
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 11, November 2013 pp. 4519–4530

VALIDATING PROGRAMMABLE LOGIC CONTROLLER SYSTEMS
WITH DURATION CALCULUS

Anping He1,2, Jinzhao Wu1, Shihan Yang1 and Yongquan Zhou1

1Guangxi Key Lab of Hybrid Computation and IC Design Analysis
Guangxi University for Nationalities

No. 188, East Daxue Road, Nanning 530006, P. R. China
hapetis@gmail.com; himrwujz@yahoo.com.cn

2School of Information Science and Engineering
Lanzhou University

No. 222, South Tianshui Road, Lanzhou 730000, P. R. China

Received November 2012; revised March 2013

Abstract. The programmable logic controller (PLC) system is a type of the hybrid sys-
tems, which is a widely used safety-critical system in industry. It is regarded that the
formal method is a valuable and indispensable way of analyzing and validating the PLC
systems. However, which formal methods and how to use the methods are challenges. In
this article, we propose a specific formal method of the PLC systems, e.g., we formalize
the PLC systems by the EDC formulae hierarchically, specify the property as the formu-
lae, and then analyze and verify the system in the framework of the EDC calculus. So in
fact we propose an EDC based hierarchical formal method of this type of system, we trust
this method is applicable. We also harness two examples to demonstrate the effectiveness
and feasibility of the method.
Keywords: PLC, EDC, Hierarchical analysis

1. Introduction. The Programmable logic controllers (PLC) are widely used in the
safety-critical industrial applications. A PLC system is a hybrid system where its outputs
are produced in response to the input conditions with the time constraints. There is a
growing demand for the validation of PLC systems.

The PLC system is one of the safety critical applications, requiring guarantees of safe
operation, e.g., the unwarrantable configurations are not allowed. In order to design and
produce a high credible PLC system, the (formal) verification is essential and effectual.
Formally, it is considered that the PLC system is one of the hybrid systems in which
computational processes interact with physical processes, then this specific system is
always analyzed by the formal hybrid system theory to eliminate bugs as well as raise
designers’ confidence.

There are three main types of model based formal methods for PLC systems: Petri-
net, timed automata and hybrid automata. In [1, 2], the authors analyze PLC system in
terms of Petri-net, however, the Petri-net cannot directly express continuous-time in PLC
systems. [3, 4, 5, 6, 7] adopt the timed automata for the analysis and validation of PLC
systems, but it is impossible to bind the equations and the automata transitions together
to make analysis simple and direct. The hybrid automata [8, 9, 10] combines automata
with dynamic equations, but it still needs more manual work to solve these equations.
On the other hand, there are few calculus based methods. [11] shows a way of translating
duration calculus to automata to enable automation of verification procedure. [12] adopts
duration calculus to analyze an aerospace application hierarchically, but it does not study

4519



4520 A. HE, J. WU, S. YANG AND Y. ZHOU

the relation between the hierarchical design and the formal calculus, e.g., the semantics.
Andre Platze proposed a hybrid dynamic logic [13] , which is a very interesting logic system
of the hybrid system, but it is not suitable to formalize the PLC system hierarchically. To
summarize, the model based formal analysis of the PLC system can not reject the human
intellection, e.g., the calculation of equations takes more time, while the whole procedure
is lack of automation. On the other hand, the calculus combines the equation processing
and the logic reasoning together, this type of combination makes the analysis consistent.
As we claimed previously, the PLC system is one of the high complex system in which

computational processes interact with physical processes, so it is a big challenge to get the
formal expression of the PLC system effectively and accurately. In our study, we focus on
a widely-used hierarchical design methodology. With our study and observation of this
type of hierarchical model, we find it is easy and direct to construct the extended duration
calculus [14] (EDC for short) formulae to express time variance of the hierarchical model,
so, with the EDC calculus, it is natural to specify, analyze and verify the PLC system
hierarchically. To the best of our knowledge, no article studies the PLC system by the
hierarchical way of analysis and verification.
In this article, we use R to denote the real numbers, B to the Booleans. We also note

= for equality, , for a notation of definition.

