International Journal of Innovative
Computing, Information and Control ICIC International ©)2013 ISSN 1349-4198
Volume 9, Number 11, November 2013 pp. 4285-4302

ON THE VERIFICATION OF G-NETS MODELS USING GRAPH
TRANSFORMATIONS

ELHILLALI KERKOUCHE!, ALLAOUA CHAOUT?, KHALED KHALFAOUT!
AND RAIDA ELMANSOURI?

!Department of Computer Science
University of Jijel
Jijel, Algeria
{ elhillalik; kh_khalfaoui }@yahoo.fr

2MISC Laboratory
Department of Computer Science and its Application
University of Constantine 2
Constantine, Algeria
{ a_chaoui2001; raidaelmansouri } @yahoo.fr

Received November 2012; revised April 2013

ABSTRACT. G-Nets are a kind of high level Petri Nets used for the modular design and
specification of complex and distributed software systems. They integrate Petri net theory
with the Object Oriented approach. The intention of this integration is to accumulate the
advantages of both the formal treatment of Petri Nets and the modularity of the Object
Oriented methodologies. However, G-Nets lack at present a formal analyzer tool enabling
the verification of system properties. To overcome this limitation, a G-Nets specifica-
tion can be translated (manually) to a semantically equivalent Predicate/Transition Nets
(PrT-Nets). This transformation is performed in order to exploit existing analyzer tools
for PrT-Nets to verify G-Nets specification. One of the most used analyzers for PrT-
Nets is PROD reachability analyzer tool. In this paper, we propose a framework and a
tool support to facilitate the design and verification of complex software systems using
G-Nets formalism. The approach is based on the use of Graph transformation techniques
that perform two automatic transformations: 1) the transformation of a G-Net model
into an equivalent PrT-Net and 2) the translation of the obtained PrT-Net into PROD
description language. Our framework is illustrated through an example.

Keywords: G-Nets, PrT-Nets, PROD, Meta-modeling, Graph transformations, AToM?

1. Introduction. In software engineering, the use of well-defined and loosely-coupled
modules is a widely accepted design principle in practice [1]. Moreover, the need for
formal techniques to support software development becomes even more essential over
the last years [2]. Formal techniques are useful to precisely specify a system, and as a
consequence to verify properties about the design.

G-Nets [3] are a kind of high level Petri Nets defined to provide the necessary support
for these principles. They belong to an integration of Petri Nets theory with the Object
Oriented software engineering approach. The motivation of this integration is to take
benefits from the mathematical foundations of Petri Nets and at the same time to gain
advantages of the modular, Object Oriented approach for the specification and prototyp-
ing of complex software systems. Furthermore, they reduce the gap between design and
analysis.

The G-Nets notations include the concepts of module and system structure into Petri
Nets, and promote abstraction, encapsulation and loose-coupling among the modules.

4285

4286 E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

A system specified by G-Nets (called a G-Nets specification) consists of a collection of
independent modules called G-Nets defined in terms of system structures. Similarly, an
object in the object oriented concept, a G-Net satisfies the property of encapsulation. In
this latter, no G-Net will be able to directly affect internal detail of another one. Rather,
a G-Net can only access another G-Net through a well defined mechanism called G-Net
abstraction. G-Net abstraction defines the interface between the G-Net and other G-Nets.
It consists of a set of methods specifying the operations and services defined by the G-Net.
The internal implementation of each method in the G-Net is described in terms of Petri
nets notations.

Despite its well-defined semantics, G-Nets lack at present a formal analyzer tool en-
abling the analysis and verification of different system properties. To overcome this lim-
itation, a formal transformation technique has been proposed in [3], which transforms a
G-Nets specification to a set of Predicate/Transition Nets (PrT-Nets) models [2]. Each
PrT-Nets model corresponds with a method in the G-Nets specification and has the equiv-
alent semantics as the latter. This transformation aims at exploiting the existing formal
analysis tools with a variety of analysis techniques for PrT-Nets on the obtained PrT-
Nets models. PROD analyzer [4] is one of the most used tools for PrT-Nets. PROD is a
text-based reachability analysis tool developed by Digital Systems Laboratory in Helsinki
University of Technology. Currently, no graphical user-interface exists. The description
language of PrT-Nets in PROD is the C pre-processor language extended by net de-
scription directives. A net description is compiled into an executable reachability graph
generator program. From this graph, commands can be used to analyze PrT-Nets models.

To be effective, the G-Nets formalism should be supported by a tool requiring minimum
user effort in modeling and analysis, thus allowing rapid development of systems. In this
paper, we propose a formal framework and a tool support for the specification and veri-
fication of complex software systems using G-Nets formalism. To meet this objective, we
propose to use Meta-Modeling [5] and Graph Transformation techniques [6] that support
model evolution and manipulate models as instances of meta-models. The modeling pro-
cess is implemented as a visual environment that allows G-Nets specifications according to
the G-Nets meta-model. The verification process is implemented by graph transformation
techniques that perform two automatic transformations: 1) the transformation of a G-Net
model into an equivalent PrT-Nets, and 2) the translation of the obtained PrT-Nets into
PROD description. These automatic transformations will help to avoid human errors and
to minimize user efforts. The ideas presented above are implemented in AToM? (a tool
for multi-formalism and meta-modeling). It is developed at the Modeling, Simulation and
Design Lab in the School of Computer Science of McGill University [7].

In the present work, we have defined a meta-model for G-Nets formalism and another
for PrT-Nets formalism. Then, the meta-modeling tool AToM? is used to automatically
generate visual modeling tool for both formalisms according to their proposed meta-model.
Also, we have proposed two graph transformation grammars. The first one performs the
transformation of the specified G-Nets models to semantically equivalent PrT-Nets models
according to the approach proposed in [3]. The second one translates the obtained PrT-
Nets models into their equivalent descriptions in PROD input language.

This paper is organized as follows. Section 2 outlines some related works. We recall
some basic notions about G-Nets formalism in Section 3, and their transformation proce-
dure into PrT-Nets models in Section 4. In Section 5, we give an overview of the AToM?
tool. In Section 6, we define a meta-model for G-Nets and another for PrT-Nets for gener-
ating visual tool for both formalisms. In Section 7, we propose two graph transformation
grammars. The first one is to automatically transform G-Nets model into semantically
equivalent PrT-Nets model. The second one is to translate the resulted PrT-Nets model

VERIFICATION OF G-NETS MODELS 4287

into its description in PROD input language. In Section 8, we illustrate our framework
through an example. Finally, Section 9 concludes the paper and gives some perspectives
of this work.

