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ABSTRACT. This paper proposes a new model (model 1) for seismic analysis of buildings.
In this model are taken into account four lumped masses at each level and are applied,
one at each end and the two others intermediate per level, the three degrees of freedom
in the joints are considered. Also, a comparison is made with model 2 that considers
two equal lumped masses per level and applied in the free joints of the structure and with
the model 8 (classical model), which takes into account a lumped mass at each level, i.e.,
a mass per floor of all the building. About the results obtained, the model 1 is much
more economical in relation to the model 3 and the model 2 is not very secure, because it
ignores certain modal shapes that the model 1, if takes into account. Therefore, the usual
practice considering one and two lumped masses per level will not be a recommendable
solution and it is proposed to consider four lumped masses at each level and is also more
related to real conditions.

Keywords: Lumped masses, Modal analysis, Spectral analysis, Eigenvalues and eigen-
vectors, Modal participation factor, Spectral acceleration

1. Introduction. Three types of methods can be used for the seismic analysis of building
structures: simplified, static and dynamic methods. The simplified method is applicable
to regular structures with not greater height 13 m and simultaneously fulfilling all require-
ments indicated by the building regulations. The static method is applicable to buildings
whose height is less than or equal to 30 m for regular structures and irregular structures
standing less than 20 m high; these limits increase to 40 m and 30 m, respectively, for
structures sited on rocky terrain. The dynamic method consists of the same basic steps
as that for the static method, with the reservation that applicable lateral forces in floor’s
mass centre are determined from a structure’s dynamic response. Modal spectral analysis
and step-by-step analysis or calculation of responses having specific acceleration registries
can be used for the dynamic method [1-3].

In dynamic method have been made comparisons considering and neglecting shear
deformations, resulting more economical the first case and also adhering more to the real
conditions [4].

The models used are: model 3 (classical model) which takes into account a lumped mass
per level and one degree of freedom is considered at each floor (horizontal displacement
per each level) [4], and the model 2 considers two lumped masses at each level are applied
in the structure’s free nodes and the three degrees of freedom are taken into account
at free joints (horizontal displacement, vertical displacement and rotation per free node)
[5,6].

This paper proposes a new model which takes into account four equal lumped masses
per level and are applied, one at each end and the two others intermediate at each floor,
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the three degrees of freedom at the free joints are considered. Also a comparison is realized
with the model 2 considering two lumped masses per level applied at the free joints of
the structure taking into account three degrees of freedom at the free joints (horizontal
displacement, vertical displacement and rotation at each free node), and with the model
3 (classical model) that considers a lumped mass at each level considering a degree of
freedom at each floor (horizontal displacement per level). The three models take into
account the shear deformations.

2. Methodology.

2.1. Equations of motion in a structural dynamic system. Overall equations of
motion in a structural dynamic system, without including border conditions, can be writ-
ten in matrix form as follows [7-9]:

My M U1 i Cii Che [:f1 I K Kz Uy | _ | A (1)
My Moy U, Cor Cy Us Ky Ky Uz Py
where U is a vector of n x 1 generalized absolute displacements (unknowns) corresponding
to the degrees of freedom non-restricted “n”, Us is a vector of m x 1 generalized absolute

displacements (nulls or known) Correspondlng to the degrees of freedom in supports “m

M;;, Ci;, K;; are mass matrices, damping and stiffness are associated with degrees of
44 7

13 77

freedom “n” and/or “m respectlvely, P, is a vector of n x 1 representing dynamic’s
associate solicitations to degrees of freedom “n”, and P, is a vector of m X 1 representing
associate reactions (unknowns) to degrees of freedom of supports “m”.

For the case of seismic excitations, “P; = 0” and the values of “UQ, UQ, Uy,” these are
considered known. Therefore, the first expression of Equation (1) of the system is:

M1101 + C'11U1 + KU, = —M12U2 - C12U2 — K2Us (2)

The total displacement “U;” can be expressed as the sum of the relative displacement
“U7” and the pseudostatic displacement “U;” that would be a static displacement of the
support according as seen in Figure 1, this is

where

Equation (4) is substituted into Equation (2 ), which gives:
My (UT +UP) 4+ O (UT + UP) + Ky (U + UP) = —My,Uy — CroUy — KipUs — (6)

The pseudostatic displacement will be evaluated by the static equilibrium condition,
which is obtained from Equation (6), that is