2. Analysis of the PLC Systems with EDC. In this section we want to map the
EDC formulae to the PLC system, e.g., show the hierarchical model based semantics of
the PLC system. Let us introduce a formal hierarchical conceptual model.

2.1. Hierarchical model of the PLC systems. A hierarchical model is an effective
way of analyzing complex systems. This type of model explores the system by abstraction
and makes each hierarchy simple and isolated. A famous real-time hierarchical control
conceptual model was proposed by Morin and Nadjm-Tehrani in [15]. We use a reduced
hierarchical model in Figure 1.
In Figure 1, the continuous component, input/output devices, sensors, and actuators

are seen as the environment, the above discrete part monitors the continuous variants

Figure 1. The hierarchical model



PLC WITH EDC 4521

of the environment, meanwhile, the behavior of environment is adjusted instantaneously.
This hierarchical model describes the principles of system design, then it is functionally
equivalent to the practical PLC system.

Each hierarchy corresponds to the following functions: Estimator, Adapter, Character-
izer, Effector and Reasoner. The model responds to variants of the environment in a very
short time interval repeatedly. The response interval is so short that decision-making part
is regarded responding continuously. Nevertheless, because the hierarchy model presents
the design of the PLC system, the model keeps true during the system run (see Figure 1).

Let us show this hierarchy formally. The continuous component, e.g., the ‘environment’
in Figure 1, is expressed by the state equations derived from the physical laws and output
functions, these functions are variant over time. Then we seen the environment is the
function as the below:

environment : R+,0 → R.
For the discrete part, e.g., decision-maker, it is necessary and convenient to use typed

data while analysis, however, the data for the sensors or actuators are always non-typed
analog value. So the estimator and adapter are necessary for data conversions:

estimator : R → R

and

adapter : R → R
Due to the size of PLC program compatible data, mixing of discrete and analog, as well
as many events (such as button pushing), it is difficult to verify the PLC system, then
the abstraction and isolation are utilities, we firstly classify/symbolize the data and then
determine significant events by the characterizer:

characterizer : R → B

Then, the reasoner makes decisions by the symbols from characterizer:

reasoner : B → B

As soon as the decision is made, the effector implements those decisions as the typed
written values with the intelligent algorithms:

effector : B → R

Then, the hierarchical model is a conjunction of these above six formal concepts, it
captures all characters of PLC system in a time point, and then describes the sequence
of snapshots of the system behavior along time, see Figure 1.

2.2. Semantics. The same as the most formal methods, the semantic model of the EDC
bases on the state. The difference is that EDC describes the state implicitly. A state
is a time related measurement of system, which is composed of the current values of all
variables of the system. In the EDC terminology, these variables are called state names
(SN) and state variables (SV ). In this section, we interpret the EDC formulae by the
hierarchical model of the PLC system, e.g., showing a hierarchy based semantics of the
EDC.

The variable set of a PLC system is composed of all variables describing the hierarchical
model, which is noted by V = SN ∪ SV . A state variable ν ∈ V is one over time, its
forms are either ν(t) ∈ B or ν(t) ∈ R (t ∈ R+,0 is time). Then a state of PLC system
will be an assignment of all state variable at a time point. So the variables expressing
environment, estimator and adapter are seen as the state names, but the ones describing
characterizer, reasoner and effector are state variables.