2. Related Works. When designing complex software systems, the need for structuring
mechanisms which allow working with selected parts of the model and abstracting low
level of other parts is crucial. On the other hand, the major classes of software systems
introduce additional complexities into system design, and make it even harder to verify
the design. Therefore, the need for formal techniques to support software development
becomes even more essential. The combination of Petri net theory with the modular
Object Oriented software engineering approach had emerged as a solution to tackle this
problem. In addition to G-Nets, there are several formalisms in this direction, we may
cite [8-14]. However, none of these works incorporates the encapsulation mechanism as
defined in Object Oriented approach, where each module hides the internal details and
communicates through well defined interfaces. The G-Nets notations provide a strong
support to this principle.

It must be noted that these formalisms (including G-Nets) require more work in the
analysis procedure due to primitives and notations used in communication between mod-
ules. Therefore, they should be supported by tools to help users in the analysis process.

Building a modeling tool from scratch is a hard task. Meta-modeling [5] approach is
useful to deal with this problem since it allows the modeling of the formalisms themselves.
In addition to AToM?, there are several visual tools used to describe formalisms using
meta-modeling like GME [15], MetaEdit+ [16] and other tools from the Eclipse Genera-
tive Modeling Tools (GMT) project such as Eclipse Modeling Framework (EMF) [17] and
Graphical Modeling Framework (GMF) [18]. In most of these tools, model transforma-
tions have to be described in low-level textual languages. In AToM3, the user expresses
such transformations by means of graph transformation grammar models. Graph gram-
mars are graphical, declarative and high-level way to express transformations.

There are also similar tools which manipulate models by means of graph grammars,
such as PROGRES [19], GReAT [20], FUJABA [21] and AGG [22]. However, none of
these have their own meta-modeling layer. Some of them are complemented with support
for meta-modeling (for example, the GReAT model transformation engine is combined
with GME).

The combined use of meta-modeling and graph grammars taken in AToM? allows users
to benefit from the advantages of both meta-modeling and graph grammars [23]. The
AToM? tool is proved to be very powerful, allowing the meta-modeling and the transfor-
mations of known formalisms. In [24], the authors presented a transformation between
Statecharts (without hierarchy) and Petri Nets. In [25], the authors proposed an approach
for transforming UML Statechart and collaboration diagrams to colored Petri nets models
for analysis purposes.

In this paper, we propose an extended version of our paper published in [26]. It consists
of a framework and a tool support to facilitate the design and analysis of complex software
systems using G-Nets formalism.

3. G-Nets Notations. G-Nets formalism is an object based high level Petri Nets intro-
duced by [3], which extensively adopts object oriented structuring into Petri Nets. The
intention is to profit from the strengths of both approaches. Petri nets offer a clean formal-
ism for formal specification and verification of software, whereas object orientation offers
formalism for abstraction, encapsulation and modular design [1]. As mentioned earlier,

4288 E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

a G-Nets specification consists of a set of independent G-Nets modules representing the
structure of a software system [3,27].

Structurally, a G-Net is composed of two parts: a special place called Generic Switch
Place (GSP) and an Internal Structure (IS). The GSP provides the abstraction of the
module. It contains the declaration of all G-Net attributes and methods that serve as
an interface between the G-Net and the rest of the system. The Internal Structure (IS)
is the hidden part of the G-Net. It represents the detailed design of the G-Net. The
notation used for IS specification is an extended Petri Net notation. More precisely,
G-Nets places represent computational primitives, and transitions with arcs represent
connections among the primitives.

In a G-Net module, there exist three special kinds of places: Initial places, Goal places
and Instantiated Switch Place (ISP). Firstly, Initial places are used to deposit new tokens
inside a G-Net, denoting a new activation of some of its methods. Each method has its
initial place defined in GSP place of the G-Net. Secondly, Goal places are used to indicate
the termination of the methods. The presence of tokens inside a goal place is interpreted
as results of the associated active method. Finally, ISP places are the element used to
invoke methods in the same or in other G-Nets. An ISP place is a tuple (G-Net_name,
mtd), where G-Net_name is the invoked G-Net and mtd is the specified method. When a
token is deposited in an ISP place, the specified method in the invoked G-Net is activated
by sending a token to its initial place. When the invoked G-Net terminates its activity,
the resulting token is sent back to the invoker G-Net through the same ISP place.

The depth of recursion and the hierarchy of method calls are dynamically known due
to the token structure in the G-Nets formalism. A token is defined as a triple (seq, sc,
msg), where seq is called propagation sequence, sc is called the status color, and msg is
called the message of the token. The propagation sequence (seq) of a token carries the
history of G-Nets that have been traversed. The status color (sc) has two possible values
(before or after), depending on whether the primitive action at the place is taken or not.
The message field (msg) of a token is a list of application values. A formal definition of
G-Nets can be found in [3].

The graphical notation for G-Nets is shown in Figure 1, and the method calls mechanism
in G-Nets is illustrated in Figure 2.

GSP(GNer_name) [<artr;l:-ute_name>= {<tvpes] J

=method neme== {[=p;, . p=](<nitPls=)=golPLs=)}

I8

OTHER ELEMENTS OF,
THE INTERNAL
¢ STRUCTURE

PLACE

TRANSITION GOAL PLACE

ISPPLACE

FIGURE 1. Notations used to represent a G-Net

4. Transformation from G-Nets to PrT-Nets. G-Nets still lack a formal analyzer
tool that allows proving properties about the system design. In order to overcome this
limitation, a formal transformation technique has been proposed in [3]. This technique

VERIFICATION OF G-NETS MODELS 4289

.
<5PI B > [Bu‘(cadb—‘[(BG)BG_end)} @g;&jé:\ returnPrice ={[1 RP)(:Rp_enﬂ

ackPrice ={[|(AP)(AP_snd)} - sellGoods ={[]'SG‘- (8G_end)}

ot

-~

e s
RP

B
il -.-; ﬁ'\ @ er zer.u?".Pz oy (calculate_
price goods
t6
.‘l‘® é
a éﬂ_ﬂnd end SG_end

@ Method call
2: Method activation
@: Resulting token

s\

FIGURE 2. Invocation mechanism: buyer and seller G-Nets

@ =
P
a) The transformation of b) The transformation of a
a regular place transition

Pf associated to
Initial places of the
mvoked method

Pl associated to
Goal places of the
invoked method

c) The transformation of an ISP place

FI1GURE 3. Transformation technique

translates a G-Nets specification to a set of PrT-Nets models, where each PrT-Nets model
corresponds to a method in the G-Nets specification. This transformation aims at pro-
viding a basis for adapting PrT-Nets analysis techniques for use with G-Nets.