KU = —KypU, (7)
U = il (8)
where “#” the pseudostatic influence matrix can be expressed as:
=—K 111K 12 (9)
Equation (8) is substituted into Equation (4) gives:
Uy =U] +7U, (10)

Displacement dynamic components will be expressed as:
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FIiGUure 1. Total displacements

Equation (10) is substituted into Equation (2); the equations of motion in terms of the
displacement dynamic components are obtained:

My (U + #Us) + Cy (U7 + #Us) + Ky (UT + #Us) = —MyyUs — CioUs — Ki5Us — (12)
or
MU + CaUT + Ky UT = —(My# 4 Myy)Us — (Cyi# + Cio)Us — (K117 + K12)Us (13)

Then Equation (9) is substituted into the last member of Equation (13); the equations
of motion in terms of the displacement dynamic components may be rewritten:

My UT + CLUT + Ky UT = —(My# + Mo)U, — (C1y# 4 Cho)Us (14)

It is important to indicate that when a lumped mass formulation is used as is normal,
implies that the term “M12U2” is null.

By other part, the damping in the excitation is demonstrated that the second term of
the right side in Equation (14) is very small in comparison with first, by general, it is
not considered. In addition, when a spectral analysis is realized, the damping effect of
excitation in the response spectrum comes implicit.

Then, Equation (14) may be written:

My UT + CLUT + Ky UT = — My, 71U,y (15)
Equation (9) is substituted into Equation (15) gives:
MU + CnUT + KUl = My K KUy (16)

Then, if the normal coordinate orthogonality property are used to simplify the equations
of motion Multi-Degree-of-Freedom system. These equations are given in general form by
Equation (1). For system of undamped free vibration becomes [8,9]:

MHU{ + KHU{ == 0 (17)

where M;j; is mass matrix corresponding to the degrees of freedom non-restricted “n”,

K, is stiffness matrix corresponding to the degrees of freedom non-restricted “n”, U7 is

a relative displacements vector, and U7 is relative accelerations vector.

Its solution is defined as:

Uy = ae! (18)

where w is vibration natural frequency; & is modal vector (mode-shaped vector) associated
to “w”, 1 =+v—1,t = time.
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The values of “w” and “@” are determined by resolving eigenproblems as:
(K11 - (,U2M11)® =0 (19)

With this, the equations of motion in the system are defined by Equation (16), and can
be diagonalized to transform to a modal normal coordinates system “Y;,(¢)” is defined as:

N
Uy =Y 2., =0V (20)
n=1

where @ is modal matrix (mode-shape matrix); Y is normal coordinates vector.
Equation (20) is Substituted into Equation (16) and is pre-multiplied by the transpose

of the modal vector corresponding to mode “n” and applying the orthogonality conditions

are obtained the equations of motion undocked [8-10]. Being the equation corresponding

to mode “n”, it is presented as:

ot M\ @, Y, + &L C113,Y, + & K,2,Y, = & My K K,U, (21)
being
M, = @, M, (22)
T = ézollén/(2ann) (23)
w’M,, = 2! K12, (24)

({9900

where 7, is percent of damping to the mode “n”; @ is the transpose matrix of the moda
vector corresponding to mode “n” [8,9].

Now, the system of equations of motion in Equation (16) is transformed in modal
normal coordinate to obtain the system of “n” degrees of freedom, the equations of motion
uncoupled in each mode “n”. Equation (21) may be written as:

MY, + 2MynpwnY, + Myw?Y, = & My K5 K150y (25)

—

where “w,” and “@,” are eigenvalues and eigenvectors corresponding to mode “n”.
Equation (25) is simplified
Yy, 4+ 20pwn Yy + W2Y, = &8 My K K1, Us /M, (26)
Or .. . .o
Y, + 20w, Yo, + w2, = T,U;(t) (27)
where “T",” is modal participation factor and is defined as [8,11]:
@t My 7
QZMH@n

The solution of Equation (27) can be obtained considering the first integral of Duhamel
as follows [8-12]:

r, t.
Y, = (—) / Us(7)[e7™n (= sinwy, (t — 7)dr (29)
wn 0
It is denoted: .
Son(t) = / Uy (1) [e ™ sin w, (t — 7)dr (30)
0
Thus, in general
r
Y,=|{—=] S 31
() (51)

where S, is spectral velocity.
Now, according to the procedure, the seismic response spectrum will be sufficient to
determine solely the response maximum values, and not all the complete history. For
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Equation (29) and Equation (30) are observed that the maximum responses are defined
considering the maximum value of the response function [8-12].