4522 A. HE, J. WU, S. YANG AND Y. ZHOU

The elementary or boolean functions over V are composed of the state variables, real
constants and common operators including +, −, ×, /,

∫
, sin, cos, etc. This kind of

functions are corresponding to the state terms in EDC, and describing the behaviors over
time, e.g., the elementary functions show the continuous timed variant or transformation,
but the boolean expressions describe the timed predicate, all of which become the state
expression, se, and state assertion, P , separately. The state expression describes the
continuous behavior, but the state assertion for satisfactory of the discrete predicate.
Let interpretation, IJ K, be a function which associates each state variable, type, and

operator symbols with a fixed meaning of the PLC system. Then we interpret the expres-
sions with their common meanings:

IJxK ,
∫

f with x′ = f

IJx(t)K , f(t) with x = f

IJP K , P1♣P2 with P = P1♣P2

IJP K , ¬P1 with P = ¬P1

in which x ∈ SN , P , P1, P2 be assertions, f a function over R+,0, and ♣ ∈ {∧ ⇒,∨,⇔
· · · }.
Now let us study the expression over time. For a given interval [b, e], let IJK[b, e] be

interpretation of a given time interval [b, e]. The interpretation of durations, d, could be:

• duration of state expression, e.g., d =
∫
se, specifies the continuous behavior by the

state equation of the environment of the hierarchical model:

I
s∫

se

{
[b, e] ,

∫ e

b

se(t)dt = e.se− b.se

with b.se and e.se be initial and final values of the integration.
• duration of state assertion, e.g., d =

∫
P , showing how long the satisfaction of a

property over a time duration,

I
s∫

P

{
[b, e] ,

∫ e

b

Pdt = (e0 − b0) + (e1 − b1) + · · ·

ei > bi ∧ bi+1 > ei ∧ bi, ei ∈ [b, e] with i = 1, 2, · · · , and P keeps true in interval
[bi, ei].

The symbol ` is an abbreviation for the duration of state assertion keeping true on a
whole interval. We denote the time interval as `, e.g.,

IJ`K[b, e] , ∫
true

The duration is not strong enough to express some properties of PLC. For example,
let P1 show a light keeping on and P2 a buzzer on, light and buzzer work exclusively.
Supposing in a time internal, we only know duration of P1, e.g.,

∫
P1, it is easy to know

that duration of P2 is equal to a duration term, ` −
∫
P1. We can build duration terms

with durations, a time variable t, initial value (b.se) and final value (e.se), and a function
F over R with sig(F ) = (R,R, · · · ,R,R), then the interpretation of a duration term dl



PLC WITH EDC 4523

is:

IJdlK[b, e] , IJdK[b, e] for d

IJtK for t

IJse(b)K for b.se

IJse(e)K for e.se

F (IJdl1K[b, e], IJdl2K[b, e], · · · ) for F (dl1, dl2, · · · )
Moreover, the predicates over duration terms always become the top level expression

of PLC system, e.g., the hierarchical model of the PLC system, so does its complex
properties. We call the duration formula be the composition of predicates of duration
terms with boolean operators, quantifiers and an extended ‘chop’ operator. Let R be a
predicate symbol over R (sig(R) = (R,R, · · · ,R,B)), its interpretation is its common
meaning. Then the interpretation of the duration formula D is:

IJDK , IJG(dt1, dt2, · · · )K for R(dl1, dl2, · · · )
¬IJDK for ¬D

IJD1K ∧ IJD2K for D1 ∧D2

IJD1;D2K for D1;D2

IJ∀v : R ∪ B •DK for ∀v : R •D
The chop operator of D1; D2 specifies that PLC system holds D1, then holds D2. E.g.,

these two properties are satisfied sequently in a time interval [b, e], we have following
semantics:

IJD1;D2K , ∃m ∈ [b, e] : IJD1K[b,m) ∧ IJD2K[m, e]

We also specify the properties of the PLC system quantitatively:

IJ∀v : R ∪ B •DK = ∀v ∈ R ∪ B : IJDK
Moreover, the properties of the PLC system may hold a formula in a time interval, e.g.,

except numerable points, the formula is always satisfied. We use the interval assertion,
dDe, to describe this predicate (D is a duration formula).