The transformation algorithm accepts a G-Nets specification and a method as input,
and produces a semantically equivalent PrT-Nets model corresponding to the method as
output. The basic idea of the transformation technique is illustrated in Figure 3.

The idea behind the transformation can be described as follows.

1. A regular place (including initial and goal places) can be transformed to PrT-Nets
representation shown in Figure 3(a). The PrT-Nets transition represents the com-
putational primitive associated to the G-Nets place. The input and output places

4290 E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

(Pf and P1) of this transition simulate the semantics of status color of the G-Nets
token.

2. A transition in G-Nets can also be easily transformed to PrT-Nets notation as shown
in Figure 3(b).

3. An ISP place denotes a G-Nets invocation. The transformation of an ISP place is
shown in Figure 3(c), which represents the invocation interface between the G-Net
containing the ISP place and the invoked G-Net in Prt-Nets model.

4. The PrT-Nets representation of the invoked (G-Net, mtd) is also created in the same
way, and so forth recursively.

A formal presentation of the technique and associated proofs can be found in [28]. We
note that the transformation in this approach is performed manually. In Section 7, we
propose our graph transformation approach to perform the transformation automatically.

5. AToM?® and Graph Grammars. AToM? [7] is a visual tool for meta-modeling and
model transformations. Being implemented in Python [29], AToM? is able to run without
any change on all platforms for which an interpreter for Python is available.

By means of meta-modeling, we can describe or model the different kinds of formalisms
needed in the specification and design of systems. The AToM? meta-layer allows a high-
level description of models using Entity Relationship (ER) formalism or UML Class Dia-
gram formalism extended with the ability to express constraints. Based on these descrip-
tions, AToM? can automatically generate tools to manipulate (create and edit) models in
the formalisms of interest [5].

AToM?’s capabilities are not restricted to these manipulations. AToM? also supports
graph transformation, which uses graph grammars to visually guide the procedure of
model transformation. Model transformation refers to the automatic process of convert-
ing, translating or modifying a model of a given formalism into another model that might
or might not be in the same formalism.

Graph grammar [6] is a generalization of Chomsky grammar for graphs. It is a formalism
in which the transformation of graph structures can be modeled and studied. The main
idea of graph transformation is the rule-based modification of graphs as shown in Figure
4.

Host Graph 1 LHS " l RHS ! Host Graph

FIGURE 4. Rule-based modification of graphs

Graph grammars are composed of production rules, each having graphs in their left
and right hand sides (LHS and RHS). In the transformation process, rules are evaluated
against an input graph, called the host graph. If a matching is found between the LHS
of a rule and a subgraph of the host graph, then the rule can be applied. When a rule
is applied, the matching subgraph of the host graph is replaced by the RHS of the rule.
Rules can have applicability conditions, as well as actions to be performed when the
rule is applied. Also, rules are ordered according to a priority assigned by the users and
are checked from the higher priority to the lower priority. After a rule matching and

VERIFICATION OF G-NETS MODELS 4291

subsequent application, the graph transformation system starts again the search. The
graph grammar execution ends when no more matching rules are found.

In the next sections, we will discuss how we use AToM? to create our formal framework
for the specification and analysis of G-Nets models.

6. Meta-Modeling of G-Nets and PrT-Nets. In this section, we will use the meta-
modeling tool AToM? to define two meta-models, one for G-Nets formalism and the
other for PrT-Nets formalism. To define a formalism, one has to provide abstract syntax
(denoting constructs of the formalism, their attributes, relationships and constraints) as
well as concrete graphical syntax information (the appearance of constructs, relationships,
and possible graphical constraints in the visual tool). The meta-formalism used in our
work is the UML Class Diagram and the constraints are expressed in Python code.

Following the description of G-Nets formalism given in Section 3, we have proposed
meta-model G-Nets with four Classes and five Associations as shown in Figure 5.

The class “GNetsGSP” represents Generic Switch Place (GSP) and contains name
attribute which must be unique. It has also two lists for G-Nets Attributes (AS) and
G-Nets methods (MS). The class “GNetsIS” represents Internal Structure (IS). The third
class “GNetsPlace” describes places; it has a name, a type, an invokedGNets, a us-
ingMethod and tokens attributes. The type attribute indicates the type of the place

GNetsPlace
GNetsGSP
. Attributes:
Atiributes: GNets_hasPlacelnside - name N Siring
- name:: String - tvoe - Enum
- AS:: List Constraints: 7 “p"h:j?ﬂu{“ s - Siri
- MS:: List = addInnerPlace - invokedUiets : String
Multiplicities: Multiplicities:) ”-“_“9’?_1“3‘,"1- String
- - o E . - tokens: List

- To GNetsRealisation: 1 1o 1 - To GNetsPlace : 1 to 1 Constramts:

- From GNetsIS: 1 to 1 § "

> TypeOfPlace
Multiplicites
-To GNetsPR2Tr: 0 to N
- From GNetsTr2P: 0 to N
- From GNets_hasPlacelnside: 1 to 1

Multiplicities:
-To GNetsIS 1 1 1o 1
- From GNetsGSP: 1 1o 1

Attributes: Attributes:

\ i\’;JICh'lSQT_'lF_Jl ion:: String - arcInscription:: String
) - ultiplicities: Multiplicities:
GNetsIS - To GNetsTransition: | to 1 e

- To GNetsPlace : 1 to 1
- From GNetsTransition: 1 to 1

Constmints: - From GNetsPlace : 1 to 1
= initializeObjects

> movelnnerPlacesDRAG

> movelnnerPlacesMOVE
Multiplicities:

- From GNetsRealisation: 1 to 1
- To GNets_hasPlacelnside: 0 toN GNetsTransition

T'o GNets_hasTransitionInside: 0 to N Attributes:

- name:: String

- condition:: String

Multiplicities:

- From GNetsPL2Tr: 0 to N

- ToGNetsTr2PL: O to N

- From GNets_hasTransitionInside: 1 to 1

GMNets_hasTransitionInside

Constraints:

= addInnerTransiticn
Multiplicities:

- To GNetsTransition: 1 to 1
- From GNetsIS: 1 o 1

FIGURE 5. G-Nets meta-model

4292 E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

fio s olx

GlNets_META

i @.. =4 p | — : -
“@# Edit| Help ENEkESPI BMesls | BNetsPlace ENE\&TlansllnnJ Cony toPrT Hets

GSF
Producer WP ={[HIr PR (GP1}

Editing GNetsPlace &l

name PR

= NomaFace

¢ GoaFlace

wa
-} T
SR
=
FA
i
&
B
“ 9
@
3

) hd
01| | Iz

Editing Nonames” (modfies) [Edfiting transt Honamed’ (not modified) in file Nonamer”

FIGURE 6. Generated tool for G-Nets

(Normal place, Goal place or Instantiated Switch Place (ISP)). The invokedGNets and
usingMethod attributes are used only if the type of the place is ISP. The last class “GNet-
sTransition” represents transitions. It contains a name attribute which must be unique
and a TransitionCondition attribute which specifies the enabling condition of the tran-
sition. GSP and IS are related by means of “GNetsRealisation” association which con-
nects each GSP to its realization in IS. The two associations “GNest_hasPlacelnside”
and “GNest_hasTransitionInside” are used to specify places and transitions (respectively)
which are included in a given IS. Finally, “GNetsPI2Tr” and “GNetsTr2P[l’ represent
input arcs and output arcs between places and transitions.

