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Abstract. In this paper, we present an intelligent system for analyzing the probabilis-
tic dependencies that valuate the relationships of risk factors of cerebrovascular diseases
(CVDs). We demonstrate the process used by the system to diagnose CVDs. To con-
struct the system, we select age, gender, hypertension, diabetes mellitus, coronary heart
disease, and hyperlipemia as risk factors of CVDs, which are based on the advice of ex-
perienced CVD doctors. The associations of CVDs with these risk factors are analyzed.
To diagnose CVDs based on these risk factors objectively, we propose a novel system
model based on a Bayesian network (BN) and information gain. By training the model
using standard datasets, we obtain a diagnosis system that can automatically generate a
diagnosis result when a group of data incorporating the risk factors is inputted. Finally,
we test and evaluate the system using standard datasets and compare the results with
those of support vector machine analysis. We also present the evaluation results from
three experienced CVD doctors, who confirm that the diagnosis results of the system are
beneficial to the realistic diagnosis and prediction of CVDs.
Keywords: Bayesian network (BN), Cerebrovascular diseases (CVDs), Information
gain, Risk factor

1. Introduction. Cerebrovascular diseases (CVDs) are major causes of morbidity and
mortality worldwide [1]. CVDs are reportedly some of the leading factors of death caused
by human disease. The incidence rate ranges from 1� to 3� and 60% to 70% are disabled
among survivors worldwide. In the Asian population, the incidence rate of CVDs ranges
from 3% to 5%. CVDs pose a serious threat to human health [2], in addition to being
associated with high medical expenses and long term health care burden. Therefore, the
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diagnosis of CVDs and the determination of relationships among the risk factors of CVDs
are important.
Many researchers are committed to studying the risk factors of CVDs. Basic statistical

and epidemiological methods have revealed that hypertension, diabetes mellitus, coronary
heart disease, and hyperlipemia are the primary risk factors of CVDs [2]. Hypertension is
the highest [2] and hyperlipemia is the second highest risk factor. Some studies have also
focused on the relationships among these risk factors. For example, diabetes mellitus has
been found to be associated with a marked increase in coronary heart disease [3,4].
Some researchers have recently recognized the importance of CVD prediction and de-

termination of relationships among CVDs and related risk factors. Yeh [5] proposed a
predictive system for analyzing the eight important risk factors of CVDs, from which he
extracted 16 diagnosis classification rules. These rules are based on classification algo-
rithms and neural networks but are very complicated to apply in general cases even with
modifications. To solve this problem, we present a Bayesian network (BN)-based method
to reveal the complex, nonlinear multivariate associations among CVDs and related risk
factors. One of the main reasons for using BN to diagnose and predict CVDs is that the
relationship among the risk factors, whether significant or subtle, can be clearly observed
and quantified. These relationships are not fixed as rules based on simple comparisons.
The CVD system can also make probabilistic inferences, and full joint distribution is not
required in the process. With these advantages, BNs have been successfully applied in
many domains in recent years [6,7].
In this paper, information gain technology is introduced to construct an optimized BN.

Specifically, we construct a BN system that can diagnose and predict CVDs, as well as
provide a dependable analysis of CVDs and related risk factors. In developing the network-
based model, we use the K2 algorithm [8] to construct the network. Considering that the
result of this algorithm can be influenced by the ordering of the inputted attributes,
the optimization of the ordering has also been studied [7]. To optimize the method, we
propose an efficient method adopting information gain technology. This method uses a
“queue device” for obtaining the prior attribute ordering, which increases the objectivity
and effectiveness of the model.
The remainder of this paper is organized as follows. The proposed model and its details

are explained in Section 2. The experimental results are provided in Section 3 to show the
usefulness and validity of the proposed method. A discussion on the proposed method is
found in Section 4. Section 5 summarizes the paper.