In terms of the spectral acceleration “S,,,” is obtained for mode “n” to from the response
spectrum corresponding to the excitation of the support as follows:

San

Wnp,

Sy = (32)

Equation (32) is substitutied into Equation (31) is obtained the maximum modal re-
sponse due to excitation of the support “(Y,)max  is presented [8-12]:
Pnsan

2
Wn

(Yn)max =

(33)

The vectors corresponding to the components of the maximum relative displacement

vector for each mode “{UJ, }max” are defined as:

{Ul tmax = {@n} (Yn) max (34)

The maximum value of relative displacements vector in the structural dynamic system
“{U7 }max” 1s obtained as:

n 1/2
{U{}max = {Z(U{j)?nax} (35)

j=1
or
{U7 bnax = {(U)nax + (Uh)max + - -+ + (Ul a7 (36)

The value of the equivalent elements mechanical acting in the free joints “P” may be
expressed as [9,11-14]:

P = KII{U{}maX (37)

Finally, the mechanical elements acting on members “F;” are defined as [9,11-14]:

F, = KU (38)

wsn
7

where Kj; is stiffness matrix of member , in the overall or general system, U;; is dis-
placement vector of member “i5”, in overall system.

3. Application. An example of the dynamic method for seismic design is presented,
using three different models and taking into account the shear deformations for an offices
building built with structural steel profiles. The analysis is developed only in the trans-
verse direction, i.e., in the sense of 10 m. The offices building in plan and elevation are
shown in Figure 2, and the spectrum of horizontal response is observed in Figure 3, this
is the motion of soil, where the building is supporting. In Table 1, the properties of the
steel profiles are presented. The loads to be considered in the analysis per level are:

Weight of level 1 = 700 kg/m?,

Weight of level 2 = 600 kg/m?,

Weight of level 3 = 500 kg/m?,

Weight of level 4 = 300 kg/m?,

Elasticity modulus = 2040734 kg/cm?,

Poisson’s ratio = 0.32
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FiGURE 2. Plan and elevation of office building built with structural steel profiles
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F1GURE 3. The spectrum of horizontal response

TABLE 1. Properties of the steel profiles

Profiles | Total area (cm?) | Shear area (cm?) | Moment of inertia (cm®)
W10X60 113.55 27.69 14193
W10X45 85.81 22.81 10323
W10X22 41.87 15.75 4912

W24X94 178.71 80.77 112382
W24X62 117.42 65.86 64516

3.1. Model 1 (proposed model). This model considers beams and the columns for the
analysis taking into account four lumped masses per level applied one at each end and
the others two intermediate, and three degrees of freedom at each joint. The building
is analyzed solely in the transverse direction. The mathematical model is presented in
Figure 4.
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FIGURE 4. Vectorial model considers four lumped masses per level of the building

Matrix of lumped mass, “M;” of a joint is:

My 0 0
Mi=| 0 M, 0
0 0 M

where ¢ goes 2 to 9, M;, is the mass in direction X' of the joint i, M;, is the mass in
direction Y of the joint i, and M;, is the rotational mass, i.e., around Z' axis of the joint
i.

For our problem is My = My, M3 = Mg, My = M, and My = M.

Mass matrix in the overall system, “M;;” is defined as:

"M, 0 O 0 0 0 0 0 ]
0O My 0 0 O 0 0 0
O 0 My, 0 O 0 0 0
Mo—| 0 0 0 Mg 0 0 0 0
=t 0 o 0 0 Mg O 0 O
o 0 0 0 0 M, 0 0
O 0 0 0 0 0 Mg 0

0 0 0O 0 0 0 0 M,

Lumped masses on the building are obtained:

2
M, — M, — (700kg/m?)(10m/6)(15m)
980.665cm /sec?
(600kg/m?)(10m/6)(15m)
980.665cm /sec?

= 17.85kg-sec? /cm

M; = Mg = = 15.30kg-sec? /cm
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(500kg/m?)(10m/6)(15m)
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M, = M; = — 12.75kg-sec?
Lo 080.665cm /sec? g-sec”/em
(300kg/m?)(10m/6)(15m)
Ms = My = — 7.65kg-sec?
P 980.665cm/sec? g-sec”/cm
300kg/m2)(10m/3)(15
My = My, = (300kg/m?)(10m/3)(15m) _ 15.30kg-sec? /cm
980.6265(:r1(1/sec2
(500kg/m*?)(10m/3)(15m)
My = My, = = 25.49kg-sec?
1= M 980.665¢m /sec? g-sec”/cm
(600kg/m?)(10m/3)(15m)
Mys = Mg = — 30.59kg-sec?
15 = e 980.665cm /sec? g-sec”/cm
700kg/m2)(10m/3)(15
Mi; = Mg = ( g/m”)(10m/3)(15m) = 35.69kg-sec? /cm

980.665c¢m /sec?
Table 2 shows the masses acting on degrees of freedom of the building.

TABLE 2. The masses on joints

Joint Mass in X Mass in Y Rotational mass
(kg-sec? /cm) (kg-sec? /cm) Mass by distance? (kg-cm-sec?)
2 and 9 | 35.69 + 17.85 = 53.54 | 35.69 + 17.85 = 53.54 | 35.69 X (1000/3)? = 3965563.05
3 and 8 | 30.59 + 15.30 = 45.89 | 30.59 + 15.30 = 45.89 | 30.59 X (1000/3)?= 3399054.04
4 and 7 | 25.49 + 12.75 = 38.24 | 25.49 + 12.75 = 38.24 | 25.49 X (1000/3)? = 2832545.04
5and 6| 15.30 + 7.65 = 22.95 | 15.30 + 7.65 = 22.95 | 15.30 X (1000/3)2 = 1699527.02

The mass matrix “M;” is presented in [17].

Stiffness matrix of a structural member, for this case “K;” is the stiffness of the four
columns or four beams of the rigid frame:

o- |
where j goes 1 to 12.
Stiffness matrix of a column in the global system is [9,15-17]:

o
Ky Ky

12E7 0 _[ 6ET ] _12ET _[ 6ET ]
L3 (1+a) L2(14a) L3 (1+a) L2(1+a)
0 EA 0 0 —£4 0
6ET 4 EI 6ET 2-a1 EI
K. — o |:L2(1+a):| 0 [11—3] a L2(1+a) 0 [14-—3] a
J __12EI 0 6ET 12E1 0 6ET
L3(1+a) L2(1+a) L3(1+a) L?(1+a)
0 —£A 0 0 EA 0
6ET 2-al EI 6EI 44a] EI
- |:L2(1+a)] 0 [H—a] T L2(1+a) 0 [J—a] T
Stiffness matrix of a beam in the global system may be expressed as [9,15-17]:
EA EA T
== 0 0 - 0 0
0 12E1 6ET 0  __l12BI 6ET
L3(1+a) L2(1+a) L3(1+a) L?(1+a)
0 6L (e EL o __SBI_ [2-a] EX
K. — L2(1+a) 1+al L L2(1+a) 1+al L
J= EA EA
—== 0 0 == 0 0
0 __12BI  __6EI 0 12E1 __6ET
L3 (1+a) L2(14a) L3 (14+a) L2(14a)
0 6EI [e] BL o __SEL . [4=]EI
L L?(1+a) 1+al L L?(1+a) 1+al L |
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Values “a” and “G” are obtained:
12E1 F

T GALY 2(1 +v)
where F is elasticity modulus, [ is inertia moment, L is member length, A is total area,
« is form factor, G is shear modulus, A, is shear area, and v is Poisson’s ratio.

«

3.2. Model 2. This model considers beams and the columns for the analysis taking into
account two lumped masses per level and three degrees of freedom at each joint. The
building is analyzed solely in the transverse direction [6]. The mathematical model is
presented in Figure 5.
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FI1GURE 5. Vectorial model considers two lumped masses per level of the building

In model 2, the matrix of lumped mass in a joint (M;), the mass matrix in overall
system (Mi;), the stiffness matrix of a structural member (Kj), the stiffness matrix of a
column in overall system and the stiffness matrix of a beam in overall system, these are
the same of the model 1, the only difference is that in model 2 there is not rotational
mass (M) and in model 1 if exists by the application of intermediate masses in beams.