IJdDeK[b, e] , ∀t ∈ [b, e] : D(t) = true

Finally, we use �D and ♦D to express some properties of PLC system are “eventually”
or “always” true (similar to the temporal logic), their semantics are defined recursively:

IJ�DK[b, e] , ∀b, e ∈ [0,∞] : b ≤ e • IJDK[b, e]
IJ♦DK[b, e] , ∃b, e ∈ [0,∞] : b ≤ e • IJDK[b, e]

Now we can reason the PLC system according to the laws of EDC calculus listed in [14].

2.3. Verification of the holistic PLC systems. Let us analyze the state equations
of a PLC system. We can visualize the hierarchical conceptual model as a circle, which
begins from and ends in the environment. The most significant component of environment
is state equations of the physical part. The state equations are in differentiation forms
[16].

The formal expression of the PLC system is the conjunction of environment, estimator,
adapter, characterizer, reasoner and effector. We denote the design of the PLC system
as SPLC , which is defined as follows:

SPLC = environment ∧ estimator ∧ adapter ∧
characterizer ∧ reasoner ∧ effector



4524 A. HE, J. WU, S. YANG AND Y. ZHOU

The engineers have their confidence of their design capturing all characters of the PLC
system in any case, e.g., SPLC would hold in each time point and interval. Then the
system run of the PLC system is composed of the sequence of snapshots of SPLC (see
Figure 1), it is obviously that SPLC is invariant over time, e.g., if we substitute each state
variable of SPLC by its current value, the SPLC is still satisfied, so we have the following
expression of the PLC system:

dSPLCe
The requirements of the PLC system are changing by the concrete application, we just

let R be a EDC formula of a system property. Then the basic question is whether SPLC

holds R in any case, which can be determined by SPLC guarantee R in each time interval:

dSPLCe ⇒ �R

The above equations are solved in the framework of the EDC calculus. We will show the
feasibility of our methods in the next sections.

3. A PLC Controlled Tank System. In this section, we introduce a PLC controlled
tank system to demonstrate how the hierarchical model be built, as well as the EDC
based validation procedure.

3.1. Specification of a PLC controlled tank. The system consists of a water tank
with the input and output channels and a PLC controller. There are two electromagnetic
valves A and B, three buttons b1, b2 and b3 for switching to automatic control, halt and
manual control, a water level sensor h, and five lights l1, l2, l3, l4 and l5. The lights
represent system status of manual, automatical control, safe, low and high level; and a
buzzer for alarm respectively.
The input water rate (vin) is constant and larger than the output (vout), it is determined

by a controllable valve A with an analog value. Valve B is just a valve for enabling and
disabling the output.
Initially, the tank is empty, the valves are closed, the buzzer and all indicators keep off.

Water will be poured in the tank manually by pushing b3 until the water level arrives at
a standard value (75%H, H the height of the tank) with input rate vin, e.g., A opened
entirely. Meanwhile, l1 keeps on during this procedure.
After the water level arrives 75%H, user pushes b1, making A closed, l1 turned off. The

automatic control is activated, e.g., the PLC adjusts the valves, indicators and buzzer

Figure 2. The tank



PLC WITH EDC 4525

to keep water level automatically, as well as, shows system status and alarms workers if
emergency appears.

During the automatically control procedure, some switching policies and the PI (Pro-
portional and Integral) [17, 18, 19] algorithm are adopted to maintain water level and
avoid overflow or dry of tank. PI is one of the most widely used industrial applications
of intelligent algorithm. It is a part of PID (abbreviation of Proportional, Integral and
Derivative intelligent controlling algorithm). The PID (PI in fact) algorithm has been
implemented by the PLC system with a PID loop instruction, which involves the param-
eters of loop gain, loop sample time and integration period. More information about PID
is in Section 3.2. In this design, the ideal value of the water level is assumed as 75%H,
loop gain KC = 0.25, loop sample time TS = 0.1s and the integration period of the loop
TI = 30m.