2. Methods.

2.1. Dataset. The dataset consists of 825 patients from the Department of Neurology of
Dalian University, which is affiliated with the Xinhua Hospital (China). The criteria for
CVD diagnosis published by the World Health Organization in 1999 are adopted. Based
on the suggestions of clinical experts, the risk factors of CVDs mainly include age, gender,
hypertension, diabetes mellitus, coronary heart disease, and hyperlipemia. In this paper,
we use BN to model the interactions among these six risk factors and cerebral infarction
(CVD). In formulation, we denote the six risk factors and CVD as X1, X2, X3, X4, X5,

X6, X7. We discretize the attributes because some of them have continuous values and the
BN requires discrete states. Based on the data distribution, we discretize the attributes

X1, X2, X3, X4, X5, X6, X7 into grades 5, 2, 6, 6, 6, 2 and 2, respectively. In this study,
the BN is a probabilistic graphical model whose nodes represent six risk factors and CVD.
The edges indicate direct conditional dependencies between the connected nodes.
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2.2. Determining the initial attribute ordering. We construct the BN using the
popular and efficient K2 algorithm [8]. However, a prior sequence of the nodes is required
to use this algorithm [8]. For example, the node of any descendant cannot appear earlier
than the parent nodes in the node ordering [6]. In general, the prior node ordering is
specified based on professional knowledge or subjective experience, which significantly
affects the results of the BN model. Some researchers have constructed a maximum-
weight spanning tree to obtain the prior ordering [6,9]. In this paper, we use the results
of the information gain and a “queue device” to optimize the prior node ordering. For
the convenience of description, the nodes of BN are named as attributes, which represent
CVDs and related risk factors.

2.2.1. Information gain. The information gain IG (Xj;Xi) of a given attribute Xi with
respect to another attribute Xj is the reduction in uncertainty of the value of Xj when
we know the value of Xi (where i, j = 1, . . . , n), and n is the number of attributes in the
dataset. The information gain describes the quantity of information that the attribute
brings relative to that of the other attributes in the system. The uncertainty of the
value of Xj is measured based on its entropy H (Xj) if it is independent on others. The
uncertainty of the value of Xj when we know the value of Xi is measured based on the
conditional entropy of Xj given Xi, H (Xj |Xi). This information gain can be formulated
as IG (Xj;Xi) = H (Xj)−H (Xj |Xi) = H (Xi) +H (Xj)−H (Xi, Xj).

Given that k = 1, . . . ,m and m is the number of cases in the dataset, if Xj and Xi are
attributes with values from {Xj1, . . . , Xjk} and {Xi1, . . . , Xik}, respectively, the entropy

of Xj is obtained as H(Xj) = −
m∑
k=1

P (Xj = xjk) log2(P (Xj = xjk)). The conditional

entropy of Xj given Xi is obtained as H(Xj |Xi) = −
m∑
k=1

P (Xi = xik)H(Xj |Xi = xik).

Therefore, the information gain can be obtained as follows:

IG (Xj;Xi) = −
m∑
k=1

P (Xj = xjk) log2(P (Xj = xjk)) +
m∑
k=1

P (Xi = xik)H (Xj |Xi = xik).

2.2.2. Queue device. To determine the ordering of the attributes, we develop a “queue
device” that sorts the sequence of the attributes according to P (IG (Xi;Xj) > ε). Here,
ε is arbitrary and usually a high positive threshold. P is a probability distribution of the
information gain between two attributes. The attributes in front of the “queue device”
are those that bring more information to the system. On the other hand, the attributes
at the back of the “queue device” are those that bring relatively less information to the
system. If the probability distribution is similar among several attributes, we can sort
the attribute based on another value of ε. Table 1 shows an example of the information
gains among attributes of a specific data. This example illustrates the attribute ordering
by the queue device.

Based on the definition of the “queue device”, we set ε = 8. Thus, the content of
the “queue device” is as follows: P (IG (X1, :) > ε) = 1/7, P (IG (X2, :) > ε) = 2/7,
P (IG (X3, :) > ε) = 3/7, P (IG (X4, :) > ε) = 3/7, P (IG (X5, :) > ε) = 3/7, P (IG(X6, :)
> ε) = 3/7, and P (IG (X7, :) > ε) = 4/7.

After sorting these probabilities, the prior sequence of our system is as follows: {X1, X2}
is at the front of the sequence, {X3, X4, X5, X6} is at the middle, and X7 is at the
back. Considering that the probabilities of some of the attributes are similar in the
“queue device”, we randomly select ε = 6. The content of the “queue device” is as
follows: P (IG (X1, :) > ε) = 1/7, P (IG (X2, :) > ε) = 3/7, P (IG (X3, :) > ε) = 3/7,
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Table 1. Information gain among attributes

