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Abstract. The problem of synthesizing stabilizing controllers is solved for a class of nD
systems when the closed-loop system is required to remain positive. More precisely, the
stabilizing local state-feedback controllers are characterized in terms of Linear Programs,
for a generic class of nD systems.
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1. Introduction. During the last few decades, n-dimensional (nD) systems theory (also
refereed to as multidimensional systems theory) has received considerable attention from
many researchers. The particular case when n = 2 was introduced in the seventies [15, 29]
and then it was generalized to the general nD case (n ≥ 2). These models have found
many applications in, for instance, digital data filtering, image processing [25], and in
systems described by partial differential equations [23]. Some important problems, such
as realization, controllability or minimum energy control, have been extensively studied
for specific classes of nD systems [15, 18, 25]. Even though most of the classes considered
are recursive in the upper right quadrant of the 2D plane, a great variety of models have
been used: Roesser [25], Fornasini and Marchesini [10], Kurek [22], 2D general models
[17, 20], and many other variations. It is remarkable that even if these models are closely
related the existing results apply only to the particular model in consideration.

The main goal of this paper is to present a numerically reliable framework to deal
with these classes of nD systems for nonnegative states. One of the main advantages of
using such unified framework is that one is free to use the more convenient model for a
particular task and still apply the same methodology. Hence, it is obvious that many of
the existing results turn out to be just particular cases of this more general approach, as
we shall show later on.

As mentioned above, this paper concentrates on positive nD systems, that is, nD sys-
tems that keep invariant the positive orthant, or in other words, that their trajectories
evolve in the positive orthant “when they start in it”. Recently, there has been out-
standing growing interest in both the theory and application of positive 1D systems (see
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[2, 3, 4, 30, 31]) and nD systems (see [1, 8, 13, 19, 20, 26, 27] and references therein). In
particular, we concentrate on the derivation of conditions for the stabilization of positive
nD systems described by a generic model. Albeit the stabilization problem has previously
been investigated, it is not completely solved for several classes of nD systems. The pre-
vious works concentrate on specific classes of 2D/nD systems, so they are not generally
applicable. Starting from the results in [2], and using ideas borrowed from [14], easily
checkable conditions for stabilization are derived in terms of Linear Programs (LP) for a
generic class of nD systems. This represents a significant innovation with respect to the
previous contributions since dealing with LP instead of the classical LMI conditions allows
us to tackle the important problem of designing stabilizing state-feedback controllers with
structured or bounded gains.
It is well known that many real systems involve bounded controls, with these bounds

arising from physical constraints. These constraints must be considered during controller
design, as they have a significant destabilizing effect. Although the design of controllers
for 1D systems with constraints has been extensively studied (see for example [6, 11]
and references therein), this is not the case for n-D systems, where they have not been
fully considered. These constraints are allowed in this paper to be nonsymmetric, as it is
frequent in practical control problems [7, 24, 28]. As far as the authors know, these types
of constraints have not been considered for n-D systems: see [1, 5, 8, 12, 13], for related
problems in the context of 2-D systems.
This paper is organized as follows. Section 2 presents the problem formulation and

some preliminary results, whereas Section 3 presents the stabilization problem of positive
nD systems. Section 4 derives the main results of positive state-feedback stabilization. In
Section 5, we extend these results for a control law forced to be bounded. Finally, after
providing an illustrative example in Section 6, some conclusions are given in Section 7.

Notation: Rn
+ denotes the non-negative orthant of the n-dimensional real space Rn

and N the set of natural numbers. MT denotes the transpose of the real matrix M. For a
real matrix M, M > 0 denotes a positive matrix, that is, a matrix with all its components
positive (i.e., mij > 0), whereas M ≥ 0 denotes a nonnegative matrix, with none of its
components negative (i.e., mij ≥ 0); ρ(M) denotes its spectral radius. I denotes the
identity matrix of appropriate order.

