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Abstract. Gravitational search algorithm (GSA) is a type of optimization algorithm
based on the law of gravity and mass interactions, which is lacking of memory ability. To
enhance particle memory ability and search accuracy of GSA, a modified GSA (MGSA)
is developed. MGSA adopts the idea of local optimum solution and global optimum so-
lution from particle swarm optimization (PSO) algorithm into GSA. Furthermore, the
convergence property of MGSA is analyzed. The performance of MGSA has been eval-
uated on 12 standard benchmark functions, and the results were compared with GSA.
The obtained experimental results verified the effectiveness of MGSA in solving high-
dimensional benchmark functions. Additionally, to test MGSA performance in practical
issue, MGSA is applied into support vector machine (SVM) parameter settings, the re-
sults showed that suitable SVM parameters could be effectively found by MGSA.
Keywords: Gravitational search algorithm, Particle swarm optimization, Particle mem-
ory ability, Benchmark function, Support vector machine classification

1. Introduction. In solving optimization problems with a high-dimensional searching
space, the classical optimization algorithms cannot provide a suitable solution due to
the search space increasing exponentially with problem size [1,2]. Therefore, it is a hot
research topic that solving these problems with swarm optimization algorithm. Over
the last decades, various heuristic optimization algorithms have been developed for these
problems, such as simulated annealing [3], genetic algorithm [4], particle swarm optimiza-
tion (PSO) [5], and ant colony search algorithm [6]. These algorithms are all inspired by
swarm behavior in nature, and some algorithms could provide a better solution for some
particular problems than others, but none of these algorithms can be used as universal
one.

Gravitational search algorithm (GSA) is one of the latest heuristic optimization al-
gorithms based on Newtonian gravity law, which was firstly proposed by Rashedi [1,2].
GSA is inspired by the Newtonian gravity law that states: every particle in the universe
attracts each other with a force that is directly proportional to the product of their masses
and inversely proportional to the square of the distance between them [7]. In most cases,
GSA achieves better performance than other heuristic optimization algorithms [1].

However, the particle in GSA has no memory ability, which means GSA is a memory-
less algorithm. The purpose of this paper is to enhance particle memory ability of GSA
and improve its search accuracy. Hence, the idea of local optimum solution and global op-
timum solution from PSO is adopted into GSA; the convergence property of the modified
GSA (MGSA) is analyzed. 12 standard benchmark functions are applied to evaluate the
performance of MGSA. The obtained results were compared with standard GSA (SGSA).
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Finally, MGSA is applied into parameter setting issue of support vector machine classifi-
cation to demonstrate the effectiveness of MGSA in practical issue.
The rest of this paper is organized as follows. Section 2 provides a brief overview of

GSA. MGSA with particle memory ability is presented in Section 3. A comparative study
between SGSA and MGSA is presented in Section 4. MGSA is applied in support vector
machine (SVM) classification in Section 5. Finally, a conclusion is given in Section 6.

2. Brief Overview of Gravitational Search Algorithm. The particle behavior is re-
lated to the mass of particle in GSA. All these particles attract each other by the gravity
force, and this force causes a global movement of all particles towards the particle with
heavier mass. Each particle has four characteristics: position, inertial mass, active grav-
itational mass, and passive gravitational mass. The position of particle is corresponding
to the solution of the problem [1,2].
The position and velocity of particle in GSA are initialized randomly. The inertial

mass of ith particle at time t which is represented as Mi(t) can be calculated according
to Equations (1) and (2).

qi(t) =
fitnessi(t)− worst(t)

best(t)− worst(t)
(1)

Mi(t) =
qi(t)∑N
j=1 qj(t)

(2)

where, N is population size; qi(t) is an intermediate variable in particle mass calculation;
fitnessi(t) is the fitness value of ith particle at time t; best(t) and worst(t) denote the
best and the worst fitness value of the whole particle swarm at time t, respectively.
For a minimization problem, best(t) and worst(t) are defined as:

best(t) = min
j∈{1,...,N}

fitnessj(t) (3)

worst(t) = max
j∈{1,...,N}

fitnessj(t) (4)