X1 X2 X3 X4 X5 X6 X7

X1 0 3.8599 3.1351 12.3107 4.2470 4.4753 4.2612

X2 9.2129 0 10.6102 7.8818 4.2606 2.2174 5.6047

X3 9.6801 8.7032 0 13.1538 3.8201 3.2413 4.1124

X4 9.2527 9.1091 12.9201 0 4.4217 2.2092 7.0881

X5 8.8923 8.1004 9.9915 6.9542 0 1.5519 5.6332

X6 8.6944 8.3198 10.3167 7.1590 4.1023 0 4.6129

X7 8.8824 8.9512 10.0161 8.6566 5.3500 2.0129 0

P (IG (X4, :) > ε) = 4/7, P (IG (X5, :) > ε) = 4/7, P (IG (X6, :) > ε) = 4/7, and P (IG
(X7, :) > ε) = 4/7.
Thus, the prior sequence of our system is as follows: {X1, X2, X3} is at the front of the

sequence, and {X4, X5, X6, X7} is at the back. Based on the contents of “queue device”, we
obtain the prior sequence as follows: {X1, X2} is at the front of the sequence, {X3, X4}
is at the middle, and {X5, X6, X7} is at the back. Certainly, the order of attributes
in {X1, X2} can be a random permutation of these attributes similar to {X3, X4} and
{X5, X6, X7}.

2.3. Constructing BN. In this paper, n risk factors of the problem domain [where Xi

(1 ≤ i ≤ n)] are represented as attributes (nodes) of BN. Each attribute Xi is assumed as
any state {r1, r2, . . . , rn}. A strong correlation between two attributes is represented as
an edge connecting these attributes, which is based on the minimum description length
scoring criterion [9]. The joint probability distribution can be computed using Equation
(1):

P (A,B,C) = P (C|A,B)× P (A)× P (B) (1)

To obtain a BN from real application with dataset D, we need to define a scoring
metric to describe the fitness between the selected BN model and observed dataset D
using Equation (2):

max
Bs

[P (Bs, D)] =
n∏

i=1

max
πi

[
qi∏
j=1

(ri−1)!

(Nij + ri−1)!

ri∏
t=1

αijt!

]
, (2)

which is adopted in literature [6,8]. Here, Bs is the structure of BN, αijt is the number

of cases in the dataset for which Xi = t and πi = j. Nij =
ri∑
t=1

αijt, and πi is the parent

attribute of Xi. We let φi denote a list of the unique parents of Xi as shown in D. If

Xi has no parent, then we define φi as the list φ, where φ represents the empty set of
parents. Then, qi = |φi |.
Using the metric shown by Equation (2), we compute the score of each BN. The heuristic

greedy search algorithm is used to obtain the most optimal structure. Next, we assume an
attribute as the root. Based on the obtained prior attribute ordering, we incrementally add
parent attributes that can increase to the highest extent the probability of the resulting
structure. Thus, we locally identify the most optimal structure of BN. We then determine
the parent attributes of the attributeXi. By repeating the procedure, we obtain the parent
attributes of all attributes. Finally, the construction of BN is completed and named as
the BN-IG system.

2.4. Algorithm for constructing the BN-IG system.
Input: dataset
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Output: BN-IG system
Procedure:

1. Perform data preprocessing.
2. Compute the information gain. Xi and Xj are attribute variables for i 6= j and

i, j = 1, . . . , n; and n is the number of attributes in the dataset. Each Xi and Xj

has m cases; k = 1, . . . ,m, where m is the number of patients in the dataset. Then,
our dataset can be represented as an m× n matrix, in which the (i, j)th component
xik denotes the value of the i-th case and k-th attribute. The information gain is
computed using

IG (Xi;Xj) =H (Xi)−H (Xi |Xj)

= −
m∑
k=1

P (Xi = xik) log2(P (Xi = xik)) +
m∑
k=1

P (Xj = xjk)H(Xi |Xj = xjk).

3. Use the “queue device” P (IG (Xi;Xj) > ε) to rank these attributes.
4. Construct the BN.
4.1. Repeat for each case and set initialized parameter as πi = φ:

Pold = f(Xi, πi) = K2(Xi, πi);Flag = true.

K2 is the score determined using Equation (2). We use the K2 score to guide
the search for the optimal (with search-algorithm constraints) BN.

4.2. Iterate for each flag = true and |πi| < u. Update z = Pred (Xi)− πi that max-
imizes K2 (Xi, πi ∪{z}) and Pnew = f (Xi, πi ∪{z}). Here, Pred (Xi) is the prior
attribute ordering and u is the allowable maximum number of parent attributes
(in our experiments, u = 4).