To avoid large deviation of PI algorithm (especially in previous phase), we need some
simple but useful understandings for switching controllable A and B, i.e., if the tank
approaches overflow (or dry), A (B) is closed but B (A) opened entirely until the water
level reaches certain range, then PI is automatically used again. Let us show our under-
standings: if the water is in the safe interval (70%H ∼ 80%H), PI algorithm calculates
the analog value sent to controllable A and keeps the output B opened. However, if the
water level is too low (< 5%H), the buzzer is tuned on, B closed and A opened entirely,
which makes the water pour in until the level arrives at the safe level. The case of too
high (> 95%H) is similar, B is opened and A closed to avoid overflow until safe level.

In contrast to concrete control understandings above, the understandings for both high
(80%H ∼ 95%H) or low (5%H ∼ 70%H) water levels is specified indirectly: keep the
previous understanding. In other words, if the previous occasion is the safe one, the
algorithm will be the PI. Otherwise, it follows the way of too-high-water-level-control or
too-low-water-level-control with buzzer off.

Whenever b2 is pushed, the system halts: all valves are closed, buzzer and lights are all
off.

3.2. PID controller. A proportional/integral/derivative controller (PID controller) [17,
18, 19] is a generic control loop feedback mechanism widely used in industry. A PID
controller attempts to eliminate the deviation between the reading of measured sensor and
a desired value by calculating and then emitting a corrective action to make the system
adjusted. An industrial example of the PID algorithm can be found in the following
equation [20]:

M(t) = KC × e(t) +KC ×
∫ t

0

e(τ)dτ +Minitial +KC × de(t)

dt
(1)

where Minitial is the constant initial value of the loop output, and all three loop gains use
the same constant Kc. We adopt this format for the rest of this paper, with Minitial = 0.

3.3. Formal modeling and specification. Let us perform hierarchical analysis on this
realistic case. The hierarchical model in Figure 1 is just a rough model helping designers
map the specification to formulae of duration calculus. The environment will be expressed
by the state equations of the controlled physical equipment. However, how about the PLC
that may mix numeric computation (for intelligent-controlling algorithm) and symbolic
reasoning (for decision-making)? We perform the following six steps for hierarchical anal-
ysis:

• Estimator :
Estimator maps all input signal values, including the analog of water level sensor

and the discrete of three buttons, to reals. Let vh be the current signal value of water



4526 A. HE, J. WU, S. YANG AND Y. ZHOU

level sensor, vb1 , vb2 and vb3 for buttons, let ch a function converting the integer ana-
log value into real and then normalizing the resulting real number (taking Siemens
S7-200 PLC for example, the standard is 32000.0), cb1 , cb2 and cb3 simply map the
integer signal value to 0 or 1:

ch(vh) = vh/32000.0 cbi =

{
1, if vbi > 0;
0, others

let i = 1, 2, 3.

• Characterizer :
Characterizer is used to classify the values, mapping the real to Boolean, i.e., a

predicate for these real numbers. According to Section 3.1, the condition of ideal
water level, 70%H ∼ 80%H, is denoted by a Boolean symbol OK, as well as low,
high, dry and full for low, high, too low and too high level.

low ⇔ 5% ≤ ch < 70%H high ⇔ 80%H < ch ≤ 95%H
dry ⇔ ch < 5%H full ⇔ ch > 95%H OK ⇔ 70%H ≤ ch ≤
80%H

unlike the sensors, buttons only have two discrete states, e.g., pushed or not. In
our way of formalization, we consider if a button is pushed, then it will keep down
until other buttons are pushed or it is pushed again, e.g., we regard the button will
stay in the pushed position logically to avoid to record the previous button state.
Three buttons event can be symbolized as

start ⇔ cb1 = 1 stop ⇔ cb2 = 1 cmd ⇔ cb3 = 1

• Reasoner :
Reasoner is a decision-maker based on the symbols (predicates) of characterizer,