For a maximization problem, best(t) and worst(t) are defined as:

best(t) = max
j∈{1,...,N}

fitnessj(t) (5)

worst(t) = min
j∈{1,...,N}

fitnessj(t) (6)

The mutual gravitational force imposing on ith particle from jth particle in the dth
dimension at time t is defined as:

F d
ij(t) =G(t)

Mi(t)×Mj(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)) (7)

where xd
i (t) and xd

j (t) are the position of ith and jth particle in the dth dimension at time
t; ε is a very small positive constant; Rij(t) is the Euclidian distance between ith and jth
particle at time t,

Rij(t) = ‖xi(t), xj(t)‖2 (8)

G(t) is gravitational constant at time t, it is defined as Equation (9).

G(t) = G0e
−α t

T (9)

where G0 and α are constant; T is the maximum iteration.
Then, the acceleration of ith particle at time t in each dimension can be calculated

by the law of Newtonian motion. To impose a stochastic characteristic to GSA, F d
ij(t)

is multiplied a random variable randj. randj is a random number in the interval [0,1].
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Suppose the total force imposing on ith particle in the dth dimension is the weighted sum
of all other particles, Mii(t) is the inertia mass of ith particle at time t, the acceleration
of ith particle in the dth dimension at time t is given as Equation (10).

adi (t) =

N∑
j=1,j 6=i

randjF
d
ij(t)

Mii(t)
(10)

where Mii(t) equals to Mi(t).
Finally, the next velocity and position of the ith particle is updated by Equations (11)

and (12).

vdi (t+ 1) = rand0 × vdi (t) + adi (t) (11)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (12)

where rand0 is a uniform random variable in the interval [0, 1]; xd
i (t) and vdi (t) represent

position and velocity of the ith particle in the dth dimension at time t, respectively.

3. Modified Gravitational Search Algorithm with Particle Memory Ability.

3.1. Brief overview of PSO algorithm. PSO is motivated from the simulation of the
flock of birds. This optimization approach updates the population of particles by applying
an operator according to the fitness information obtained from the environment so that
the individuals of the population can be expected to move towards the better solution.
In PSO, the position and velocity of the ith particle is updated by Equations (13) and
(14) [8-11].

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (13)

vdi (t+1) = w · vdi (t) + c1 · rand1 · (pbestdi (t)− xd
i (t)) + c2 · rand2 · (gbestd(t)− xd

i (t)) (14)

where, xd
i (t) and vdi (t) represent position and velocity of the ith particle in the dth dimen-

sion at time t, respectively; w is the inertia weight; c1 and c2 are positive constants, c1
adjusts the step-size of the particle flying to local optimum position, c2 adjusts the step-
size of the particle flying to global optimum position; pbesti = (pbest1i , pbest

2
i , · · · , pbestNi )

and gbest = (gbest1, gbest2, · · · , gbestN) represent the best previous position of the ith
particle and the best previous position among all the particles in the population, respec-
tively; N is population size; rand1 and rand2 are two random variables in the interval
[0, 1].

The memory ability of the ith particle is presented by pbesti and gbest. Therefore, PSO
uses a kind of memory for updating the velocity.

3.2. Enhancing particle memory ability in GSA. It can be found that only the
current position information plays a role in the updating procedure through the analysis
of Equations (11) and (12), so GSA is a memory-less algorithm. Meanwhile, due to the
velocity of ith particle accelerating constantly when it is reaching the optimum solution,
the velocity maybe rather fast, the particle will pass over the optimum solution. According
to the Newtonian gravity law that the force is inversely proportional to the distance
between them and the law of motion, the particle might vibrate repeatedly around the
optimum solution, which will decrease the searching accuracy of the whole algorithm.
This is illustrated in Figure 1, where star represents the global optimum solution.