4.3. If (Pnew > Pold), then Pold = Pnew and πi = πi ∪{z}.

3. Results. The system is implemented using MATLAB software in an IBM computer
with a 2.0 GHz processor and Windows XP operating system.

3.1. Results of the CVD dataset. The fivefold cross-validation approach is adopted
to verify the robustness of the system. The dataset is randomly divided into five mutu-
ally exclusive and exhaustive groups. At each experiment, one group is selected as the
test set and the other four groups are mixed together as the training set. The BN-IG
system is constructed from the training set, and the performance is estimated using the
corresponding test set.

The multivariate nonlinear associations among CVDs and related risk factors are shown
in Figure 1. Given the states of attributes, the posterior probabilities of related CVDs
can be computed from the BN. Then, the state of any risk factor can be predicted based
on the probabilities. For example, Figure 1 shows that CVD (X7) directly depends on age
(X1), gender (X2), hypertension (X3) and diabetes mellitus (X4). In this case, we can
calculate the probability of each subject q = P (X7 |X1, X2, X3, X4) based on the states
of X1, X2, X3 and X4 from the BN in Figure 1. If q ≤ 0.5, we can predict the state
of the attribute CVD(X7) as “absent”; otherwise, its state is “present”. The results are
consistent with those in literature [10,11].

By comparing the predicted value with the true value, the predictive accuracy can be
obtained. For example, the predictive accuracy of jointly using X1, X2, X3 and X4 to
predict X7 is 0.76. If we separately use the four attributes, the accuracy of X1, X2, X3

and X4 is 0.58, 0.55, 0.72 and 0.70, respectively. Compared with the other groups of
attributes such as X1, X2 and X5, the combinations of X1, X2, X3 and X4 have the
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Figure 1. The BN of the CVD. hp, dm, chd, lip, and CVDs denote hy-
pertension, diabetes mellitus, coronary heart disease, hyperlipemia, and
cerebral infarction, respectively.

highest prediction. This result indicates that considering the states of the risk factors
altogether is important in diagnosing CVDs.
Once the BN-IG system has been constructed, we can apply it for clinical CVD diag-

nosis. If we want to determine whether a patient is suffering from CVD (X7), we can
diagnose the possibility of X1, X2, X3 and X4. Thus, a diagnosis with relatively high
accuracy in shorter time and less cost can be obtained.
The permitted maximum number of parent nodes is set as four in our experiment.

Therefore, some relationships are weaker than the others and not displayed. Some research
results have suggested that men have a much higher death rate from coronary heart disease
than women (http://www.health.state.ny.us/nysdoh/heart/aboutchd.htm). We believe
that the relationship between coronary heart disease and gender is weaker than the other
associations in our research. Therefore, the relationship is not displayed in Figure 1.

3.2. Comparison with other models.

3.2.1. Comparison with stepwise logistic regression based on predictive accuracy. To vali-
date further the effectiveness of the BN-IG system, we compare it with another multivari-
ate analysis method: stepwise logistic regression. In this experiment, we apply stepwise
logistic regression to the CVD dataset. This method has been previously used [6,12].
For the computation, we adopt multinomial regression to determine automatically which
attribute to add or drop from the system in the software Statistical Package for the Social
Sciences. Considering that logistic regression only supports a single dependent attribute,
we view each risk factor as a dependent attribute and construct the corresponding re-
gression system. In most cases, we achieve similar results with the proposed BN-IG
system. For example, when we view X5 as the dependent attribute, the stepwise logistic
regression adds X1, X3, X4 and X6. No other attribute can be added to the system.
Comparing these results with the results of the proposed system, stepwise logistic regres-
sion selects the same attribute relationships as the BN-IG system in most of experiments.
The predictive accuracy of the two systems is shown in Table 2. We can observe that
the predictive accuracy of the proposed BN-IG system is higher than that of the stepwise
logistic regression system.

