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Abstract. This paper proposes a virtual reference feedback tuning (VRFT) method that
can compensate for a dead zone. To this end, first, by focusing on the control error, we
modify the performance index such that it is minimized in VRFT. Then, we present anal-
ysis results pertaining to the optimality conditions and their related filters in the mod-
ified VRFT method. Next, a VRFT method with dead-zone compensation is proposed
by combining the modified VRFT method and a dead-zone compensation technique. The
proposed VRFT method with dead-zone compensation is applied to an experimental ul-
trasonic motor control system, and its effectiveness is verified.
Keywords: Controller parameter tuning, Virtual reference feedback tuning (VRFT),
Dead-zone, Ultrasonic motor

1. Introduction. Ultrasonic motors (USMs) have excellent features such as compact
size, low weight, no driving sound, high torque even at low speeds, and high holding
torque. In addition, theoretically, USMs do not generate electromagnetic noise and are
not influenced by electromagnetic fields. Given their electromagnetic compatibility, USMs
show promise for use in the development of nursing aids and surgery robots that can work
safely near patients with pacemakers and can work reliably under magnetic resonance
imaging devices. However, USMs cannot be modeled easily from physical analysis be-
cause of their friction force. Furthermore, USMs have a dead zone that is sensitive to
temperature and load changes, thus leading to the deterioration of control performance.
Therefore, a simple and effective controller tuning method is desirable.

Many types of USM control methods have been investigated thus far. However, as
stated above, model-based control methods are not practical because it is difficult to
model USMs. Moreover, although a fuzzy-based control method [1] and a particle swarm
optimization (PSO)-based control method [2] have been proposed as model-free control
methods for USMs, these methods require iterative experiments or periodic reference
signals, thus resulting in an extended controller tuning duration.

Direct controller parameter tuning methods have received considerable attention as
alternative model-free controller tuning schemes in the past decade. Iterative feedback
tuning (IFT) [3], which was the first such proposed method, requires iterative experi-
ments. In contrast, virtual reference feedback tuning (VRFT) [4] and fictitious reference
iterative tuning (FRIT) [5, 6] are based on input and output data for noniterative experi-
ments, which means that these methods have greater practicality than IFT. Furthermore,
VRFT and FRIT have been analyzed theoretically from the viewpoint of optimality [4, 7].
The results of these analyses point out that VRFT and FRIT are suitable for controlling
USMs; however, because these methods were developed for linear systems, they do not
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often perform well with systems having a dead zone such as USMs. To cope with the
dead-zone nonlinearity, an FRIT scheme with dead-zone compensation was proposed and
its effectiveness was verified [8]. VRFT is known to provide control performance compa-
rable to that of FRIT. However, VRFT with dead-zone compensation has not been fully
investigated, and it is unclear whether VRFT based on the same technique as in [8] would
afford good control performance.
In this paper, we propose a VRFT scheme that compensates for dead zones. To this

end, we first modify the performance index to be minimized in VRFT by focusing on
the control error. The standard VRFT method focuses on control input, whereas the
standard FRIT method focuses on control output. Therefore, the abovementioned mod-
ified VRFT framework is different from the existing direct controller parameter tuning
methods. We present the optimality conditions and their related filters for the modified
VRFT method. Next, we propose a VRFT method with dead-zone compensation by com-
bining the modified VRFT method and the dead-zone compensation technique proposed
in [8]. The proposed VRFT method with dead-zone compensation is then applied to an
experimental USM control system, and its effectiveness is verified.

2. Modified VRFT. We consider a closed-loop system configuration, shown in Figure
1, where the plant described by G(z) is assumed to be a linear single-input and single-
output discrete-time system and the controller described by C(z,θ) is assumed to be
parameterized as follows:

C(z,θ) =
βa(z)Tθa

βb(z)Tθb
=

∑na

i=1 θ
a
i β

a
i (z)∑nb

i=1 θ
b
iβ

b
i (z)

, (1)

where β = [βa(z)T ,βb(z)T ]T is a known (na + nb)-dimensional vector of linear discrete
time rational transfer functions and θ = [(θa)T , (θb)T ]T ∈ Rna+nb is a tunable controller
parameter vector. In the figure, u(k), y(k), r(k) and e(k) denote the control input, control
output, reference signal, and control error, respectively.

r(k) u(k)e(k) y(k)