3.3. Model 3 (classical model). This model considers that the beams are rigid in
comparison to the columns, and therefore the beams do not influence at the dynamic
analysis of the building. It also considers one degree of freedom per level, i.e., horizontal
displacement [4]. The mathematical model is presented in Figure 6.

Mass matrix in the overall system, “M;;” is defined as:

My 0 0 0
0o My 0 0
My = 0O 0 M, 0
0 0 0 M
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Stiffness matrix of a structural member, for this case “K;” is the stiffness of the eight
columns for each level:
j j 12E1 12E1
K, = [ Kfjl) K{%) ] _ [ L3(1+a T L3(1+a)
ji= ' h | = 1251

12F
Kéjl) Ké%) T I3(1+a) I3(140)

Stiffness matrix of all the building in overall system for the model 1 and 2 is:

k) + kP + k(Y K 0 0
K KarDex kg !
0 K3} Ky + K + KLY K
K 0 0 KLY KS) + K
11 — (9)
0 0 0 K3,
0 0 K 0
0 K 0 0
I K{? 0 0 0
0 0 0 K12 ]
0 0 KO 0
0 kG 0 0
K 0 0 0
K + K5 K 0 0
kY KQrRDRE KD o
0 K5 Ky + K + K3 Ky
0 0 K\ K9 + kD + k(Y

Stiffness matrix of all the building in overall system is:

MYkl K 0
2 2 3 3
Ky = K JZS)KQ (S)K&) ©
O K21 K22 + Kll KIQ
0 0 K K

The mass matrix and stiffness in overall system of the three models for the entire
building appear in [17].

3.4. Procedure of seismic analysis for the three models. The mass matrices and
stiffness for each member are evaluated, followed by change of local system to overall
system. The mass matrices and stiffness in each member’s overall system are then coupled
and the system’s general matrix is obtained. This general matrix was organized to separate
the degrees of freedom in the structure (Mj; and K;;) and degrees of freedom in the
supports (My and Ky). A similar transformation is applied through exchange of rows
and columns matrix (permutation matrix).

Taking into account the condition of free vibration given by Equation (17), being “U7”,
a vector of relative displacements (24 x 1 for model 1 and 2, and of 4 x 1 for model 3)
corresponding to degrees of freedom in the building’s structural system. Subsequently,
the eigenvalues and eigenvectors are obtained by solving the determinant resulting of
Equation (19).

MATLAB software was used for solving the determinant; we obtain the polynomial and
the roots. The results are presented in Table 3; twenty-four modes for the model 1 (M1),
sixteen modes for the model 2 (M2) and four modes for model 3 (M3).
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FIGURE 7. Vibration modes: (a) first, (b) second, (c) third, (d) fourth

Spectral accelerations for the first four modes of the model 1 and 2, and the four modes
of the model 3 are shown in Table 4.

The values of the first four modes of model 1 are presented in Table 5.

The first four modes of the model 1, as well as the building’s configuration are shown
in Figure 7.

The values of the first four modes of model 2 are presented in Table 6.