To enhance particle memory ability in GSA, the idea of saving previous local optimum
solution and global optimum solution from PSO is adopted into GSA. The particle memory
ability in GSA is modified so that the particle can remember its own local optimum
solution and global optimum solution in the updating process [12,13], and the velocity
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Figure 1. Particle moving state of GSA

updating is adjusted to improve search accuracy. Therefore, Equation (11) is modified as
Equation (15).

vdi (t+1) = rand0 ·vdi (t)+c1 ·rand1 ·(pbestdi (t)−xd
i (t))+c2 ·rand2 ·(gbestd(t)−xd

i (t))+adi (t)
(15)

where the meaning of each symbol is the same as before. This algorithm is represented
as modified gravitational search algorithm (MGSA).

3.3. Convergence property analysis of MGSA. Equation (15) can be rewritten as:

vdi (t+ 1) = P1 + P2 + P3 (16)

where, P1 = c1 · rand1 · (pbestdi (t) − xd
i (t)); P2 = c2 · rand2 · (gbestd(t) − xd

i (t)); P3 =
rand0 · vdi (t) + adi (t).
The following two equations are analyzed to further understand the role of P1 and P2.{

vdi (t+ 1) = c1 · rand1 · (pbestdi (t)− xd
i (t))

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1)
(17){

vdi (t+ 1) = c2 · rand2 · (gbestd(t)− xd
i (t))

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1)
(18)

Suppose λ1 = c1 · rand1, u(t) = 1(t) is a unit step function,
dxd

i (t)

dt
= xd

i (t+ 1)− xd
i (t) is

one-order difference, Equation (17) can be simplified as Equation (19).

dxd
i (t)

dt
= λ1 · pbestdi (t) · u(t)− λ1 · xd

i (t) (19)

Equation (19) can be transformed into Equation (20) by Laplace transform.

Xd
i (s) =

λ1

s(s+ λ1)
· pbestdi (s) (20)

Therefore, the time-domain solution corresponding to Equation (20) is as Equation
(21).

xd
i (t) = pbestdi (t)(1− e−λ1t) (21)

For Equation (18), similar result will be obtained as

xd
i (t) = gbestd(t)(1− e−λ2t) (22)

where λ2 = c2 · rand2.
It can be found from Equations (21) and (22) that the particle position will gradually

reach local optimum solution and global optimum solution as time went on. And when
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the particle is moving around a certain balance point, Equations (21) and (22) can be
treated as vibrating resistance which prevents the particle to reach its own balance point,
i.e., optimum solution. Therefore, MGSA will finally converge to optimum solution.

3.4. Flow chart of MGSA. The steps of MGSA are the followings:
Step 1. Indentify search space.
Step 2. Set population size N and maximum iteration max it; and initialize particle

position randomly.
Step 3. Calculate fitness value for each particle according to test function.
Step 4. Update inertia mass Mi(t) according to Equations (1) and (2), and update G(t)

according to Equation (9).
Step 5. Calculate the mutual gravitational force according to Equation (7).
Step 6. Calculate acceleration and velocity according to Equations (10) and (15).
Step 7. Update particle position according to Equation (12).
Step 8. Iterate until the maximum iteration is reached or the setting accuracy is

satisfied.

4. Experimental Results. 12 standard benchmark functions are applied to verify the
performance of MGSA.

4.1. Benchmark functions. The benchmark functions are taken from [1,2,14]. These
functions are summarized in Tables 1-3, where d is the dimension of benchmark function,
fopt is the minimum value, i.e., optimum solution of the function and S is search space,
it is a subset of Rd.

Table 1. Unimodal test functions

Test function S fopt

F1(X) =
∑d

i=1 x
2
i [−100, 100]d 0

F2(X) =
∑d

i=1 |xi|+
∏d

i=1 |xi| [−10, 10]d 0

F3(X) =
∑d

i=1

(∑i
j=1 xj

)2
[−100, 100]d 0

F4(X) =
∑d−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] [−30, 30]d 0

Table 2. Multimodal test functions

Test function S fopt

F5(X) =
∑d

i=1−xi sin
(√

|xi|
)