We have also specified the visual representation of G-Nets entities according to the
notation presented in Figure 1. To fully define our meta-model, we have added graphical
constraints which are used to assure a correct appearance of G-Nets models. For exam-
ple, “TypeOfPlace”’ constraint is used to give appropriate visual representation of places
according to their types.

Given our meta-model, we have used AToM? tool to generate a visual modeling envi-
ronment for G-Nets models. The generated G-Nets modeling tool and the dialog box to
edit a place are shown in Figure 6. The user interface buttons allow the user to create
the entities defined in the meta-model.

We have also defined a meta-model for PrT-Nets formalism and we have also used
AToM? tool to generate a visual modeling tool. A PrT-Nets model consists of places,
transitions, and arcs from places to transitions and from transitions to places. To meta-
model PrT-Nets formalism, we have proposed two classes: “PrTNetsPlace ” class to
describe places and “PrTNetsTransition” to describe transitions. These classes are related
with two associations named “InputArc” and “QutputArc’ which represent input arcs and
output arcs as shown in the left of Figure 7. The generated tool is shown in the right of
Figure 7.

Since AToM? is a visual tool for multi-formalism modeling, we can show in a user
interface of AToM? the two generated toolbars at the same time. Additionally, we have
added a button in G-Nets toolbar that executes the graph grammar which transforms
the G-Nets specification into a PrT-Nets model. Another button is also added in PrT-
Nets toolbar that executes another graph grammar to generate PROD description of the

VERIFICATION OF G-NETS MODELS 4293

AToM3 vl.3 using: Pribets_META
PrTNetsPlace Ll

Attributes:

Pritlels_META

£di| Hob| PriMssPazs| RiTNsteTransiion| Ben PRODDsscipton|

Multiplicities: 1=
- To inputAre: O to N
- From outputAre: 0 to N g Editing PriN elsPlace. _._m

nae Flace

T InputAre] [OutputArc iy b ||
AtribuesT o |
:: S kA =
Dol J
- From PrTNetsPlace: 1 0 1 sPlace © 1101 —
- . - - - - 1T ok i
- To PrTNeTransition: 1 1o 1 From PrTMetsTransition: 1 to 1 i 228
0k | el
. Transiten
PrTNetsTransition
Attributes:
- name:: String
- condition:: String
Multiplicities:
- From inputArc: 0 to N
- To outputAre: 0 to N | d

Y >

Eiliting Monamed' [madifed) [Eiting transt. Nonamed” (ot modified) in il Tomarm|

FIiGURE 7. PrT-Nets meta-model and the generated tool

resulted PrT-Nets models. In the next section, we will present these graph grammars and
their use in AToM?3.

7. Formal Framework for G-Nets. The framework which we have obtained in the
previous section by means of meta-modeling only allows the user to create, load and save
models, as well as verify that they are syntactically correct. In this section, we improve
these capabilities by means of graph grammar. More precisely, we have defined two graph
grammars. The first one translates G-Nets specifications to semantically equivalent PrT-
Nets models for further analysis. In order to exploit the PROD analyzer, the second graph
grammar generates the equivalent PROD description of the resulted PrT-Nets models (see
Figure 8).

As we mentioned earlier, graph transformation system iteratively applies a list of rules
to the host graph. In the LHS of rules, the attributes of the nodes must be provided
with attribute values which will be compared with the nodes attributes of the host graph
during the matching process. These attributes can be set to (ANY) or have specific
values. In order to specify the mapping between LHS and RHS, nodes in both LHS and

G-Nets PrT-Nets
Meta-model Meta-model
Generate Toal (G-Net, Method_n) Genersate Tool
A 4 (G-Net, Method 2) v
(G-Net, Method_1)
|
| Code
G:Nets- Transformation PrT-Nets Generation PROD
Specification [—— @ ————— » Models |F————— P Deserintions
Using I GG Using esertp
24 GG

FIGURE 8. The proposed framework

4294 E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

RHS are identified by means of labels (numbers). If a node label appears in the LHS of a
rule, but not in the RHS, then the node is deleted when the rule is applied. Conversely,
if a node label appears in the RHS but not in the LHS, then the node is created when
the rule is applied. Finally, if a node label appears both in the LHS and in the RHS of
a rule, the node is not deleted. If a node is created or maintained by a rule, we must
specify in the RHS the attributes’ values after the rule application. In AToM?, there are
several possibilities. If the node label is already present in the LHS, the attribute value
can be copied ((COPIED)). We also have the option to give it a specific value or assign
it a Python program to calculate the value ((SPECIFIED)), possibly using the value
of other attributes.

In the following subsections, we use AToM? to describe the two graph grammars for
our framework.

7.1. GG: transforming a G-Nets specification into a PrT-Nets model. We have
named this graph grammar G-Net2PrT-Nets. During the execution of GNet2PrT-Nets,
the model is indeed a blend of G-Nets and PrT-Nets. However, when the graph grammar
execution finishes, the resulting model is entirely a PrT-Nets model.

G-Net2PrT-Nets graph grammar has an initial action which creates global variables
needed in the transformation process. List_Visited_GNets_Names is a list used to keep the
names of transformed G-Nets. Each G-Net in List_Visited_G Nets_Names is invoked using a
method specified in the same range in List_Visited_Mtd_Names list. Current_GNets_Name
and Current_Mtd_Name variables are used to specify the name of the G-Net and the name
of the method under transformation. Finally, List_Init_Place is a list which contains the
list of initial places for the method under transformation.

To start transformation, the initial action prompts the user to select both a G-Net
and one of its methods from G-Nets specification. The selected G-Net name and method
are kept in Current_GNets_Name and Current_Mtd_Name (respectively). To transform
a selected pair (Current_GNets_Name, Current_Mtd_Name) into an equivalent model in
PrT-Nets model using our G-Net2PrT-Nets grammar, we have proposed twenty-one rules
which will be applied in ascending order. Note that each rule has a priority. The proposed
rules are shown in Figure 9 and Figure 10, and described as follows.