3.2.2. Comparison with support vector machine (SVM) analysis based on the area under
the receiver operating characteristic (ROC) curve (AUC). To evaluate the performance of
the proposed BN-IG system, we measure the performances of the BN-IG and SVM systems
in terms of sensitivity, specificity, and classification accuracy. ROC analysis is conducted,
and the AUC of the two systems is compared. AUC determination is a standard method
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Table 2. The predictive accuracy between stepwise logistic regression and
BN-IG

accuracy hp dm chd lip CVD
Stepwise logistic regression 0.71 0.75 0.74 0.71 0.77

BN-IG 0.74 0.77 0.79 0.75 0.78

Table 3. The experimental results on CVD dataset

System Sensitivity Specificity Accuracy AUC
BN-IG 0.81 0.80 0.80 0.816
SVM 0.77 0.72 0.77 0.789

Figure 2. The ROC curve and AUC of BN-IG and SVM

of estimating the accuracy of a probabilistic pattern-recognition system [13]. Generally,
larger AUC values indicate higher classifier performance.

For comparison with the SVM system, we implement the SVM system developed using
the MATLAB and LIBSVM (URL: http://www.csie.ntu.edu.tw/ cjlin/libsvm) software
packages. We linearly scale each attribute to the range [0,+1] to avoid numerical prob-
lems. Radial basis function is selected as the kernel function. We apply grid search and
cross-validation to identify the best SVM parameters. Grid search is performed within the
range log2C ∈ {−2,−1, . . . ,+9,+10} and log2 γ ∈ {−10,−9, . . . ,+1,+2}. The parame-
ter {C, γ} that leads to the highest overall fivefold cross-validation classification accuracy
in the training dataset is selected. Then, we use the best parameters to create an SVM
classifier in the training dataset.

We randomly selectX6 as an example for comparing the performance of the two systems
using the CVD dataset. We split the CVD dataset into training and testing sets at a 80%
: 20% ratio. Table 3 lists the experimental results, and Figure 2 shows the ROC curve
of the two systems. The BN-IG system is found to perform better than the SVM system
using X6 of the CVD experiment.

State-of-the art SVM implementations typically have a training time complexity that
scales between O (m) and O (m2.3), where m denotes the number of training samples
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Table 4. The description and experimental results on UCI datasets

Dataset
Number of Number of Accuracy of Accuracy of Accuracy of

Cases Attributes SVM (%) K2 (%) BN-IG (%)
Iris 150 4 99.33 97.47 99.67

Monks 432 6 67.13 65.23 67.82
BUPA 345 6 58.55 58.03 59.71

Breast cancer 683 9 97.07 94.88 96.49
PID 768 8 77.73 74.48 76.17
Crx 653 15 66.77 64.32 64.47
Wine 138 13 71.74 67.39 72.46

Ionosphere 351 34 95.44 89.74 95.73

[14]. The complexity can be further scaled down to O (m) with the use of a parallel
mixture. However, these observations are only empirical and not based on theory. The
overall complexity of BN-IG is O (n3). Although the complexity of BN-IG is higher
than that of SVM, more functions are provided in BN-IG. Analysis reveals that the
BN-IG system performs classification, supports probabilistic reasoning, and determines
associations between attributes without multiple comparison problems.

3.2.3. Comparison with SVM and K2 using the standard dataset. To evaluate further the
performance of the proposed BN-IG system, we test the system using the eight standard
datasets from the UCI repository (http://www.ics.uci.edu/∼mlearn/MLRepository.html)
and compare the results with SVM and the K2 algorithm. The specific procedures and
parameters of SVM are similar to that in Section 3.2.2. The prior node ordering is
randomly selected in the K2 algorithm. Other procedures and parameters of K2 are
the same as that of BN-IG. These datasets are Iris, Monks, BUPA, Breast cancer, Pima
Indians Diabetes, Crx, Wine and Ionosphere. The description and fivefold cross-validation
experimental results using the UCI datasets are shown in Table 4. The accuracy of BN-IG
is better than that of K2 algorithm. More nodes correspond to higher accuracies of two
algorithms in most conditions. The accuracy using the five datasets is improved compared
with that using SVM. The accuracy using SVM is slightly lower than that using the three
datasets in the BN-IG system. The experimental results show that our system is superior
to SVM in most conditions. The accuracy of the K2 algorithm is slightly lower than
that of SVM, which results from the randomness of the node ordering. In addition, the
BN-IG system and K2 algorithm have classification functions and probabilistic reasoning
capabilities.