mapping the Boolean connection of symbols to the decisions in terms of the speci-
fication. Under the tank specification in Section 3.1, we have three main decision:
manual control, automatic control and halt the system. However, in automatic con-
trol the phenomena occasionally varies from different water levels. So it is necessary
to refine the automatic control decision. We use the following:

manual ⇔ cmd∧¬auto∧¬halt auto ⇔ start∧¬manual∧¬halt
halt ⇔ stop ∧ ¬auto ∧ ¬manual

keep ⇔ OK ∧ ¬low ∧ ¬high ∧ ¬dry ∧ ¬full ∧ auto
lower ⇔ ¬OK ∧ low ∧ ¬high ∧ ¬dry ∧ ¬full ∧ auto

rise ⇔ ¬OK ∧ ¬low ∧ high ∧ ¬dry ∧ ¬full ∧ auto
handle dry ⇔ ¬OK ∧ ¬low ∧ ¬high ∧ dry ∧ ¬full ∧ auto
handle overflow ⇔ negOK ∧ ¬low ∧ ¬high ∧ ¬dry ∧ full ∧ auto

• Effector :
Effector maps the decisions to the algorithms, which generate the value written in

the actuators and output devices. Let us consider the tank system again. From the
specification, we can find several algorithms, including: turn-on or turn-off of lights,
open or close of output valves, open, close or intelligent control of input valves and
open or close of buzzer. Let f(t) be a PID function, avi and avo be the values needed
by input and output valves, ali for light i with i = 1, 2, 3, 4, 5, and az for buzzer.
Using ⇒ to denote the imply operator, we have:



PLC WITH EDC 4527

halt ⇒ avi = avo = al1 = al2 = al3 = al4 = al5 = az = 0
manual ⇒ avi = al1 = 1 ∧ avo = al1 = al2 = al3 = al4 = al5 =
az = 0
keep ⇒ al3 = 1 ∧ al4 = al5 = az = 0
lower ⇒ avi = f(t) ∧ avo = al4 = 1 ∧ al3 = al5 = az = 0
rise ⇒ al5 = 1 ∧ al3 = al4 = az = 0
handle dry ⇒ avo = al1 = al2 = al3 = al5 = 0∧ avi = al4 = az = 1
handle overflow ⇒ avi = al1 = al2 = al3 = al4 = 0 ∧ avo = al5 =
az = 1

f(t) is essentially a principle of PI control to determine the signal sent to input
valve A. Let the ideal water level be 75%H, the deviation becomes e(t) = 75%H −
ch(t), then according to Equation (1):

f(t) = 0.25× (75%H − ch(t))c+ 0.25×
∫ t

0

(75%H − ch(t))dt

with 0.25 for loop gain.
• Adapter : Adapter realizes the value of the algorithm. Since only the analog value
needs to be converted with some standard, others are the same as the the ones in
effector, so we only list rvi here for the analog-data controlled input valve:

rvi = 32000× avi .

• Environment :
Environment is expressed by the state equations and output equations, all of which

are derived from physical laws. In this tank system example, we can get the state
equation of the tank by analyzing the rate of water level. They are the input and
output water rate impact on the water level. However, all the input/output rates
are controlled by the electromagnetic valves A and B: A is limited by PLC with an
analog value rvi , while B is a digital value rvo . So state equation of the environment
will be

vh(t)
′ = rvi · vin − rvo · vout. (2)

Let li denote the output function of the light i and z one of the buzzer, the environ-
ment could be described by those functions:

v′h = rvi · vin − rvo · vout l1 = rl1 l2 = rl2 l3 = rl3 l4 = rl4
l5 = rl5 z = az

Then the set of state variables is the set of all variables involved in our modeling
procedure above. We now present properties of PI control.