[−500, 500]d −418.9829× d

F6(X) = 1
4000

∑d
i=1 x

2
i −

∏d
i=1 cos

(
xi√
i

)
+ 1 [−600, 600]d 0

F7(X) = π
d{10 sin

2(πy1) +
∑m−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] [−50, 50]d 0

+(yn − 1)2}+
∑m

i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4 , u(xi, a, k,m) =


k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

F8(X) = 0.1{sin2(3πx1) +
∑d

i=1 (xi − 1)2[1 + sin2(3πxi + 1)] [−50, 50]d 0

+(xd − 1)2[1 + sin2(2πxd)]}+
∑d

i=1 u(xi, 5, 100, 4)
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Table 3. Multimodal test functions with fix dimension

Test function S fopt

F9(X) =
(

1
500 +

∑25
j=1

1
j+

∑2
i=1 (xi−aij)6

)−1

[−65.53, 65.53]2 1

F10(X) =
∑11

i=1

[
ai − x1(b

2
i+bix2)

b2i+bix3+x4

]2
[−5, 5]4 0.00030

F11(X) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
[−5, 5]2 3

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
F12(X) = −

∑4
i=1 ci exp

(
−
∑6

j=1 aij(xj − pij)
2
)

[0, 1]6 −3.32

The first four functions F1 to F4 are unimodal. The convergence rate of the algorithm
is more interesting than the final results of optimization for unimodal functions. F5 to F8

are multimodal; having many local minimum solutions, the algorithm must be able to find
the optimum solution and should not be trapped in local optima. F9 to F12 are mutimodal
functions not having many local minima. A detailed description of the functions of F9,
F10 and F12 is given in Appendix A.

4.2. Comparison with SGSA. MGSA is applied to these minimization functions and
the results are compared with those from SGSA. In all cases, the population size is set to 50
(N = 50). The dimension is 30 (d = 30) and maximum iteration is 1000 (max it = 1000)
for functions of Tables 1 and 2; the maximum iteration is 500 for functions of Table 3.
In both SGSA and MGSA, G is set using Equation (9), where G0 is set to 100 and α

is set to 20 and T is the total number of iterations. In MGSA, according to experiment
result, c1 and c2 are set to 0.5.
(1) Unimodal high-dimensional functions.
Functions F1 to F4 are unimodal functions. In this case, the convergence rate of the

search algorithm is much more important than the final results because there are other
methods which are specifically designed to optimize them.
The results are averaged over 30 independent runs under different random seeds and

the average best-so-far solution, median of the best solutions, best of the best solutions
and standard deviation of the best solution in the last iteration of 30 runs are reported
in Table 4.
As Table 4 illustrates, MGSA provides a little better results than SGSA for functions

F1, F2 and F4. The largest difference in performance between SGSA and MGSA occurs
in function F3, average best-so-far and median best-so-far of MGSA is about 28 times
smaller than SGSA, best best-so-far of MGSA is about 800 times smaller than SGSA
and Std best-so-far of MGSA is about 11 times smaller than SGSA. These results owe to
enhanced particle memory ability. The average best-so-far solutions of SGSA and MGSA
over 30 run for F3 and F4 are shown in Figure 2. According to Figure 2, MGSA tends to
find the global optimum solution faster than SGSA for F3 and F4 and hence has a higher
convergence speed.
(2) Multimodal high-dimensional functions.
Multimodal functions have many local minimum solutions and almost are very difficult

to optimize. For multimodal functions, the final results are more important since they
reflect the ability of the algorithm to escape from poor local minima and locating near-
global optimum. Experiments have been done on functions F5 to F8 where the number
of local minima increases exponentially as the dimension of the functions increases.
The results are averaged over 30 independent runs under different random seeds and

the average best-so-far solution, median of the best solutions, best of the best solutions
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Table 4. Comparison of optimization result for functions F1 to F4 in Table 1

Test function SGSA MGSA

F1

Average best-so-far 1.76× 10−17 1.18× 10−17

Median best-so-far 1.66× 10−17 1.16× 10−17

Best best-so-far 1.03× 10−17 7.66× 10−18

Std best-so-far 4.90× 10−18 2.95× 10−18

F2

Average best-so-far 2.41× 10−8 1.77× 10−8

Median best-so-far 2.28× 10−8 1.68× 10−8

Best best-so-far 1.93× 10−8 1.17× 10−8

Std best-so-far 4.06× 10−9 3.36× 10−9

F3

Average best-so-far 263.84 9.49
Median best-so-far 230.49 8.28
Best best-so-far 104.07 0.13
Std best-so-far 101.99 9.04