Rules 1, 2, 3, 4, 5 and 6: TrnsfArc_... (Priority resp. 1, 2, 8, 4, 5 and 6). One of
these rules is applied to replacing input arc or output arc of regular (normal or goal) places
in G-Nets model with its equivalent in PrT-Nets model. To apply these rules, at least
one of arc borders (place or transition) in G-Nets model must already be transformed.
The non processed border of the arc will be transformed with these rules. For example,
in the rule No. 1 (TrnsfArc_VisitedPlace2VisitedTrans), both place and transition are
previously processed. When this rule is applied, it removes the output arc of a G-Net
place and creates an output arc in the PrT-Nets segment associated with G-Nets place
to the PrT-Nets segment associated with G-Nets transition.

Rules 7, 8, 9 and 10: TrnsfArc_... (Priority resp. 7, 8, 9 and 10). These rules are
similar to the previous rules, but they are applied to replacing input arc or output arc of
ISP places in G-Nets model.

Rules 11, 12 and 13: TrnsfArc_... (Priority resp. 11, 12 and 13). Because multiple
ISPs places corresponding to the same pair (G-Net, Method) may be used in the G-Nets
specification, these rules are applied to ensuring that a pair (G-Net, Method) is only trans-
lated once. For example, the rule No. 11 (TrnsfArc_Visited Trans2CalledISP) is applied
when the invoked (G-Net. Method) in the ISP place was previously transformed. A pair (G-
Net. Method) has already transformed if the G-Net name is in List_Visited_GNets_Names
list and the method name is in List_Visited_Mtd_Names list. When applied, this rule

VERIFICATION OF G-NETS MODELS 4295

locates the transformed ISP place which contains the same pair (G-Net. Method). Then,
it removes the input arc of ISP place in G-Nets model and creates an input arc in the
PrT-Nets segment associated with G-Nets transition to the Pr'T-Nets segment associated
with the transformed ISP place.

Rule 14: Gen_StartOfInvocation (Priorityl/) is applied to relating the invocation
interface created for the ISP place in the rule No. 18 to the PrT-Nets segment associated
with the initial places of invoked (G-Net.Method).

Rule 15: Trnsf InitialPlace (Priority15) is applied to locating the G-Net to be trans-
formed, i.e. its name is equal to Current_.GNets_Name value. Then, it associates with
each initial place of the G-Net the equivalent PrT-Nets segment. We note that the names
of all initial places are in List_Init_Place list.

Rule 16: Gen_EndOfInvocation (Priorityl6) is applied to relating the PrT-Nets seg-
ment associated with goal places of the invoked (G-Net. Method) to the invocation interface
created for the ISP place in the rule No. 18.

Rule 17: GetlnitialPlaces (Priority17) is applied to locating the G-Net whose name
is equal to Current_GNets_Name value. Then, get the list of initial places of the method
whose name is equal to Current_Mtd_Name value in List_Init_Place list.

Rule 18: Genlnterface-ISP2GNets (Priority18) is applied to generating the invocation
interface in PrT-Nets model which mimics the invocation mechanism in G-Nets (see Figure
3(c)). More precisely, this rule creates a PrT-Nets segment which interfaces the equivalent
segment in PrT-Nets model of G-Net which contains the ISP place to the equivalent
segment in PrT-Nets model of invoked G-Net. Furthermore, this rule terminates with
action expressed in Python code. This action sets Current_GNets_Name variable to the
invoked G-Net name and Current_Mtd_Name variable to the method name used in the
ISP place. With these new values, the G-Net2PrT-Nets graph grammar performs the
transformation of the invoked G-Net and relates their initial place and goal place when
applying rules No. 14 and No. 16 respectively.

Rule 19: DeleteGNetsPlace (Priority19) is applied to removing all places in the G-
Nets model.

Rule 20: DeleteGNetsTransition (Priority20) is applied to removing all transitions in
the G-Nets model.

Rule 21: DeleteGNetsGSP (Priority21) is applied to removing all GSP and IS in the
G-Nets specification.

G-Net2PrT-Nets graph grammar also has a final action which erases the global vari-
ables.

7.2. GG: generating PROD description. We have named the second graph grammar
PrT-Nets2PROD. PrT-Nets2PROD grammar has an initial action which opens the file
where the PROD description will be generated. Also, it decorates all transition and
place elements in the model with temporary attributes which will be used in the enabling
conditions to apply the rules.

In transition elements, we use two attributes: Current and Visited. The Current at-
tribute is used to identify the transition in the model whose code has to be generated,
whereas the Visited attribute is used to indicate whether code for the transition has been
already generated. In place elements, we use three attributes: Visited, Visited_Input and
Visited_Output. The Visited attribute is used to identify the place whose code has been
already generated. The Visited_Input attribute is used to indicate whether this place is
processed as input place, whereas the Visited_Output attribute is used to indicate if this
place is processed as output place in the generation of code for a given transition.

4296 E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

1. 'I‘msff\rr \r|3|t{‘dPlane2'nsnedTmns. Prin.1

7.- 'ﬁ nsfAre \rLelledTramzhsdeQP Prio.7

SPECTFIED |

;PH D'I!-'DI.

B4 v 4
o) l—{mﬁj—{cnplm 1
s .il.l IFIED

COPIED
« COPIEDR

! {
R -
__________ <COPIED!
5.- TrosfAre Place2Visited Trans. Prio.5 : I
_LHs RHS . : |
s \". s ™ I SHECIFOD |
| I/)‘ I SPECIFIETL -@ | : |
| NN ol <SPECIFIED i iy | |
| loml 12 & 5 I |
= SPECIFIED: b =
I Ay ™ O SN | i H I et
P [<COMEDR: _pprrmD. L TRANY {.\N'Ir':g 1 = COPIED <C[II‘IFDJ
| | S I : -
| -5 AN SPECIFIE
\ =ANY= b]
~— S FIET .
v <corn. | QGI‘H-‘.D