+

controller

C(z,  ) G(z)

plant

θ

−

Figure 1. Standard feedback control system

Although there are many expressions of control objectives, one natural objective is to
find a parameter by minimizing the following performance index:

JN(θ) =
1

N

N∑
k=1

(T (z,θ)r(k)−M(z)r(k))2,

where T (z,θ) = G(z)C(z,θ)/(1 + G(z)C(z,θ)) is the closed-loop transfer function and
M(z) is a reference model. VRFT is a parameter tuning method for approximately
achieving this goal. In the standard VRFT method, we first calculate a virtual reference
signal r̄(k) such that y0(k) = M(z)r̄(k) and then find an optimal parameter by minimizing
the performance index as follows:

JN
V (θ) =

1

N

N∑
k=1

(u0(k)− C(z,θ)(r̄(k)− y0(k)))
2,
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where u0(k), y0(k), k = 1, . . . , N are the (initial) input and output data from a one-shot
experiment.

Instead of JN
V , we now consider the following modified performance index:

JN
MV(θ) =

1

N

N∑
k=1

(e0(θ, k)− ē(k))2,

where e0(θ, k) = C−1(z,θ)u0(k) and ē(k) = r̄(k) − y0(k). In VRFT, the performance
index JN

V is used for evaluating the difference between the ideal and actual control inputs.
Similarly, the performance index used in FRIT [5] yields the difference between the ideal
and actual control outputs. In contrast, JN

MV focuses on the difference between the ideal
and actual control errors. Therefore, the minimization of JN

MV affords a novel controller-
tuning framework from among several direct controller-tuning methods. We refer to this
JN
MV-based controller parameter tuning as “modified VRFT”.

3. Analysis of Optimality for Modified VRFT. In [4, 7], the optimality of VRFT
and FRIT is investigated and the related filter conditions are presented. In this section,
we present the results related to the optimality and filter conditions of the modified VRFT
by applying the techniques used in [4, 7].

For analysis, we introduce an ideal controller Cd(z) that satisfies the following condition:

M(z) =
G(z)Cd(z)

1 +G(z)Cd(z)
.

Furthermore, we use a filter F (z) for the input and output data and consider the following
performance index:

JN
MVF(θ) =

1

N

N∑
k=1

(eF0 (θ, k)− ēF (k))2,

where eF0 (θ, k) = C−1(z,θ)F (z)u0(k) and ēF (k) = r̄(k) − F (z)y0(k). By denoting a
minimal point of JN(θ) as θ∗ = [(θa∗)T , (θb∗)T ]T , we define ∆Ca(z) and ∆Cb(z) such
that

Cd(z) =
βa(z)Tθa∗ +∆Ca(z)

βb(z)Tθb∗ +∆Cb(z)
.

Additionally, we introduce the following extended family of controllers

C+(z,θ+) =
βa+(z)Tθa+

βb+(z)Tθb+
,

where βa+(z) = [βa(z)T ,∆Ca(z)]T , βb+(z) = [βb(z)T ,∆Cb(z)]T , θ+ = [(θa+)T , (θb+)T ]T ,
θa+ = [(θa)T , θana+1]

T and θb+ = [(θb)T , θbnb+1]
T . Using the extended controller C+(z,θ+),

we consider the extended performance index

JN+(θ+) =
1

N

N∑
k=1

(
G(z)C+(z,θ+)

1 +G(z)C+(z,θ+)
r(k)−M(z)r(k)

)2

.

Note that θ+∗ = [(θa+∗)T , (θb+∗)T ]T = [[(θa∗)T , 1], [(θb∗)T , 1]]T is a global minimizer of
JN+(θ+), and Cd(z) = C+(z,θ+∗) holds.

As in [4, 7], we assume that the measured signals can be considered as realizations
of stationary and ergodic stochastic processes when N → ∞. Then, we can obtain the
frequency-domain representations of JN

MVF(θ) and JN+(θ+) as follows:

JMVF(θ) =
1

2π

∫ π

−π

∣∣∣∣(1− Cd(e
jω)

C(ejω,θ)

)
1−M(ejω)

M(ejω)
F (ejω)

∣∣∣∣2Φy0dω,



4324 Y. WAKASA, K. TANAKA AND S. NAKASHIMA

J+(θ+) =
1

2π

∫ π

−π

∣∣∣∣ G(ejω)C+(ejω,θ+)