F4

Average best-so-far 29.30 24.60
Median best-so-far 26.10 24.34
Best best-so-far 25.89 23.54
Std best-so-far 14.07 1.004

Figure 2. Comparison of performance of MGSA and SGSA for F3 and F4
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Table 5. Comparison of optimization result for functions F5 to F8 in Table 2

Test function SGSA MGSA

F5

Average best-so-far −2.73× 103 −6.81× 103

Median best-so-far −2.74× 103 −6.94× 103

Best best-so-far −3.63× 103 −8.66× 103

Std best-so-far 396.0352 1.18×103

F6

Average best-so-far 4.09 1.61
Median best-so-far 4.04 1.95
Best best-so-far 1.44 0.17
Std best-so-far 2.03 1.38

F7

Average best-so-far 0.11 0.02
Median best-so-far 1.29× 10−19 1.10× 10−19

Best best-so-far 1.03× 10−19 7.32× 10−20

Std best-so-far 0.15 0.05

F8

Average best-so-far 0.002 1.36× 10−18

Median best-so-far 2.24× 10−18 1.22× 10−18

Best best-so-far 1.42× 10−18 7.96× 10−19

Std best-so-far 0.005 4.43× 10−19

and standard deviation of the best solution in the last iteration of 30 runs are reported
in Table 5.
As Table 5 illustrates, MGSA performs better than SGSA for functions F5 and F6

because of enhanced particle memory ability. MGSA and SGSA act nearly the same in
functions F7 and F8. The average best-so-far solution of SGSA and MGSA over 30 run for
F5 and F6 are shown in Figure 3. According to Figure 3, MGSA tends to find the global
optimum solution faster than SGSA for F5 and F6 and hence has a higher convergence
speed.
(3) Multimodal low-dimensional functions.
Table 6 shows a comparison between SGSA and MGSA on the multimodal low-dimen-

sion functions of Table 3. The dimension of these functions is set according to Table 3.
The results are averaged over 30 independent runs under different random seeds and

the average best-so-far solution, median of the best solutions, best of the best solutions
and standard deviation of the best solution in the last iteration of 30 runs are reported
in Table 6.
As Table 6 illustrates, MGSA provides a little better results than SGSA for functions

F9 and F10. MGSA and SGSA have similar solutions for functions F11 and F12. The
performance of MGSA and SGSA are almost the same as Figure 4 confirms it.
In a word, MGSA performs better than SGSA, especially for some high-dimensional

benchmark functions.

5. Application. MGSA is suitable for high-dimension function optimization no mat-
ter it is unimodal or multimodal. Support vector machine (SVM) classification is a
high-dimensional classification problem. Therefore, the application of MGSA in SVM
classification is researched in this section.

5.1. Brief overview of SVM classification. SVM is a classification method based on
statistical learning theory [15-17]. SVM fits for finite samples. According to minimum
structure risk principle, SVM greatly solves shortcomings of neural network, such as local
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Figure 3. Comparison of performance of MGSA and SGSA for F5 and F6

optimum, over-fitting, and dimension disaster. Therefore, SVM has been widely applied
in such areas as image processing, safety detection and pattern recognition.

SVM includes SVM classification and SVM regression. The problem of SVM classifi-
cation is as follows. Given a training set T = {(xi, yi), i = 1, 2, · · · , l}, where xi ∈ RN

and yi ∈ {1,−1}, i = 1, 2, · · · , l. Whether the output yi is 1 (positive) or −1 (negative)
is decided by f(x) according to corresponding input xi. f(x) is a decision function on a
feature space F . It is defined as Equation (23).

f(x) = sign(W TΦ(x) + b) (23)

where, W is a vector in F ; b is offset; Φ(x) maps the input x to a vector in F . The W
and b in Equation (23) are obtained by solving an convex optimization problem:

min
W,b

P = 1
2
W TW + C

l∑
i=1

ξi

s.t. yi((W · Φ(xi)) + b) ≥ 1− ξi, i = 1, 2, · · · , l
ξi ≥ 0, i = 1, 2, · · · , l

