼13.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(∂P/∂RL + ∂Pb/∂RL)(∂RL/∂q)
8.0∼8.5 – –0.0171 –0.0118 –0.0092 –0.0077 –0.0068 –
8.5∼9.0 – –0.0183 –0.0124 –0.0096 –0.0081 –0.0071 –
9.0∼9.5 – –0.0195 –0.0130 –0.0100 –0.0084 –0.0074 –
9.5∼10.0 – –0.0210 –0.0137 –0.0105 –0.0088 –0.0077 –
10.0∼10.5 – –0.0226 –0.0145 –0.0110 –0.0091 –0.0081 –
10.5∼11.0 – –0.0246 –0.0153 –0.0115 –0.0095 –0.0084 –
11.0∼11.5 – –0.0268 –0.0163 –0.0121 –0.0099 –0.0087 –
11.5∼12.0 – –0.0295 –0.0173 –0.0127 –0.0104 –0.0091 –
12.0∼12.5 – –0.0328 –0.0185 –0.0134 –0.0109 –0.0095 –
12.5∼13.0 – –0.0369 –0.0198 –0.0141 –0.0113 –0.0098 –
∗Parameter values, unless stated otherwise, R = 3.00%, RD = 2.50%, D = 200, K = qD, σ = 0.20,
µ = 0.10, τ = 90, G = 4.25%, and L+B = D +K.



BANK SPREAD BEHAVIOR AND DEFAULT RISK 229

TABLE 6. Impact on Pm from changes in q in the Black-Merton-type case (continued)∗

q%
(RL%, L)
(4.50, 200) (4.75, 199) (5.00, 197) (5.25, 194) (5.50, 190) (5.75, 185) (6.00, 179)
dPm/dq = (∂P/∂q + ∂Pb/∂q) + (∂P/∂RL + ∂Pb/∂RL)(∂RL/∂q)

8.0∼8.5 – –0.0242 –0.0188 –0.0162 –0.0147 –0.0139 –
8.5∼9.0 – –0.0251 –0.0192 –0.0164 –0.0149 –0.0140 –
9.0∼9.5 – –0.0262 –0.0197 –0.0167 –0.0151 –0.0141 –
9.5∼10.0 – –0.0275 –0.0202 –0.0170 –0.0152 –0.0142 –
10.0∼10.5 – –0.0290 –0.0208 –0.0173 –0.0154 –0.0144 –
10.5∼11.0 – –0.0308 –0.0215 –0.0177 –0.0157 –0.0145 –
11.0∼11.5 – –0.0329 –0.0223 –0.0181 –0.0159 –0.0146 –
11.5∼12.0 – –0.0354 –0.0232 –0.0185 –0.0161 –0.0148 –
12.0∼12.5 – –0.0386 –0.0242 –0.0190 –0.0164 –0.0150 –
12.5∼13.0 – –0.0425 –0.0253 –0.0195 –0.0167 –0.0151 –
∗Parameter values, unless stated otherwise, R = 3.00%, RD = 2.50%, D = 200, K = qD, σ = 0.20,
µ = 0.10, τ = 90, G = 4.25%, and L+B = D +K.

that in the Black-Merton-type estimates. These less significant effects of capital regulation
are expected. In addition, if one uses the Black-type valuation approach with the book
value of Sb(1, 360) multiplied by the market value of the caplet, the risk-adjusted function
is the Sb(1, 360) which is ignored. In this case, the probability of default is expected
to increase if the book value of Sb(1, 360) is replaced by the market value of S in the
Black-Merton-type valuation approach because the risk-adjusted function in S is explicitly
treated in the Black-Merton-type approach. Both the comparative results indicated the
well-functioned capital regulation designed to force the bank’s capital position reflects its
asset portfolio risk.

One immediate application of this comparison is to evaluate the plethora of lending
arrangements at various structural models as alternatives for defaults prediction. We
argue that a main expected benefit of narrowing banking in accordance with the Merton-
type equity valuation is the reduced cost of capital regulation, which is consistent with
the findings of Chamley and Kotlifoff [30], and Philips and Roselli [31]. Nevertheless,
the narrow banking proposal has received some criticism. In particular, we argue that
the efficiency gains afforded by the integration of financial services within a bank have
been brought forward within the synergy banking of the Black-type equity valuation,
consistent with the findings of Bossone [17] and Kashyap et al. [10]. Furthermore, we
argue that narrowing banking implies efficiency losses in predicting defaults requiring a
trade-off made between stability and efficiency under the capital regulation due to the
synergies between lending and deposit-taking. If there is real, non-exclusive narrow-
synergy banking, a forced switch to narrow banking could lead to large efficiency losses
and a forced switch to synergy banking could lead to overestimation of efficiency gains in
predicting defaults under capital regulation.