2. Problem Formulation and Preliminaries. Consider a linear homogeneous nD sys-
tem described by the following general model

x(i1 +N1, . . . , in +Nn) =

N1∑
p1=0

· · ·
Nn∑

pn=0

(Ap1...pnx(i1 + p1, . . . , in + pn)

+ (Bp1...pnu(i1 + p1, . . . , in + pn))

(1)

where i1, . . . , in, N1, . . . , Nn ∈ N, Ap1...pn ∈ Rq×q and Bp1...pn ∈ Rq×m are given matrices,
x(i1, . . . , in) ∈ Rq is the nD state vector and u(i1, . . . , in) ∈ Rm is the nD input vector. In
order to enhance readability we shall assume that N = N1 = · · · = Nn. The results can
be easily extended to different values of N .
The boundary conditions for (1) are assigned in X = X−N

∪
X−N+1

∪
· · ·
∪
X0 where

Xt := {(k1, k2, . . . , kn) ∈ Nn : ∃ i ∈ {1, . . . , n} such that ki = t and kj ≥ t ∀j 6= i}.

Remark 2.1. The proposed model of the nD system considered here is quite generic, in
the sense that it comprises standard 2D and nD systems, such as the general 2D state-
space model, 2D general models, Fornasini-Marchesini, Roesser and Atasi representations
[8, 16, 17, 19, 22, 25, 29]. Thus, the results provided in the rest of the paper comprise
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previous results in the literature. This class of system is selected as it simplifies the
development of necessary and sufficient stabilization conditions and provides an efficient
solution based on linear programming (LP).

Remark 2.2. For simplicity, A00···0 is assumed to be zero.

For further development, we need to introduce the following useful notation which can
be considered as a generalization of the Hurwitz product of two matrices.

Definition 2.1. Let {Ap1,p2,...,pn}0≤p1,p2,...,pn≤N = {A100...0, A010...0, . . . , ANN...N} be a set of
matrices. Then we define

St1,t2,...,tn(A100...0, A010...0, . . . , ANN...N)

to be the sum of all matrix products ∏
0≤j1,...,jn≤N

A
kj1,...,jn
j1,...,jn

(2)

such that ∑
0≤j1,...,jn≤N

kj1,...,jn · (j1, . . . , jn) = (t1, t2, . . . , tn).

The matrix products in (2) represent all possible paths from the set of boundary con-
ditions to the point (t1, t2, . . . , tn).

Now, making use of the above definition, the explicit formula of the trajectories of
System (1), with u = 0, with respect to assigned boundary conditions in X , is given by

x(i1, . . . , in) =
∑

(`1,`2,...,`n)∈X

S(i1−`1,i2−`2,...,in−`n)

(A100...0, A010...0, . . . , ANN...N)x(`1, `2, . . . , `n).

(3)

Next, we introduce the notion of positivity that we will use throughout the paper.

Definition 2.2. System (1) with zero input (u = 0) is said to be positive, if for any
given nonnegative boundary conditions, the resulting state is always nonnegative, that is,
x(i1, . . . , in) ≥ 0 for all i1, . . . , in ∈ N.

The following result shows how one can check the positiveness of System (1). The
conditions can be easily deduced from previous results in the literature, for example see
[19].

Proposition 2.1. System (1) with zero input (u = 0) is positive if and only if Ap1...pn ≥ 0,
∀0 ≤ p1, . . . , pn ≤ N .

3. Stabilization of Positive nD Systems. This section studies the stabilization prob-
lem of the class of linear homogeneous nD systems described by the generic model (1).

We aim to study the (asymptotic) stability of System (1) in the sense that, once the
boundary conditions are assigned, then for every ε > 0 there exists an integer T ∈ N such
that

‖x(i1, i2, . . . , in)‖ ≤ ε ∀ (i1, i2, . . . , in) ∈ Xh with h ≥ T.

As a consequence, in order for this definition to make sense, one necessarily needs to
assume that the given boundary conditions are bounded, i.e., there exists K such that for
i = 1, 2, . . . , n it must hold that

‖xi(i1, i2, . . . , in)‖ ≤ K
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for all (i1, i2, . . . , in) ∈ X`, ` = −N,−N + 1, . . . , 0 where

x(i1, i2, . . . , in) = [x1(i1, i2, . . . , in), x2(i1, i2, . . . , in), . . . , xn(i1, i2, . . . , in)]
T .