1 +G(ejω)C+(ejω,θ+)
−M(ejω)

∣∣∣∣2Φrdω,

where Φy0 and Φr are the spectral densities of y0(k) and r(k), respectively.
The second-order Taylor expansion of J+(θ+) around its global minimizer θ+∗ can be

represented in two ways:

Ĵ+(θ+) =
1

2π

∫ π

−π

∣∣∣∣(1− C+(ejω,θ+)

Cd(ejω)

)
M(ejω)(1−M(ejω))

βb+(ejω)Tθb+

βb+(ejω)Tθb+∗

∣∣∣∣2 Φrdω,

and

Ĵ+(θ+) =
1

2π

∫ π

−π

∣∣∣∣( Cd(e
jω)

C+(ejω,θ+)
− 1

)
M(ejω)(1−M(ejω))

βa+(ejω)Tθa+

βa+(ejω)Tθa+∗

∣∣∣∣2Φrdω.

Comparing Ĵ+ and JMVF, we obtain the following theorem.

Theorem 3.1. Suppose that the controller is parameterized in (1). Then, the relationship

argmin
θ

JMVF(θ) = argmin
θ

Ĵ+([[(θa)T , 0], [(θb)T , 0]]T )

holds if F (z) satisfies one of the following two conditions:

|F (ejω)|2 =
∣∣∣∣M2(ejω)

βa+(ejω)Tβa+

βa+(ejω)Tβa+∗

∣∣∣∣2 Φr

Φy0

,

|F (ejω)|2 =
∣∣∣∣(1−M(ejω))M(ejω)C(ejω,θ)

βb+(ejω)Tβb+

βb+(ejω)Tβb+∗

∣∣∣∣2 Φr

Φu0

.

From the above theorem, we obtain the following theorems for two special cases wherein
the controller or its inverse is linearly parameterized. We first consider the case when
the controller is expressed as C(z,θ) = βa(z)Tθa. In the same manner as that discussed
above, we introduce the extended performance index Ja+(θa+) and define its second-order

approximation Ĵa+(θa+). Then, we obtain the following theorem.

Theorem 3.2. Suppose that the controller is linearly parameterized as given by C(z,θ) =
βa(z)Tθa. Then, the relationship

argmin
θa

JMVF(θ
a) = argmin

θa
Ĵa+([(θa)T , 0]T )

holds if F (z) satisfies the following condition:

|F (ejω)|2 =
∣∣1−M(ejω)C(ejω,θ)

∣∣2 Φr

Φu0

.

When the controller is expressed as C(z,θ) = 1/(βb(z)Tθb), we obtain the following
theorem. The notations here are the same as those in the above mentioned case.

Theorem 3.3. Suppose that the inverse of the controller is linearly parameterized as given
by C(z,θ) = 1/(βb(z)Tθb). Then, the relationship

argmin
θb

JMVF(θ
b) = argmin

θb
Ĵ b+([(θb)T , 0]T )

holds if F (z) satisfies the following condition:

|F (ejω)|2 =
∣∣M(ejω)

∣∣4 Φr

Φy0

.
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The above results show that the modified VRFT scheme with appropriate filters yields
the minimizer for the restricted second-order approximation of the original performance
index. This suggests that we can obtain a reasonable controller parameter tuning result
by using the modified VRFT as in the standard VRFT and FRIT [4, 7].

4. Modified VRFT with Dead-Zone Compensation. Herein, we propose a con-
troller tuning method by combining the modified VRFT method with a dead-zone com-
pensation technique such that systems with a dead zone, such as ultrasonic motors, can
be controlled more precisely.

We consider a closed-loop system configuration, as shown in Figure 2, where the plant is
assumed to consist of a dead-zone property and a linear system G(z) connected in series,
and the overall controller consists of a proportional-integral-derivative (PID) controller
C(z,θ) and a dead-zone compensator. The transfer function of the PID controller can be
expressed as follows:

C(z,θ) =
KP (1− z−1) +KI +KD(1− z−1)2

1− z−1
,

where KP , KI and KD are the proportional, integral, and derivative gains, respectively,
and θ = [KP , KI , KD]

T contains the PID gains to be tuned. Although in this setup, we
consider a PID controller as the typical controller, we can use parameterized controllers
with other structures, as described in the previous sections.