Ficure 9. GG: Transform G-Nets specification into PrT-Nets, Rules 1-12

VERIFICATION OF G-NETS MODELS 4297

13- 'T‘rnsLtrr CalledISP2Trans. Prio.13

__________ Eﬁ;&
B R O ot
=y ¥ - I-c'::': [t e
ZANY= <ANY= I ZCOPMELR= SCOPIEDE

9
<COPED < SMECIFIED:-

14- Gen_StartOfInvocation. Prio. 14
LHS RHS

- - e

; s
i ! 2 1 2 3 l1|
[T —— < P
: | :~1p|:||||:|1. Q_(::]Plﬂb - @{ZIIPIHI: |
Do ARECTFIE (I l
ol m—
. . < SPECIFIEL g A SPECIFIED
FE.:JN]I.- | 2= =8P - TR .I;_q| CIFIED: !
] : | v 7 :
|
Yo SPECIFIEI I
b x‘l CIFIET |
I
13 |
I-‘;,_. Q : l qp[-u:u-‘lub |
- PIED=| | @ ~————————————————— — ——— -
: 19- DeleteGNetsPlace. Prio.19
i IHE RHE
i L T |
P ————" =
PR I O - | |
) | 1 =ANY> | |
B Y
| | S : e —————— - e ———— -
| | A e ts Transit
: : I | i 20- DeleteGNetsTransition. Prio.20
| p | X AT : : === —_————— |
| Q | I s % | =, == | |
I AN | &[Hb 9 PECIFIED i g
| - | <SPECTIFIED | P M)
| I b | | 21- DeleteGNetsGSP. Prio.21
| | . | LHS RHS
il | SSPECIFIED |l ——————— \ A —————— N
e e o ———— —— —— J ir | | |
16- Gen_EndOfInvocation. Prio.16 L) I : [
| |
- -~ 1 =
i | Ll : | :
| | I | I |
| [I 1 P |
| [[| | | | | |
| [TCOPED = | : I P |
| (| < I = | i | | | |
| [& Lo ;o }
| : : Q‘umna : | T ——_————————— —_———————
| = < COPIED = !
| (| E I
| (| 1
| [I i
| ANY> Il I
| [| :
[R
: I 1@ 12, I
| AR COPIED = I :
1

FicUure 10. GG: Transform G-Nets specification into PrT-Nets, Rules 13-21

4298 E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

In PrT-Nets2PROD graph grammar, we have proposed six rules which will be applied
in ascending order by the rewriting system until no more rules are applicable. We are
concerned here by code generation, so none of these rules will change the input PrT-Nets
model. These rules are shown in Figure 11 and described as follows.

Rule 1: genPlaceDescription (Priority 1) is applied to locating a place not previously
processed (Visited = = 0), and to generating the corresponding PROD description.

Rule 2: genListOfInputPlace (Priority 2) is applied to locating a place (not previously
processed) which is related to current transition with an input arc, and to generating the
corresponding PROD description.

Rule 3: genListOfOutputPlace (Priority 3) is applied to locating a place (not previ-
ously processed) which is related to current transition with output arc, and to generating
the corresponding PROD description.

Rule 4: EndOfTransDescription (Priority 4) is applied to generating the appropriate
PROD syntax depending on the condition of the transition, and to marking the transition
as visited (Visited = 1).

Rule 5: InitialisePlaceFlags (Priority 5) is applied to locating and initialise flags
attributes in places for processing the next transition.

Rule 6: SelectTransToDescribe (Priority 6) is applied to selecting a PrT-Nets transi-
tion that is not previously processed to generate its equivalent PROD syntax.

PrT-Nets2PROD graph grammar also has a final action which erases the temporary
attributes from the entities and closes the output file.

L.- genPlace Description. Prio. 1 3.- genListOfOutputPlace. Prio.3 5.- InitialisePlaceFlags. Prio.5
LHS RHS LHE RHS LHS RHS
—_———— —_—_———_—— ememem e e e - == —_————
I Yo K i N Ay — v N
| O I [| —ANYe || —-COPIED: || I '
| “lany, |zm] “—£COPIED l [I ==: 3l veo o ANY= ::c=| £COPED> I
| I | =ANY= I . |1 vom--1 I wm-o
| [| | 1 - COPIEDS | | :x i [. }
\ [N | |2 [|y Yot _'J v
__________ - I i | I T ——— —_——_——
| NY: |1

1.- penListOfInputPlace. Prio.2 N LANY> \'QLUI'IHB | 6.~ SelectTransToDescribe. Prio.6
LHS RHS L Meeemn g Mol s LHS RHS
"y Vo . - : N e b
(‘l » | 4.- EndOfTransDescription. Prio.d | —ANY | m—COPIED= |
AN I SCOPIED> | LHS RHS | G--o I -1 |
3 vme-olgd 3 V- 1 I’]_ _____ | IIT ______ “xl __¥==0 s =0 .
<ANY= | < COPIED: |) —tNY> | S——COPIED: |
| | C==1 | C=0
2 N . .
2 anys |1 <COPIED> | - Y070 P B
i ;

c-1
5 Va0 F S ¥=a -

FiGURE 11. GG: Generate PROD description from a PrT-Nets model

8. Case Study: Producer/Consumer Problem. The Producer/Consumer problem
is a well known problem. It consists of the synchronization between one or more producers
and one or more consumers. In this example, we assume that one producer is capable of
producing n items and one consumer is able to consume one item at a time.

Figure 12 presents a G-Nets specification of Producer/Consumer problem created in our
framework. For G-Net Producer, one method is defined and named mp (method produce).
The function of the method mp is to produce n items to be consumed. When G-Net
Producer is invoked, one token together with a field n (n expressing the number of items
to be produced) is deposited in place PR (producer ready). The action associated with this
place simply decrements the field n. If n < 0, transition pr (producer resumes) fires and
the invocation of G-Net Producer returns when the GP (goal place) is reached. Otherwise,
transition rs (request status consumer) fires and the token reaches isp (Consumer.ms), and

VERIFICATION OF G-NETS MODELS 4299

AToM3 v0.3 using: GNets_META + PriNets_META

| GNets_ META | Prtilets_META |
Edit| Help ENelsESF‘i GMatsl5 ENelsF\a:EI ENelsTransllmr’\I Carw. lnF‘lT-NEtsI Edit| Help F‘lTNelsF\ace] FrTNEtsTlar’\sllmr’\| Gen PRODDescri iption
GSP |
GSP Consumer ms ={[] (1N} (GPS)} 1
Producer rup ={ [n: imteger mummbex of items] (PR) (GPY} me ={ [iter: data] (TC) (GPCH} |
<] | 2
producer_Consumer_MDL py' (not modified) Editing transf. Monamed' (not modified) in file Monamed'

FIGURE 12. Producer/Consumer problem created in our framework

the G-Net Consumer is invoked using method ms (method status). If G-Net Consumer is
not ready, transition nr (consumer not ready) fires, and the G-Net Consumer is invoked
again. Otherwise, the consumer is ready and transition cr (consumer ready) fires. After
the firing of cr, a token is deposited in isp (Consumer.mc) and G-Net Consumer is invoked
with the method mec (method consume) together with the item to be consumed. When
the token is returned from G-Net Consumer, transition co (consumed) fires and a token
is put in place PR again. In the G-Net Consumer, eight places are defined: IN (Inquire
net Consumer), RC (ready to consume), NotRC (not ready to consume), TC (trigger
consumer), CO (consuming), WP (waiting producer), GPS (end status) and GPC (item
accepted). These places are related to four transitions as shown in Figure 12. The defined
transitions are: na (not available), sa (send acknowledge), sc (start consuming) and ac
(already consumed).