This will be assumed throughout the rest of the manuscript.
Before we present a result on the stability of the nD systems studied here, we need to

introduce an auxiliary simple result that will be used later.

Lemma 3.1. Consider System (1) with u = 0; Assume that this system is positive (i.e.,

Ap1...pn ≥ 0, ∀0 ≤ p1, . . . , pn ≤ N) and
∑N

p1=0 . . .
∑N

pn=0Ap1...pn = (A100...0+A010...0+ · · ·+
ANN...N) is Schur. Then,

1) ρ(A100...0 + A010...0 + · · ·+ ANN...N) ≥ ρ(Ai1,...,in) for any 0 ≤ i1, . . . , in ≤ N .
2) ρ(Ak

i1,...,in
) ≥ ρ(Ai1,...,in) for any 0 ≤ i1, . . . , in ≤ N and k ∈ N.

3) ρ((A100...0 + A010...0 + · · · + ANN...N)
k) ≥ ρ(A100...0 + A010...0 + · · · + ANN...N) for any

0 ≤ i1, . . . , in ≤ N and k ∈ N.

Proof: It is well known that every nonnegative matrix has a positive real eigenvalue
whose modulus is greater than or equal to the modulus of any other eigenvalue. Suppose
now that v0 is the maximal eigenvector of A100...0 associated with λ0. Then,

(A100...0 + A010...0 + · · ·+ ANN...N)v0 = λ0v0 + A010v0 + · · ·+ ANN...Nv0 ≥ λ0v0

which implies that the maximal eigenvalue of (A100...0 + A010...0 + · · ·+ ANN...N) is larger
than the eigenvalue of A100...0. Obviously, this also holds for Ai1,...,in , which proves 1). Note
that, in particular, this implies that each one of A100...0, A010...0, . . . , ANN...N is Schur. One
can easily prove, using the same type of arguments, statements 2) and 3).
The following theorem characterizes the stability of the unforced System (1).

Theorem 3.1. Consider System (1) with u = 0 and assume that the system is positive.

If
∑N

p1=0 . . .
∑N

pn=0Ap1...pn is a Schur matrix, then System (1) is asymptotically stable.

Proof: Let ε > 0 be given. We need to show that there exists T ∈ N such that

‖x(i1, . . . , in)‖ = ‖
∑

(`1,`2,...,`n)∈X

S(i1−`1,i2−`2,...,in−`n)(A100...0, . . . , ANN...N)x(`1, `2, . . . , `n)‖

≤ ε,

for (i1, . . . , in) ∈ Xh with h ≥ T . One can verify, by using Lemma 3.1, that (A100...0 +
A010 . . . 0+· · ·+ANN...N) is Schur, or equivalently, (A100...0+A010 . . . 0+· · ·+ANN...N)

s → 0
as s → ∞, implies that if (i1, i2, . . . , in) ∈ Xh then S(i1−`1,i2−`2,...,in−`n)(A100...0, . . . , ANN...N)
→ 0 as h → ∞ and therefore ‖x(i1, . . . , in)‖, and, consequently, x(i1, . . . , in), also goes to
zero. This concludes the proof.

Remark 3.1. It is easy to check that previous results on stability of 2n/nD positive
systems are particular cases of the previous theorem, see for instance [29, Proposition
2], [21, Theorem 3], [13, Lemma 3.2] or [27, Lemma 5]. Hence, all the examples in
these previous works perfectly fit in the proposed framework. We remark that existing
conditions in the literature are shown to be efficiently checkable via LMI conditions. In
contrast, we propose a different approach based on LP conditions which allow us to address
the nontrivial problem of state-feedback stabilization with constraints on the controls and
states.
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4. State-Feedback Stabilization. In this section, we investigate the existence of local
state-feedback control laws of the form

u(i1, . . . , in) = Kx (i1, . . . , in), (4)

such that the resulting nD closed-loop system is positive and asymptotically stable, where
K is the controller gain to be determined. First, if one uses directly the results of Theorem
3.1 and Proposition 2.1, the following sufficient conditions for the nD closed-loop system
to be positive and asymptotically stable are obtained:{

i) For all 0 ≤ p1, . . . , pn ≤ N the matrices Ap1...pn +Bp1...pnK are nonnegative.

ii)
∑N

p1=0 . . .
∑N

pn=0(Ap1...pn +Bp1...pnK) is a Schur matrix.
(5)

In order to derive a constructive solution to this problem we shall make use of LP
techniques. For this purpose, we now recall a classical result for 1-D systems that will be
used in the sequel.