The first four modes of the model 2, as well as the building’s configuration are shown
in Figure 8.
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TABLE 3. Eigenvalues
Circular frequency Frequency Period w2
Mode (rad/sec) (Hz) (sec) (rad/sec)?
M1 M2 M3 M1 M2 M3 | M1 | M2 | M3 M1 M2 M3
1 5.870 | 5.885 | 6.632 | 0.934 | 0.937 |1.056|1.071|1.067|0.947| 34.5 34.6 44.0
2 15.065 | 15.235 | 16.448 | 2.398 | 2.425 |2.6180.417|0.412|0.382| 227.0 232.1 270.5
3 25.663 | 26.591 |28.391| 4.084 | 4.232 |4.519]0.245]0.236|0.221| 658.6 707.1 | 806.1
4 27.936 | 33.068 |33.939| 4.446 | 5.263 | 5.402|0.225]|0.190(0.185| 780.4 1093.5 |1151.8
5 28.806 | 76.039 4.585 |12.102 0.2180.083 829.8 5782.0
6 31.368 | 76.747 4.992 (12.215 0.200|0.082 984.0 5890.1
7 31.985 | 177.861 5.091 | 28.307 0.196|0.035 1023.0 | 31634.5
8 32.652 | 178.149 5.197 |28.353 0.192]0.035 1066.1 | 31737.0
9 41.728 | 235.663 6.641 | 37.507 0.1510.027 1741.2 | 55537.0
10 | 45.092 |253.323 7.177 |140.318 0.139|0.025 2033.3 | 64172.6
11 45.422 | 277.085 7.229 |44.099 0.1380.023 2063.1 | 76776.2
12 | 46.746 | 280.879 7.440 |44.703 0.134{0.022 2185.2 | 78892.8
13 | 76.039 |280.985 12.102 (44.720 0.083]0.022 5782.0 | 78952.4
14 | 80.702 | 289.667 12.844146.102 0.0780.022 6512.9 | 83906.8
15 |177.861|339.121 28.307(53.973 0.035]0.019 31634.5 |115003.4
16 |179.221]|339.220 28.524|53.988 0.035]0.019 32120.3 |115069.9
17 |235.833 37.534 0.027 55617.1
18 [253.591 40.360 0.025 64308.4
19 |277.229 44.122 0.023 76856.2
20 |280.879 44.703 0.022 78892.8
21 |281.822 44.853 0.022 79423.8
22 289917 46.142 0.022 84051.9
23 [339.121 53.973 0.018 115003.4
24 1339.786 54.079 0.018 115454.2
TABLE 4. Spectral acceleration
Frequency w, Acceleration S,
Mode (Hz) (cm/sec?)
M1 | M2 | M3 M1 M2 M3

1 10.934(0.937|1.056|0.153g = 150.0417|0.153g = 150.0417|0.167g = 163.7711

2 12.398]2.425(2.6180.292g = 286.3542|0.294g = 288.3155|0.300g = 294.1995

3 14.084(4.232|4.519|0.300g = 294.1995|0.300g = 294.1995|0.300g = 294.1995

4 4.446(5.263|5.402|0.300g = 294.1995|0.300g = 294.1995|0.300g = 294.1995

The 4 modes of the model 3, as well as the building’s configuration are shown in Figure
9.

Equation (28) is used to obtain the modal participation factor “I',”. The maximum
normal coordinates “(Y,)max~ Of the system for each mode are located by Equation (33)
and the first four values for the model 1 and 2, and the four values for the model 3, appear
in Table 7.

The vectors corresponding to the components of the maximum relative displacements
vector for each mode “{U7, }max” are given by Equation (34) and finally, the maxi-
mum value of the relative displacements vector for the structural system of the building
“{U{ }max” is obtained by Equation (35). These values for the three models appear in
Table 8.

Once the deformations are obtained, Equation (37) is used to find the values of the
forces in “X”, the forces in “Y” and moments; these are applied at the free joints. Such
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TABLE 5. Vibration modes of model 1
Mode
Joint 1 2 3 4
X Y 0 X Y 0 X Y 0 X Y 0
1 0.000 | 0.000 {0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |0.000| 0.000
2 |—0.432|-0.003|0.028 | —0.714| 0.005 | 0.026 | 0.551 | 0.001 | 0.026 | 0.009 |0.000|—0.700
3 |[—0.655|-0.005|0.018|—-0.607| 0.011 [ —0.038|—0.259| 0.004 | 0.090 | —0.002|0.000| 0.889
4 |—0.895(—-0.006{0.011| 0.336 | 0.018 | —0.054|—0.797| 0.019 | —0.056| 0.001 [0.000|—0.784
5 |—1.000|—-0.006{0.006| 1.000 | 0.021 |—0.039| 1.000 | 0.028 |—0.140|—0.002|0.000| 1.000
6 |—1.000( 0.006 [0.006| 1.000 |[—0.021|—-0.039| 1.000 |—0.028|—0.140| 0.002 [0.000|—1.000
7 |—0.895| 0.006 {0.011] 0.336 |—0.018|—0.054|—0.797|—0.019| —0.056| —0.001 {0.000| 0.784
8 |—0.655| 0.005 {0.018]|—0.607|—0.011| —0.038| —0.259|—0.004| 0.090 | 0.002 [0.000|—0.889
9 |[—0.432| 0.003 |0.028|—0.714|—0.005| 0.026 | 0.551 |—0.001| 0.026 | —0.009(0.000| 0.700
10 | 0.000 | 0.000 {0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 {0.000| 0.000
X is displacement in direction X
Y is displacement in direction Y
# is rotation in joint
TABLE 6. Vibration modes of model 2
Mode
Joint 1 2 3 4
X Y 0 X Y 0 X Y 0 X Y 0
1 0.000 | 0.000 {0.000{ 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
2 |—0.433|—0.003[0.027|—0.717| 0.004 | 0.022 | 0.517 | 0.001 | 0.018 | 0.708 |—0.008| 0.062
3 [—0.655—-0.005|0.018| —0.606| 0.010 | —0.034|—0.255| 0.003 | 0.058 |—1.000|—0.012| 0.048
4 |—0.895/—-0.006|0.010| 0.342 | 0.016 |—0.048|—0.794| 0.013 |—0.038| 0.696 |—0.014|—0.018
5 |—1.000|—-0.006(0.006| 1.000 | 0.018 |—0.035| 1.000 | 0.019 |—0.094|—-0.436|—0.019| 0.063
6 |[—1.000{ 0.006 {0.006| 1.000 |—0.018|—-0.035| 1.000 |—0.019|—0.094|—-0.436| 0.019 | 0.063
7 |—0.895| 0.006 |0.010| 0.342 |—0.016|—0.048|—0.794|—0.013|—0.038| 0.696 | 0.014 |—0.018
& [—0.655| 0.005 {0.018|—0.606|—0.010| —0.034|—0.255|—0.003| 0.058 |—1.000| 0.012 | 0.048
9 |-0.433| 0.003 [0.027|—0.717|—0.004| 0.022 | 0.517 |—0.001| 0.018 | 0.708 | 0.008 | 0.062
10 | 0.000 | 0.000 |{0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
TABLE 7. The modal participation factor “I",,” and the maximum normal