(24)

where C is penalty factor, ξi, i = 1, 2, · · · , l is slack variables.
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Table 6. Comparison of optimization result for functions F9 to F12 in
Table 3

Test function SGSA MGSA

F9

Average best-so-far 4.7833 1.8662

n = 2

Median best-so-far 2.3937 1.0000
Best best-so-far 1.0638 0.9981
Std best-so-far 5.1720 1.1948

F10

Average best-so-far 0.0020 6.05× 10−4

n = 4

Median best-so-far 0.0021 6.95× 10−4

Best best-so-far 9.09× 10−4 3.35× 10−4

Std best-so-far 7.14× 10−4 1.64× 10−4

F11

Average best-so-far 3.0000 3.0000

n = 2

Median best-so-far 3.0000 3.0000
Best best-so-far 3.0000 3.0000
Std best-so-far 7.02× 10−16 1.44× 10−16

F12

Average best-so-far −3.3220 −3.3220

n = 6

Median best-so-far −3.3220 −3.3220
Best best-so-far −3.3220 −3.3220
Std best-so-far 0 0

Introducing Lagrange multipliers α and r, the corresponding Lagrange equation of
Equation (24) is as follows:

LP =
1

2
W TW + C

l∑
i=1

ξi −
l∑

i=1

αi(yi((W · Φ(xi)) + b)− 1 + ξi)−
l∑

i=1

riξi (25)

s.t. αi ≥ 0, ri ≥ 0, i = 1, 2, · · · , l
According to the definition of Wolf dual, partial derivative of Lp to W , b and ξi are set

to zero respectively.

∂Lp

∂W
= W −

l∑
i=1

αiyiΦ(xi) = 0

∂Lp

∂b
=

l∑
i=1

αiyi = 0

∂LP

∂ξi
= C − αi − ri = 0

Then, W =
l∑

i=1

αiyiΦ(xi),
l∑

i=1

αiyi = 0, C − αi − ri = 0.

Thus in turn leads to the dual optimization problem:

max
α

D = −1

2

l∑
i=1

l∑
j=1

yiyjαiαj(Φ(xi) · Φ(xj)) +
l∑

i=1

αi (26)

s.t.
l∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, · · · , l
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Figure 4. Comparison of performance of MGSA and SGSA for F10 and F11

where K(xi, xj) = (Φ(xi) · Φ(xj)) is a kernel function. Given the optimum solution of
Equation (26), the decision function can be written as:

f(x) = sign

(
l∑

i=1

α∗
i
yiK(xi, x) + b∗

)
(27)

where α∗
i is in the range [0 C]; b∗ = yj −

l∑
i=1

yiα
∗
iK(xi, xj).

5.2. Application in SVM classification. Feature selection and classifier parameter
optimization are two key aspects for enhancing classifier performance. And they were
done separately traditionally. With the wide applications of evolutionary optimization
methods in pattern recognition area, simultaneous feature selection and classifier param-
eter optimization is becoming a tendency due to encoding flexibility [18-20]. In this part,
MGSA is applied to select features and optimize SVM parameters simultaneously. And
it is represented as MGSA-SVM.

Gauss Radial Basis Function (RBF) is suitable for analyzing high-dimensional data and
it only has one parameter. Therefore, RBF is used as the kernel function of SVM. And it
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Feature selection information C σ
x1 x2 · · · xnF

xnF+1 xnF+2

Figure 5. Particle structure diagram

is defined as Equation (28).