In order to analyze the G-Nets specification of Producer/Consumer problem, we have
to transform this specification into its equivalent PrT-Nets model. To realize this trans-
formation in our framework, we have just to click on the “Conv.toPrT-Nets” button in
the user interface that executes G-Net2PrT-Nets graph grammar defined in the previous
section. The resulted PrT-Nets model of the automatic transformation is shown in Figure
13.

To perform the analysis of the resulted PrT-Nets model using PROD analyzer, we have
to translate it into its equivalent PROD description. To generate PROD description in our
framework, we have to click on the “Gen.PRODDescription” button in the user interface.
This button executes PrT-Nets2PROD graph grammar defined in the previous section.
The automatic generated file which contains the PROD description of Producer/Consumer
problem is shown in Figure 14.

9. Conclusion. In this paper, we have presented a formal framework based on the com-
bined use of Meta-modeling and Graph Transformation Grammars for the specification

E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

4300

paLiEuOp, a1 Ul [pappow jou)

PaLEUOR, JSUE} mc:__“_m_ (paypow jou) Adgp 18 14d - sieseuab]

['v

<a Tagz

= ‘hase

=a TaE

124D

=E hase

DFON L

< f(has) Loy T-heschess

=1 4{rn L smenoybasshass

E vt
=T+ nﬂkys..l

=
=
F

=1
s5dn ﬁ @
\\ o L AQEDZE.\ ﬂ
B has: L —
< % = 35 fn e . s dst g .
Ll gowdst
" pour st g g dsy
<1 “(has) o Thas=hass -

/ =g s aﬂdﬂi Jowdsy
TARON TH]
OO

=11 fhass
a ‘bas — L3
nw NI = ‘has= .
T = =Hi=
=a has= = o = [+1=l _
< (T T ranmen, e —bass T
o Has=
YU
=a/bas=

<1 s = s

1 page

BE

=
[vondioseqqnugueg [uonsuer sy [eeigeenL _u_mI 1P3 [t igorauny [uonsuerseng [soedseng | sieng | dsosenn _n__mI [E g

_ METC | W13 =eNg | ~E

Y1IW S18N1d + VLIW SI8ND :Suisn £ oA EWol Y

FIGURE 13. The resulted PrT-Nets

VERIFICATION OF G-NETS MODELS 4301

B pROD Description - Bloc-notes B PROD Description - Blec-notes I PROD. Description - Bloc-notes
Fichier Edition Format Affichage 7 Fichier Edition Format Affichage 7
#trans T_ispomsl |
in Jspomsf: <.seq, n.>; ispomss: <.w,i.3;) in j GPsf: <.seq, n,r.s; }
out { ispms2: <.seq, n.>; } out { GPSL: <.seq, n,r.>;
ispumss: <.ow, i=fsl.>; } gate ;
gate ; #endtr
#endtr #trans T_GPC
0 #trans T 1sp_:nsz in GRCF: <.seq, n.>;
#place ispomcl in Mg_JnsZ £ saq-seq[consuner IN, i), nozp) out { GPCL: <.seq, n.>;
#place isp_ms2 out seq ¥ gate
#place isp_mssS gate } #endtr
#place isp_ms3 #endtr #rrans T_o20
#place I #trans T_isp_ms3 in cof: <.seq, e.>;
#place IML in 1sp_ms3: <.seq, n,r. ¥ out { COl: <.58Q, E&.>}
#place NoTRCT out 1sp_msl <. 5EQ=5eg- Lnsr(seq) nre=; } gate ;
#place NOTRCL gate ; #endtr
#place RCP #endtr #Trans T_TC
#place RCL #rans T_ 1sn_m in TCF: <.seq, n.>: g
#place wef in GPS1l: <.seg, m,r.> } out { TCl: <.seq, no>)
Fplace wel out { fsp_me3: <. eq, n,r.53) Gate ;
#place Gpsf gate ; #endtr
#place GRSl #endtr #trans T isp_mcl
#place GRCP #rans T_IN in 1 ispmef: < seq, n.oap ispames: <uw, i,
#place GPC1 n § INF: <.s5eq, nez; ; out isp_mc2: <.s5eq, n.>; }
#place cof out INL: <.seq, n.>; ﬁsp_lncs < imisl.>; }
#place OOl gate ; gate
#place TCF #endir #ondtr
#place TC1 #trans na #trans T_isp_mc2
#place isp_mc? in IMl: <.seq, n.>; WNotRCl: <.seq, e.>; } in isp_mc2: <. seqeseqiConsumer,TC, 13, n
#place isp_mcs out NothCf: <.seq, e.»; } out { Tcf: <.seq, m.>; }
#place ispomcs [GPSF: <.seq, n, ack.»; } gate ;
gate ack = F; Pendtr
#Trans T_PR #endtr #trans T_1sp_mc3
in é PRF: <.580, n.>; ; #Trans sa in E is5p_mc3: <. seq }
out { PRL: <.S@q, n.>; in i IML: «.5€q, n.>; m::t <.5eq, €.>; } out { ispmcl: <. seq-seq Lnsr(seq) nox; ¥
gate ; out Notncf <. 5eq, 8.3 } QATE
#endTe wPf: <. S, } #Endtr
#Trans rs Grsf: <. seq, n. "ack.>; } #rrans T_isp_mecd
in é PRL: <. seq, } gate ack = T; in GPCL: <.5eq, n.>; }
out isp_msf <. seq.. "n. =} #endtr out { ispmc3: <.seq, n > ¥
gate ne=0; #rans T_NOTRC gate ;
#endtr in NotRCT: <.5eq, &.>; § #endtr
#trans pr out NOTRC1: <.s58q, &.>;
in é PRL: «.5@q, n.>; } gate ;
out { GPF: ; } #endtr
gate n<d; #trans ac
#endtr in HoTRC1: <.seq, e.»; Col: <.seq, e.>; }
#trans T_GP out RCF: «<.seq, e.>; }
in GPf: ; gate ;
out { GPL: ; #endtr
gate ; #trans T_RC
#endtr in 1 RCF: «.seq, e.»; %
#Trans co out { RCL: <.seq, &>}
in é isp_mel: <.seq, n.>: } gate |
out { PRF: <.seq, n.>; } #endrr
gate n = n=1; #rans T_wP
#endtr in wef: <.seq, &.>; ;
#Lrans ne out WEL: < 5, &
in i ispmsl: <.seq. n,r.z; b gate ;
out { ispmsf: <.seq, n.>»; } #endtr
gate r == nak; #rans sc
#endtr in WPL: <.s5e2q, 8.3} Tcl <.58q, N> }
#trans cr out { GRPCF: <.seq, ret.»; }
in isp_msl: <.seq, n,r.>; } cof: <.seq, e }
out ispmcf: <.seq, n.»; te
gate r == ack; #endir
#endir #irans T_GPS