Our results indicate an implication. In 1999, US Congress passed the Gramm-Leach-
Bliley Act (GLBA) that allowed bank holding companies to convert to financial holding
companies and conduct securities and insurance activities without limit in subsidiaries
separated from their commercial banks [32]. In related works, Lin et al. [33] use a
down-and-out call option to study the valuation effects of the GLBA. They argue that
the GLBA has created incentives and choices that expose commercial banks to increased
risk and uncertainty. Unlike Lin et al. [33], we may use a Black-Merton-type option to
study the valuation of a real, non-exclusive narrow-synergy banking proposal permitted by
the GLBA, and conclude that capital requirements may lead to superior performance and
greater safety for the bank. These results document that the choice of an appropriate goal
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in modeling the bank’s optimization problem remains a controversial issue and highlights
the importance that banks tend to attach to the government’s incentives in the design of
capital regulation.

6. Conclusions. In this paper, we compute and compare the powers of various structural
models in defaults prediction. In particular, we measure the power of each model by its
capability to separate the underlying asset and the strike price. The measure used across
all models is the distance to default. We apply the Vassalou and Xing’s [15] methodol-
ogy that provides an estimate on the distance to default with the bank interest margin
determination under capital regulation, which allows us to compare different models. We
find consistent results in the Merton-type, Black-type and Black-Merton-type: higher
capital requirements lower loan volume and increase the bank’s interest margin while
leading to lower default risk in the bank’s equity return. Furthermore, the ranking of the
significance impact on default risk from increasing capital requirements is Merton-type,
Black-Merton-type and Black-type.
The three structural models, Merton-type, Black-type and Black-Merton-type for bank

equity valuation are based on path-independent approach because its payoff depends on
the underlying asset value only at maturity. One issue that has not been addressed is the
structural model for bank equity valuation based on the path-dependent, barrier option
model which payoff depends on the particular path followed up to maturity. Banking
firms with high asset variability, high operating leverage or low capitalization, are likely
to exhibit a higher probability of hitting the barrier before the expiration date than
banking firms without such characteristics [34]. Such concerns are beyond the scope of
this paper and are thus not addressed here. The aforementioned issues may provide an
ample opportunity for future capital regulation research.

REFERENCES

[1] R. C. Merton, On the pricing of corporate debt: The risk structure of interest rates, Journal of
Finance, vol.29, no.2, pp.449-470, 1974.

[2] F. Black, The pricing of commodity contracts, Journal of Financial Economics, vol.3, no.1-2, pp.167-
179, 1976.

[3] A. Kashyap, J. C. Stein and S. Hanson, An analysis of the impact of “substantially heightened”
capital requirements on large financial institutions, Mimeo, University of Chicago Booth School of
Business and Harvard University, 2010.

[4] P. Slovik and B. Cournede, Macroeconomic impact of Basel III, Working Paper, No.844, OECD
Economics Department, 2011.

[5] T. F. Cosimano and D. S. Hakura, Bank behavior in response to Basel III: A cross-country analysis,
Working Paper, 11/119, International Monetary Fund, 2011.

[6] L. Wang, Bank capital requirements and the effectiveness of monetary policy, Manuscript, Peking
University, 2005.

[7] D. Cuoco and H. Liu, An analysis of VaR-based capital requirements, Journal of Financial Inter-
mediation, vol.15, no.3, pp.362-394, 2006.

[8] D. VanHoose, Theories of bank behavior under capital regulation, Journal of Banking and Finance,
vol.31, no.12, pp.3680-3697, 2007.

[9] S. Kobayakawa and H. Nakamura, A theoretical analysis of narrow banking proposals, Monetary
and Economic Studies, vol.18, no.1, 2000.

[10] A. K. Kashyap, R. Rajan and J. C. Stein, Banks as liquidity providers: An explanation for the
coexistence of lending and deposit-taking, Journal of Finance, vol.57, no.1, pp.33-73, 2002.

[11] K. P. Wong, Regret theory and the banking firm: The optimal bank interest margin, Economic
Modelling, vol.28, no.6, pp.2483-2487, 2011.