K(x, x′) = exp

(
−‖x− x′‖2

σ2

)
, σ > 0 (28)

where σ is kernel parameter.
Therefore, kernel parameter σ and penalty factor C need to be optimized when RBF is

used in SVM classification. And these two parameters should be included in particle posi-
tion information, additionally, feature selection should be done simultaneously. Therefore,
feature selection information should also be included in particle position information. To
realize encoding of feature selection information, certain part xi in particle position infor-
mation is used to encode feature selection information F , xi ∈ [−xmax, xmax]. If xi > 0,
then F is selected. Else F is eliminated [21]. The particle structure diagram is illustrated
as Figure 5.
Here, x1, x2, · · · , xnF

is used to encode feature selection information; xnF+1 is used to
encode penalty factor C; xnF+2 is used to encode kernel parameters σ. nF is number of
features. Different classification problems are of different number of features, and particle
dimension is also different.
The purpose of MGSA-SVM is to enhance classification accuracy by optimizing feature

sets and SVM parameters simultaneously, and reduce number of selected features as few
as possible [18-22]. The designed object fitness function is:

fitness = θ × SVM accuracy + (1− θ)× feature num−1 (29)

where SVM accuracy is classification accuracy of SVM; feature num is number of se-
lected features; θ is the weight of SVM accuracy, which is used to adjust the proportion
of SVM accuracy and feature num, it is set as 0.8. Equation (29) ensures high fitness
if SVM accuracy is high and feature num is few.
To evaluate the classification performance of MGSA-SVM, Sonar data in UCI Machine

Learning Repository is used. And the experimental result is evaluated by cross validation
method [21]. Sonar data is divided into k subsets randomly. At each time, one subset is
used as testing set, and the others are merged into training set. Finally, the results are
averaged over k independent runs as classification result. Here, k is set to 12.
Other parameters are set as follows: Cmin = 2−5, Cmax = 215, σmin = 2−15, σmax = 23,

nF = 60 (Sonar data has 60 attributes), the dimension of the whole search space is set to
62.
To compare the performance of MGSA-SVM, SVM is used to train and test Sonar data,

and SGSA is also used to select features and optimize SVM parameters synchronously.
These two methods are represented as SVM and SGSA-SVM, respectively. And the result
is also evaluated by cross validation method.
As Table 7 illustrates, classification accuracy of MGSA-SVM is greatly enhanced com-

pared with SVM. The average overall hit rate of MGSA-SVM is about 18.13% higher
than SVM, and the average overall hit rate of MGSA-SVM and SGSA-SVM is very close,
therefore, they are effective methods for classification. Furthermore, the average of num-
ber of selected features of MGSA-SVM is also greatly reduced compared with SGSA-SVM



MODIFIED GRAVITATIONAL SEARCH ALGORITHM 4543

Table 7. Comparison of classification performance of SVM, SGSA-SVM
and MGSA-SVM in Sonar data

Algorithm Average overall hit rate Average of number of selected features
SVM 81.87% –

SGSA-SVM 98.16% 14.3
MGSA-SVM 100% 7.5

(about 2 times). This means that the feature selection ability of MGSA-SVM is better
than SGSA-SVM.

In a word, MGSA-SVM is better than SVM and SGSA-SVM in classification accuracy
and feature selection ability.

6. Conclusions. GSA is a powerful global optimization algorithm, but it is memory-
less. Therefore, the velocity updating of MGSA is modified so that it not only depends
on the joint effect of other particles of the whole system, but also is affected by its own
memory ability. The experimental result shows that MGSA is of superior performance in
benchmark function optimization and SVM classification. And MGSA is expected to be
applied in other areas.
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Appendix A

Table A.1. aij in F9

(aij) =

(
−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,

−32,−32,−32,−32,−32,−16,−16,−16,−16,−16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32

)

Table A.2. ai and bi in F10

i 1 2 3 4 5 6 7 8 9 10 11
ai 0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235 0.0246
b−1
i 0.25 0.5 1 2 4 6 8 10 12 14 16

Table A.3. aij and ci in F12

i aij, j = 1, 2, 3, 4, 5, 6 ci
1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2

Table A.4. pij in F12

i pij, j = 1, 2, 3, 4, 5, 6
1 0.131 0.169 0.556 0.012 0.828 0.588
2 0.232 0.413 0.830 0.373 0.100 0.999
3 0.234 0.141 0.352 0.288 0.304 0.665
4 0.404 0.882 0.873 0.574 0.109 0.038