According to the definition of the ‘Estimator’ and the ‘Adapter’:

ch = vh/32000.0 rvi = 32000× avi

When the input valve is controlled by PID, the input water rate is avi = f(t). So Equation
(2) becomes:

32000× ch(t)
′ = 32000× f(t) · vin − 32000× rvo · vout

Then we can get the following theorem:

Theorem 3.1. During PI control, i.e., while the following function

ch(t)
′ =

[
0.25× (75%H − ch(t)) + 0.25×

∫ t

0

(75%H − ch(t))dt

]
· vin − vout

is effected, the water level will eventually be stable at 75%H, with 75%H for standard
water level, 0.25 for loop gain and 0 for the initial output value of loop.



4528 A. HE, J. WU, S. YANG AND Y. ZHOU

3.4. Property deduction with EDC. Now the formalization of the PLC system is

SPLC = environment ∧ estimator ∧ characterizer ∧ reasoner ∧ effector ∧ adaptor

SPLC keeps true during each time interval, e.g., dSPLCe.
Let us validate this PLC controlled tank system by EDC. We will prove this system

with following three safety properties.

Property 1.

dSPLCe ⇒ �d0 ≤ hc ≤ H ∧ autoe
The property states that the water level of the tank is always kept in the safe range during
the automatic control mode.

Property 2.

dSPLCe ⇒ �d(h ≥ 95%H) ∧ auto; (80%H < h < 95%H) ∧ auto;

(75%H ≤ h ≤ 80%H) ∧ autoe

The property states if the tank nearly overflows, then it can be self-controlled and reduced
to the safe water level.

Property 3.

dSPLCe ⇒ �d(ch ≤ 5%H) ∧ auto; (5%H < ch < 70%H) ∧ auto;

(70%H ≤ ch ≤ 75%H) ∧ autoe

If the tank nearly dries, then it can be self-controlled and poured in until arriving at the
safe water level.

4. A Thermostat. We consider a PLC controlled thermostat [10].
Thermostats are widely used to control room temperatures. If the thermostat is set in

heating mode, it will automatically turn a heater on or off to warm up the room. Similarly,
if the thermostat is set in cooling mode, it will automatically turn an air conditioner
on or off to cool down the room. The automatic control is performed using a PLC.
The temperature can be expressed mathematically, e.g., when the heater turns off, the
temperature, denoted by x, decreases exponentially x(t) = θ× e−K×t, where t is the time,
θ is the initial temperature, and K is a constant determined by the room; when turns on,
the temperature follows the function x(t) = θ × e−K×t + h × (1 − e−K×t), where h is a
constat depending on the power of the heater. Designers wish the temperature could be
kept between m and M degrees and the heater be turned on and off accordingly to make
users comfortable.
According to the above specification, we can derive the dynamic equations of the tem-

perature. Let a ∈ {0, 1} be a switch variable for heater control, we can derive the dynamics
of the PLC controlled thermostat as follows:

x′(t) = a×K × h−K × x (3)

Moreover, the design of PLC controlled thermostat is so simple that Estimator and
Adapter are not necessary to be listed. Let cold, comfortable and hot be three symbols
describing our feel, then Characterizer could be expressed as follows:

cold ⇔ x ≤ m

comfortable ⇔ m < x < M

hot ⇔ x ≥ M (4)



PLC WITH EDC 4529

Let heat and halt be two result strategies deduced from reasoner, then Reasoner could
be

over cold ⇔ cold ∧ ¬comfortable ∧ ¬hot
over hot ⇔ ¬cold ∧ ¬comfortable ∧ hot (5)

The effector translates the strategies into real numbers:

over cold ⇒ a = 1

over hot ⇒ a = 0 (6)

The hierarchial formal description of the thermostat design is the conjunction of Equations
(3), (4), (5) and (6), which is denoted by ST . So an EDC formula dST e expresses the
formal design of thermostat is valid for all time.

We can prove a property that people feel comfortable with the thermostat controlled
temperature. We formalize this property as follows.