[12] W.-M. Hung and J.-H. Lin, Option-based modelling of technology choices and bank performance,
ICIC Express Letters, vol.6, no.8, pp.2019-2024, 2012.

[13] A. Saunders and L. Schumacher, The determinants of bank interest rate margins: An international
study, Journal of International Money and Finance, vol.19, no.6, pp.813-832, 2000.



BANK SPREAD BEHAVIOR AND DEFAULT RISK 231

[14] B. Hirtle and K. J. Stiroh, The return to retail and the performance of US banks, Journal of Banking
and Finance, vol.31, no.4, pp.1101-1133, 2007.

[15] M. Vassalou and Y. Xing, Default risk in equity returns, Journal of Finance, vol.59, no.2, pp.831-868,
2004.

[16] T. Pausch and P. Welzel, Regulation, credit risk transfer with CDS, and bank lending, Deutsche
Bundesbank, Discussion Paper, no.05/2012, 2012.

[17] B. Bossone, Should banks be narrower? The Public Policy Brief Series of the Levy Institute, no.69,
2002.

[18] J. Y. Tsai and W. M. Hung, Bank capital regulation in a cap option framework, International Review
of Economics and Finance, vol.25, pp.66-74, 2013.

[19] A. H. Chen, N. Ju, S. C. Mazumdar and and A. Verma, Correlated default risk and bank regulations,
Journal of Money, Credit, and Banking, vol.38, no.2, pp.375-398, 2006.

[20] X. Freixas and J. C. Rochet, Microeconomics of Banking, 2nd Edition, MIT Press, Cambridge, MA,
2008.

[21] X. Wang and L. Wang, Study on Black-Scholes stock option pricing model based on dynamic in-
vestment strategy, International Journal of Innovative Computing, Information and Control, vol.3,
no.6(B), pp.1755-1780, 2007.

[22] T. Kaneko and H. Nakagawa, A bank loan pricing model based on recovery rate distribution, Inter-
national Journal of Innovative Computing, Information and Control, vol.4, no.1, pp.101-108, 2008.

[23] B. Wang, S. Wang and J. Watada, Real options analysis based on fuzzy random variables, Interna-
tional Journal of Innovative Computing, Information and Control, vol.6, no.4, pp.1689-1698, 2010.

[24] A. Episcopos, Bank capital regulation in a barrier option framework, Journal of Banking and Fi-
nance, vol.32, no.8, pp.1677-1686, 2008.

[25] J.-Y. Tsai, R. Jou and W.-M. Hung, A barrier option framework for optimal bank interest margin
with vendor financing, ICIC Express Letters, vol.6, no.10, pp.2481-2486, 2012.

[26] J. Wahl and U. Broll, Financial hedging and banks’ assets and liabilities management, in Risk
Management: Challenge and Opportunity, M. Frenkel, U. Hommel and M. Rudolf (eds.), Berlin,
Springer-Verlag, 2000.

[27] K. P. Wong, On the determinants of bank interest margins under credit and interest rate risks,
Journal of Banking and Finance, vol.21, no.2, pp.251-271, 1997.

[28] D. VanHoose, Bank behavior under capital regulation: What does the academic literature tell us?
Working Paper, 2006-WP-04, Networks Financial Institute, 2006.

[29] A. K. Kashyap and J. C. Stein, What do a million observations on banks say about the transmission
of monetary policy? American Economic Review, vol.90, no.3, pp.407-428, 2000.

[30] C. Chamley and L. J. Kotliko, Limited purpose banking-putting an end to financial crises, Financial
Times, 2009.

[31] R. J. Phillips and A. Roselli, How to avoid the next taxpayer bailout of the financial system: The
narrow banking proposal, Networks Financial Institute Policy Briefs, 2009-PB-05, 2009.

[32] V. Geyfman and T. J. Yeager, On the riskiness of universal banking: Evidence from banks in the
investment banking business pre-and post-GLBA, Journal of Money, Credit and Banking, vol.41,
no.8, pp.1649-1669, 2009.

[33] J. H. Lin, J. Y. Tsai and P. C. Huang, The Gramm-Leach-Bliley act: Optimal interest margin effects
of commercial bank expansion into insurance underwriting, Applied Economics Letters, vol.19, no.15,
pp.1459-1463, 2012.

[34] P. Brockman and H. J. Turtle, A barrier option framework for corporate security valuation, Journal
of Financial Economics, vol.67, no.3, pp.511-529, 2003.