FIGURE 14. Generated PROD description of Producer/Consumer problem

and verification of software information systems using G-Nets formalism. With meta-
modeling, we have defined the syntactic aspect of both G-Nets and PrT-Nets formalisms.
Then, we have used AToM? to generate their visual modeling environment. By means of
graph grammar, we have extended the capabilities of our framework to transform G-Nets
specification into their equivalent PrT-Nets Models and to generate the PROD description
of the resulted PrT-Nets Models for analysis purpose. For the future work, we plan to
include the verification phase using PROD on a more complicated example and to provide
our tool by giving a feedback of the results (interpreting the results) of this verification
in the initial G-Nets model. This work is an important step in a large project aiming at
using graph transformation to formalize UML diagrams using G-Nets. We have chosen
G-Nets to formalize UML because with G-Nets formalism we can specify several aspects
of system at a high level of abstraction and in Object Oriented modular paradigm.

REFERENCES

[1] R. Fairley, Software Engineering Concepts, MacGraw-Hill, New York, NJ, USA.

[2] H. J. Genrich and K. Lautenbach, System modelling with high-level Petri nets, Proc. of Theoretical
Computer Science, vol.13, no.1, pp.109-135, 1981.

[3] Y. Deng, S. K. Chang, J. De Figueired and A. Psrkusich, Integrating software engineering methods
and Petri nets for the specification and prototyping of complex information systems, Proc. of the
14th International Conference on Application and Theory of Petri Nets, Chicago, pp-206-223, 1993.

[4] PROD Tool, http://www.tcs.hut.fi/Software/prod/.

4302 E. KERKOUCHE, A. CHAOUI, K. KHALFAOUI AND R. ELMANSOURI

[5] J. De Lara and H. Vangheluwe, Meta-modelling and graph grammars for multi-paradigm modelling
in AToM3, Software and Systems Modelling, vol.3, pp.194-209, 2004.

[6] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformation, World
Scientific, 1999.

[7] AToM3: A Tool for Multi-Formalism and Meta-Modelling, McGill University, Canada, http://atom3.
cs.mcgill.ca/.

[8] M. Baldassari, G. Bruno, V. Russi and R. Zompi, PROTOB a hierarchical objectoriented CASE
tool for distributed systems, Lecture Notes in Computer Science, vol.387, pp.424-445, 1989.

[9] E. Battiston and F. de Cindio, Class orientation and inheritance in modular algebraic nets, Proc. of
IEEE International Conference on Systems, Man and Cybernetics, Le Touquet, France, pp.717-723,
1993.

[10] E. Battiston, F. de Cindio and G. Mauri, OBJSA nets: A class of high-level nets having objects as
domains, Advances on Petri Nets 1988, vol.340, pp.20-43, 1988.

[11] Buchs and N. Guelfi, CO-OPN: A concurrent object oriented Petri net approach, Proc. of the 12th
International Conference on the Application and Theory of Petri Nets, Aarhus, Denmark, 1991.

[12] J. Engelfriet, G. Leih and G Rozenberg, Net-based description of parallel objectbased systems, or
POTs and POPs, in Foundations of Object-Oriented Languages, Lecture Notes in Computer Science,
J. W. de Bakker, W. P. de Roever and G. Rozenberg (eds.), Springer-Verlag, 1990.

[13] C. Lakos, Pragmatic inheritance issues for object Petri nets, Sem Maiores Indicagies, 1995.

[14] D. S. Guerrero, J. C. A de Figueiredo and A. Perkusich, An object-based modular CPN approach:
Its application to the specification of a cooperative editing environment, Concurrent Object-Oriented
Programming and Petri Nets, Advances in Petri Nets, Lecture Notes in Computer Science, pp.338-
354, 2001.

[15] GME: Generic Modelling Environment, http://www.isis.vanderbilt.edu/gme/.

[16] S. Kelly, K. Lyytinen and M. Rossi, MetaEdit+: A fully configurable multi-user and multi-tool
CASE and CAME environment, Proc. of Advanced Information System FEngineering, Berlin, 1996.

[17] EMF: Eclipse Modelling Framework, http://www.eclipse.org/emf/.

[18] GMF: Graphical Modelling Framework, http://www.eclipse.org/gmf/.

[19] PROGRES: A Graph Grammar Programming Environment, http://www-i3.informatik.rwth-aachen.
de/research/projects/progres/.

[20] GReAT: Graph Rewrite And Transformation, http://www.escherinstitute.org/Plone/tools/.

[21] FUJABA: From UML to Java and Back Again, http://www.fujaba.de/.

[22] AGG: The Attributed Graph Grammar System, http://tfs.cs.tu-berlin.de/agg/.

[23] J. De Lara and H. Vangheluwe, AToM?3: A tool for multi-formalism modelling and meta-modelling,
Proc. of Fundamental Approaches to Software Engineering, Grenoble, France, vol.2306, pp.174-188,
2002.

[24] J. De Lara and H. Vangheluwe, Computer aided multi-paradigm modelling to process petri-nets
and statecharts, Proc. of International Conference on Graph Transformations, Barcelona, vol.2505,
pp-239-253, 2002.

[25] E. Kerkouche, A. Chaoui, E. Bourennane and O. Labbani, On the use of graph transformation in the
modeling and verification of dynamic behavior in UML models, Journal of Software, vol.5, no.11,
pp.1279-1291, 2010.

[26] E. Kerkouche and A. Chaoui, A formal framework and a tool for the specification and analysis of
G-Nets models based on graph transformation, Proc. of International Conference on Distributed
Computing and Networking, India, pp.206-211, vol.5408, 2009.

[27] A. Perkusich and J. De Figueiredo, G-Nets: A Petri net based approach for logical and timing
analysis of complex software systems, Journal of Systems and Software, vol.39, pp.39-59, 1997.

[28] Y. Deng, A Unified Framework for the Modelling, Prototyping and Design of Distributed Information
Systems, Ph.D. Thesis, University of Pittsburgh, 1992.

[29] Python Programming Language, http://www.python.org.