The basic system configuration is explained as follows [2, 8]. If the inverse of a dead-
zone property is used as the dead-zone compensator, the dead-zone property in the plant
is neutralized by the dead-zone compensator. In such an ideal case, only the linear system
G must be controlled appropriately using the controller C, thereby resulting in a simple
but effective control method.

To realize the above mentioned situation, we consider the following dead-zone function
Da representing a dead-zone property:

Da(u) =

 u+ a u < −a
0 −a ≤ u ≤ a
u− a u > a

where a is a dead-zone parameter that shows that [−a, a] (a > 0) is a dead-zone interval.
For the dead zone Da, we define the following function.

D̂a(û) =

 û− a û < 0
0 û = 0
û+ a û > 0

C(z,  )
r(k)

dead-zone

plant

u(k)e(k) y(k)
G(z)

a

a-a

-a

dead-zone
compensator

+ -

PID linear
system

θ

overall controller

controller

Figure 2. System configuration with dead-zone compensation
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The function D̂a is a right inverse function of Da because û = Da(D̂a(û)) holds for any

û ∈ <. Therefore, using D̂a, we compensate for the dead zone in the plant.
In [8], the above mentioned dead-zone compensation technique is combined with FRIT

and its effectiveness is demonstrated. When the same technique is applied to the standard
VRFT, the resultant performance index is as follows:

JN
VD(θ) =

1

N

N∑
k=1

(u0(k)− D̂a(C(z,θ)(r̄(k)− y0(k))))
2.

However, the minimization of this function is slightly difficult because the output signal
of D̂a cannot take the values in [−a, a]. Therefore, even with dead-zone compensation,
the standard VRFT technique cannot yield good tuning results.
To overcome this difficulty, we apply the dead-zone compensation technique to the

modified VRFT method. In this case, the performance index is represented by

JN
MVD(x) =

1

N

N∑
k=1

(ê(x, k)− ē(k))2, (2)

where ê(x, k) = C−1(z,θ)Da(u0(k)), ē(k) = r̄(k)− y0(k) and x = [θT , a]T .
We summarize the modified VRFT procedure with dead-zone compensation as follows.

Modified VRFT procedure with dead-zone compensation

Step 1: Set initial PID parameter θ0, reference signal r(k), for k = 1, . . . , N , and
reference model M(z).

Step 2: From a closed-loop experiment that is performed without dead-zone compen-
sation, obtain input data u0(k) and output data y0(k).

Step 3: Calculate control errors ê(x, k) and ē(k). Next, find the optimal (or subopti-
mal) parameter, x∗, that minimizes the performance index (2) to obtain optimal (or
suboptimal) PID parameter θ∗ and dead-zone parameter a∗.

Because the minimization problem in Step 3 is usually nonconvex, the use of stochastic
multi-point search techniques is practical and effective for solving it. In this study, we
use the covariance matrix adaptation evolution strategy (CMA-ES) algorithm [9] to solve
this problem.

5. Experimental Results. In this section, we verify the effectiveness of the proposed
modified VRFT method with dead-zone compensation (M-VRFT-D) by applying it to
an experimental USM control system (Canon UA60), as shown in Figure 3. The USM,
magnetic brake, and encoder are connected to the same shaft. The USM is driven using a
phase difference scheme, and its rotation angle (i.e., the control output) is obtained using

USM magnetic brake encoder

Figure 3. Experimental USM control system
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Figure 4. Dead-zone characteristics of USM

Figure 5. Initial control input and output

Figure 6. Control input and output using modified VRFT with dead-zone
compensation

the encoder. The phase difference (i.e., the control input) can be adjusted between −90◦

and 90◦ in steps of 1.406◦. A 0.1-N·m load can be generated using the electromagnetic
brake. Figure 4 shows the USM velocity both with and without the load. This figure
shows that the dead zone for the input changes depending on the presence of the load. In
fact, the dead zone is sensitive to the load magnitude. Therefore, we should be able to
compensate for the dead zone easily and achieve good control performance, particularly
when it is either difficult or impossible to estimate the load magnitude.

5.1. Typical case and detailed discussion. We adopt a PID controller and tune the
PID gains and dead-zone parameter according to the method presented in the previous
section. We set initial PID gains as θ0 = [KP, KI, KD]

T = [4, 0.1, 1]T and a reference
model as M(z) = (0.04z2+0.003722z+0.01086)/(z2−1.637z+0.6703) which is obtained
by discretizing (0.001s + 1)2/(0.005s + 1)2 with a sampling time of 1 ms. The reference
signal is a sinusoid with a magnitude of 15◦ and a period of 2 s. We set N = 2000 to
evaluate the control performance within 2 s and impose the load. The resulting initial
control input and output data are shown in Figure 5.