4. Discussions. By applying the BN-IG system to the CVD dataset, we can find non-
linear multivariate probabilistic associations among CVDs and related risk factors. For
example, coronary heart disease directly depends on age, hypertension, diabetes mellitus,
and hyperlipemia. We also find weaker associations of gender and CVDs with coronary
heart disease, consistent with other reports [15]. Benner et al. [15] indicated that nearly all
patients with coronary heart disease have prior exposure to at least one of the major coro-
nary heart disease risk factors, including hypertension, hyperlipemia, cigarette use, and
diabetes mellitus. Among them, hypertension and hyperlipemia are the two most common
and readily modifiable coronary heart disease risk factors. Moreover, 85% of all coronary
heart disease deaths occur in people aged 65 years or more. Coronary heart disease risk in-
creases with age. Benner et al. [15] also reported that coronary heart disease is related to
the color of skin, levels of income and education, as well as family history. However, these
indicators are weakly associated with other risk factors of CVDs and thus not considered.
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In the present study, we emphasize on the diagnosis of CVDs and associations among
most risk factors of CVDs (http://www.health.state.ny.us/nysdoh/heart/aboutchd.htm).

We find that the attributes of age, hypertension, and diabetes mellitus are the strongest
ones for diagnosing and predicting CVD (Figure 1). We observe that three nodes are di-
rectly associated with CVDs and related risk factors, consistent with previous reports
[16-19]. For example, hypertension has an important function in CVDs and is the most
important modifiable factor and second most important risk factor (after age) for hem-
orrhagic and ischemic stroke (CVD is the main disease of ischemic stroke) [16]. Diabetes
mellitus is a risk factor of ischemic stroke [17]. Experimental data also suggest several
gender differences in the risk of cerebral infarction (a CVD) in young patients [18]. Lina
[19] used multivariate forward logistic regression analysis and found that the strongest
predictors of CVD risk factors are age, gender, level of education, and length of residence,
which are similar to our results. However, the level of education and length of residence
are found to be the main risk factors, different from the present results. The discrepancy
may be due to the differences in the method of analysis, data content, and race of subjects.

We construct the BN-IG system that can be used to determine how risk factors influence
one another and quantify the extent of the influences. The BN-IG system also shows
the result of interactions under clinical conditions. This method differs from univariate
analysis, which focuses on specific regional effects. For example, in a comparison between
CVD and normal groups, univariate analysis focuses on determining whether a specific
factor such as hypertension has different levels between groups. By contrast, the BN-IG
system examines the interactions among related risk factors such as age, hypertension,
diabetes mellitus, and gender that commonly affect the diagnosis of CVD. We can also
obtain the degree of influence of each factor on the diagnosis of CVD. Therefore, these
results can be applied in clinical diagnosis, in which the risk of disease is based on age,
gender, as well as extent of hypertension and diabetes mellitus of a clinical patient.

Furthermore, we can utilize the results as a guide for treating and preventing related
CVDs. For example, we identify age, hypertension, and diabetes mellitus as the main risk
factors of related CVDs. Thus, the focus of the treatment and prevention of related CVDs
should be on hypertension and diabetes mellitus. Furthermore, we can also construct a
BN-IG system for other illnesses to provide a rapid and general diagnosis.

Expert knowledge and experience can also be incorporated into the BN-IG system.
For example, if an expert knows that a strong association exists between coronary heart
disease and high blood pressure, we can develop an effective model that includes only the
association between these two attributes. Expert knowledge on the probability distribu-
tion of an attribute can also be incorporated into the process of model generation. For
example, if an expert believes that the probability of CVD being normal is 0.97, we can
accordingly set the prior distribution of this feature.

This study has some limitations. The BN-IG system is generated using an optimization
search algorithm in which the solution is an NP-hard problem. In the experiment, we
adopt a greedy algorithm to search the most optimal network structures. The greedy
search algorithm is an optimal algorithm. Therefore, the resultant network may not be a
globally optimal result. In the future, a better optimal algorithm can be applied to obtain
more stable results.

5. Conclusions. In this study, we develop a method using information gain technology
to construct an optimized BN-IG system for a specific clinical CVD dataset. The BN-IG
system can be directly used to diagnose and predict CVDs as well as reveal the complex,
nonlinear multivariate associations among CVDs and related risk factors. We find the
strongest factors of diagnosis and predictors for CVDs that can help diagnose and predict
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this disease. This method can also be used to construct BN systems for other illnesses and
provide functions for probabilistic inferences, which may contribute to effective diagnosis
and prediction and significantly help patients and doctors.
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