coordinates “(V,)max  of the system for each mode

Modal participation Maximum normal coordinates of
Mode factor T',, the system for each mode (Y},)max
M1 M2 M3 M1 M2 M3
1 —1.3174 | —1.3245 | +1.3132 | —=5.7294 | —5.7436 +4.8878
2 —0.4096 | —0.4162 | +0.3819 | —0.5167 | —0.5170 +0.4154
3 +0.1329 | +0.1293 | —0.0971 | +0.0594 | +0.0538 —0.0354
4 0.0000 | +0.0864 | —0.0698 | 0.0000 | +0.0232 —0.0178

effects are equivalent to what would have occurred due to a movement in the soil where
the building is located. Then, mechanical elements at the joints on the members of the
whole building are determined by Equation (38) and subsequently these are obtained for
each of the building’s rigid frames. The axial forces, the shear forces and the moments
for a central frame are presented in Figures 10-12 respectively.

4. Results and Discussions. The values of the frequencies of the vibration modes of
the building for the three models appear in Table 2. It is observed that values for model



4316 A. LUEVANOS ROJAS

(a) (b) (c) (d)
FIGURE 8. Vibration modes: (a) first, (b) second, (c) third, (d) fourth
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FIGURE 9. Vibration modes: (a) first, (b) second, (c) third, (d) fourth

1 are lower with respect to the other two models in terms of frequency and logically the
periods are inverses. The first four modes of model 1 and 2 are presented in this table,
but the work was developed with modes twenty-four of the model 1 and sixteen modes of
the model 2 resulting from the dynamic analysis.

Table 3 shows spectral acceleration. These values are obtained from the frequency
of each of the structure’s vibration modes and these results are found by means of the
horizontal response spectrum of the soil where the building is constructed, this spectrum
is presented in Figure 3.

The participation factors and the maximum normal coordinates of the system for each
mode are observed in Table 6, all the values in the model 3 are lower in absolute value,
with respect to the others two models, with exception in mode 4, where the model 1 is
lower, since this value is zero.