From a pre-experiment calculations, the search region is given by {x|xlb ≤ x ≤ xub}
with xlb = [0, 0, 0, 0]T and xub = [400, 4, 2000, 90]T . In the CMA-ES algorithm, the
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Figure 7. Control input and output using standard VRFT

Figure 8. Control input and output using modified VRFT

maximum number of generations was set to 500 as the stopping criterion. The algorithm,
which was programmed in MATLAB, was run on a computer with a 2.4 GHz Core 2 Duo
CPU and 1024 MB RAM. The computation time was 41.8374 s. As a result, we obtained
the PID gains θ∗ = [33.5975, 0.0274, 175.7096]T and dead-zone parameter a∗ = 30.9896.
The control input and output are shown in Figure 6.
For comparison, we executed the standard and modified VRFT methods without dead-

zone compensation. Under the standard VRFT method without dead-zone compensation,
we obtained PID gains of θ∗ = [57.6561, 0.1452, 0]T . Under the modified VRFT without
dead-zone compensation, we obtained PID gains of θ∗ = [103.9016, 0.1760, 2000]T . The
control inputs and outputs are shown in Figures 7 and 8, respectively. In these fig-
ures, VRFT and M-VRFT denote the standard VRFT and the modified VRFT methods,
respectively. These figures show that the modified VRFT method with dead-zone com-
pensation affords the best control performance, especially at low speeds.

5.2. Comparison of control performance under various conditions. To show the
effectiveness of the proposed VRFT method for various cases, we carried out experiments
by changing some of the conditions used in the previous subsection. The control perfor-
mance is evaluated using the performance index J =

∑N
k=1(y(k) −M(z)r(k))2. For the

initial experiment, we use J1
0 =

∑N
k=1(y0(k)− r(k))2 and J2

0 =
∑N

k=1(y0(k)−M(z)r(k))2.
We refer to the case in the previous subsection as “Case 1”. In all other cases, the
conditions that we changed from Case 1 are as follows.

Case 2: Coefficient of the denominator in the reference model is changed to 0.0025.
Case 3: Coefficient of the denominator in the reference model is changed to 0.01.
Case 4: Amplitude of the reference signal is changed to 10◦.
Case 5: Amplitude of the reference signal is changed to 20◦.
Case 6: Initial PID gains are changed to θ0 = [2, 0.1, 1]T .
Case 7: Initial PID gains are changed to θ0 = [6, 0.1, 1]T .

In Table 1, we list the performance index values for Cases 1-7. Although it might be
slightly difficult to see from Figures 6-8 that the modified VRFT method with dead-zone
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Table 1. Control performance

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Initial exp. (J1

0 ) 8151.0 8151.0 8151.0 7374.4 10591.0 1386.7 9780.0
Initial exp. (J2

0 ) 7252.1 7743.5 6656.5 6553.9 9429.6 1326.0 8481.0
VRFT 326.2 22.5 5786.7 118.3 633.8 650.4 674.0
M-VRFT 780.3 181.6 389.1 338.7 1006.9 132.0 325.0
M-VRFT-D 82.2 124.2 142.7 49.6 139.0 30.2 62.4

compensation is superior to the other methods, the same is clear in Table 1, with Case 2
being the only exception.

6. Conclusion. In this paper, we proposed a modified VRFT method and presented the
related optimality conditions. In addition, we proposed a VRFT method with dead-zone
compensation by combining the modified VRFT method and a dead-zone compensation
technique. Finally, we applied it to an experimental USM control system and verified its
effectiveness. The main contributions of this paper are summarized as follows.

• A novel framework for direct controller parameter tuning was developed as the mod-
ified VRFT, and its effectiveness was verified through optimality analysis.

• It was shown that the modified VRFT method can be used effectively by combining
it with dead-zone compensation.

Because many motors and actuators, which are not limited to USMs, have intrinsic
dead-zone properties, the proposed method is widely applicable and effective for control-
ling such devices. Moreover, the dead-zone compensation technique used in this paper
could be extended to other nonlinearities such as hysteresis and saturation, which we will
pursue in future works.
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