Property 4.

dST e ⇒ �dm ≤ x ≤ Me

5. Conclusion. We have shown a unified formal method of modeling and validating the
PLC system by EDC in a hierarchical way: The PLC system is translated into the EDC
formulae hierarchically, the conjunction of the formal hierarchies expresses the invariant
design over time, the properties of the system is also written by the EDC formulae, and
then the verification procedure is performed under the EDC calculus. In future, we plan
to implement our method by a theory prover.

Acknowledgment. This work is partly supported by Grants (HCIC201110) of Guangxi
HCIC lab Open Fund, the Fundamental Research Funds for the Central Universities of
Lanzhou University, No. 860772, and NSF of China No. 60973147, the Doctoral Fund of
Ministry of Education of China under Grant No. 20090009110006 the NSF of Guangxi No.
2011GXNSFA018154 and 2012GXNSFGA060003, the Science and Technology Foundation
of Guangxi No. 10169-1, and Guangxi Scientific Research Project No. 201012MS274.

REFERENCES

[1] M. Heiner, A petri net semantics for the plc language instruction list, IEE Control, pp.161-166, 1998.
[2] L. Holloway and B. Krogh, Synthesis of feedback control logic for a class of controlled Petri nets,

IEEE Trans. on Automatic Control, vol.35, no.5, pp.514-523, 1989.
[3] J. G. Thistle and W. M. Wonham, Control problems in a temporal logic framework, International

Journal of Control, vol.44, no.4, pp.943-976, 1986.
[4] K. Sacha, Verification and implementation of dependable controllers, The 3rd International Confer-

ence on Dependability of Computer System DepCoS-RELCOMEX, pp.143-151, 2008.
[5] R. Wang, X. Song et al., Timed automata based programmable logic controller code synthesis,

Computers in Industry, pp.23-31, 2011.
[6] R. Wang, X. Song and M. Gu, Modeling and verification of program logic controllers with timed

automata, IET Proc. of Software, pp.127-131, 2007.
[7] R. Šusta, Verification of PLC Programs, Ph.D. Thesis, CTU-FEE Prague, 2003.
[8] O. Müller and T. Stauner, Modelling and verification using linear hybrid automata – A case study,

MISC, 1996.
[9] T. A. Henzinger, The theory of hybrid automata, Tech. Rep. UCB/ERL M96/28, EECS Department,

University of California, Berkeley, http://www.eecs.berkeley.edu/Pubs/TechRpts/1996/3019.html,
1996.

[10] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis
and S. Yovine, The algorithmic analysis of hybrid systems, Theoretical Computer Science, vol.138,
pp.3-34, 1995.



4530 A. HE, J. WU, S. YANG AND Y. ZHOU

[11] H. Dierks, Synthesizing controllers from real-time specifications, IEEE Trans. on CAD, vol.18, no.1,
pp.33-43, 1999.

[12] S. Nadjm-Tehrani and J. E. Stromberg, Formal verification of dynamic properties in an aerospace
application, Formal Methods in System Design, vol.14, no.2, pp.135-169, 1999.

[13] A. Platzer, A complete axiomatization of quantified differential dynamic logic for distributed hybrid
systems, Logical Methods in Computer Science, vol.8, no.4, pp.1-44, 2012.

[14] A. P. Ravn, Design of embedded real-time computing systems, Technical Report IDTR: 1995-170,
Dept. of Computer Science, Technical University of Denmark, 1995.

[15] M. Morin and S. Nadjm-Tehrani, Real-time hierarchical control, IEEE Software, vol.9, no.5, pp.51-
57, 1992.

[16] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Kluwer Academic Pub-
lishers, 1999.

[17] PID Controller, Wikipedia, http://en.wikipedia.org/wiki/PID controller.
[18] T. Wescott, PID without a PhD, Embedded Systems Programming, http://www.embedded.com/

2000/0010/0010feat3.htm, 2000.
[19] K. K. Tan, Q.-G. Wang and C. C. Hang, Advances in PID Control, Springer-Verlag, 1999.
[20] S7-200 Programmable Controller System Manual, SIEMENS.