Table 7 gives the structural system’s relative deformations, also all the values are lower
in model 3, with respect to the others two models. Now the model 1 and 2 are compared,
the model 1 is lower in terms of the displacements in direction X and in direction Y is
equal, in terms of rotations these are the same with the exception in joints 3 and 8, where
the model 1 is greater than the model 2.
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TABLE 8. Vector of deformations

Relative deformations | Joint Concept Unit NI AHK/([); nt N3
Ul Displacement X | cm | 2.51|2.52|2.35
Ui2 2 | Displacement Y | cm | 0.02 | 0.02 | 0.00
Ui3 Rotation rad | 0.16 | 0.16 | 0.00
Ur4 Displacement X | cm | 3.78 | 3.78 | 3.23
U5 3 | Displacement Y | cm | 0.03 | 0.03 | 0.00
U76 Rotation rad | 0.110.10 | 0.00
Uur7 Displacement X | cm | 5.14 | 5.16 | 4.41
U8 4 | Displacement Y | cm | 0.04 | 0.04 | 0.00
Ur9 Rotation rad | 0.07|0.07 | 0.00
U710 Displacement X | cm | 5.77 | 5.78 | 4.49
U1l 5 | Displacement Y | cm | 0.04 | 0.04 | 0.00
U712 Rotation rad | 0.04 | 0.04 | 0.00
U713 Displacement X | cm | 5.77 | 5.78 | 4.49
U14 6 | Displacement Y | cm | 0.04 | 0.04 | 0.00
U715 Rotation rad | 0.04 | 0.04 | 0.00
U716 Displacement X | cm | 5.14 | 5.16 | 4.41
Urlr 7 | Displacement Y | cm | 0.04 | 0.04 | 0.00
U718 Rotation rad | 0.07|0.07 | 0.00
U719 Displacement X | cm | 3.78 | 3.78 | 3.23
U720 8 | Displacement Y | cm | 0.03 | 0.03 | 0.00
U721 Rotation rad | 0.110.10 | 0.00
U722 Displacement X | cm | 2.51|2.52|2.35
U723 9 | Displacement Y | cm | 0.02 | 0.02 | 0.00
Uj24 Rotation rad | 0.16 | 0.16 | 0.00

Figure 10 shows the axial forces of the structure, all the values in model 3 are greater
in absolute value with respect to the others two models. Now the model 1 and 2 are
compared, the model 1 is greater, there is an increase in model 1, up to of 7.5% in
members 4 and 5 with respect to model 2, this only occurs in the columns, and the axial
force is not presented in beams in model 1 and 2, and in model 3, if values exist, in this
case are exceeded designs.

The shear forces are presented in Figure 11, also all the values in model 3 are greater
with respect to the others two models. Now the model 1 and 2 are compared, the model
1 is greater in all beams, there is an increase in model 1, up to of 7.7% with respect to
model 2 in member 9, and in columns practically are equals.

The moments acting on the members of the structure are shown in Figure 12, also all
the values in model 3 are greater with respect to the others two models, with the exception
the member 9 in where the model 1 is greater. Now the model 1 and 2 are compared,
the model 1 is greater in all beams, there is an increase in model 3, up to of 7.7% with
respect to model 2 in member 9, and in the columns practically are equals.

5. Conclusions. Through the application of three different models it is possible to con-
clude the following: in terms of model 3 taking into account four degrees of freedom per
floor, i.e., the horizontal displacement at each level, and the models 1 and 2 taking into
account twenty-four degrees of freedom, i.e., the horizontal displacement, vertical dis-
placement and rotation in each joints are not restricted. Now with respect to the model
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FIGURE 10. Axial force

3 considering four vibration modes, the model 2 takes into account sixteen modes and
model 1 considers twenty-four modes. According to the above, we are observed that in
model 3 are not taken into account several degrees of freedom, which are reflected in the
response of the system and not of the conservative side. On the other hand, when the
frequencies analysis is realized, these demonstrate that considering the models 2 and 3,
beforehand implies not to consider certain modal shapes (symmetrical modes and/or anti-
symmetrical) of the structure, which in the case of soil excitations are present in certain
situations and these must be considered, since in some cases correspond to relatively low
frequencies.

Finally, it is observed that the differences, between the model 1 (proposed model) and
the model 3 in the last are greater in all members, with the exception the member 9
in which the model 1 is greater. Now the models 1 and 2 are compared, the model 1 is
greater in all beams, with respect to model 2, and in the columns practically are equals, as
it is presented in the tables and figures of the problem considered. Therefore, the general
practice to consider one and two masses lumped at each level will not be a recommendable
solution, since the model 1 is much more economical in relation to the model 3 and model
2 is not very secure because it ignores modal shapes several, that model 1 if we take
into account, as the slogan of civil engineering, that is safe and economic. Then, the
model 1 (proposed model) in this paper is the more appropriate for the seismic analysis
of structural systems in buildings.
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