Proposition 4.1. [2] Let M be a nonnegative matrix. Then, the following conditions are
equivalent:

1. The 1-D system x(k+1) = Mx(k) is asymptotically stable (or equivalently, ρ(M) <
1).

2. There exists a positive vector λ > 0 such that (M− I)λ < 0.

The matricesK that provide positivity and asymptotic stability for the resulting closed-
loop system are now characterized.

Theorem 4.1. System (1), under the feedback law (4), is positive and asymptotically sta-
ble for any nonnegative boundary conditions if there exist vectors d ∈ Rq and y1, . . . , yq ∈
Rm such that

d > 0(∑N
p1=0 . . .

∑N
pn=0Ap1...pn − I

)
d+

(∑N
p1=0 . . .

∑N
pn=0Bp1...pn

)∑q
i=0 yi < 0

ai1,...,ini,j dj + bi1,...,ini yj ≥ 0, 0 ≤ i1, . . . , in ≤ N, 1 ≤ i, j ≤ q,

(6)

with d = [d1 . . . dq]
T , Ai1,...,in = [ai1,...,ini,j ] and BT

i1,...,in
= [(bi1,...,in1 )T . . . (bi1,...,inq )T ]. More-

over, a stabilizing gain matrix K is given by

K = [d−1
1 y1 . . . d−1

q yq]. (7)

Proof: Define the appropriate matrix K = [k1 . . . kq] with columns ki = d−1
i yi, for

i = 1, . . . , q. It holds that all the Ap1...pn +Bp1...pnK matrices are nonnegative since, from
the last set of inequalities in condition (6), we have that, for i, j = 1, . . . , q, it is fulfilled
that

0 ≤ (ai1,...,ini,j dj + bi1,...,ini yj)d
−1
j = ai1,...,ini,j + bi1,...,ini kj = [Ai1,...,in +Bi1,...,inK]i,j,

i.e., the closed-loop system is positive. Next, we show the stability of the closed-loop
system. Using the defined gain K, we obtain by simple calculations that

N∑
p1=0

. . .

N∑
pn=0

Bp1...pnKd =
N∑

p1=0

. . .

N∑
pn=0

Bp1...pn

(
q∑

i=1

yi

)
,

which, substituted in the second inequality of condition (6), leads to(
N∑

p1=0

. . .

N∑
pn=0

[Ap1...pn +Bp1...pnK]− I

)
d < 0.
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As d > 0 (first inequality in (6)), one can apply Proposition 4.1 to concluding that the

matrix
∑N

p1=0 . . .
∑N

pn=0[Ap1...pn +Bp1...pnK] is Schur, which, by Theorem 3.1, amounts to
saying that the closed-loop system is asymptotically stable.

Remark 4.1. We emphasize that the LP formulation proposed in Theorem 4.1 does not
impose any restriction on the dynamics of the governed system. In fact, any matrix Ap1...pn

may have negative components, or equivalently, the free system may not be positive. In
this case, the proposed synthesis methodology can be viewed as enforcing a nonnegative
system to be positive (This is the controlled positivity problem studied for other systems
in [4, 9]).

Remark 4.2. We must point out that it is possible to obtain an alternative formulation in
terms of LMIs by using diagonal Lyapunov matrices. However, we have selected a Linear
Programming formulation, as it simplifies adding bounds on the controls or states, as is
now shown.

5. Controlled Positivity under Bounded Controls and States. Results are now
provided to solve the stabilization problem under bounded controls and nonnegative
states. More precisely, the stabilizing controller is specifically designed to respect non-
symmetric bounds on the controls. That is, Theorem 4.1 is now extended to include the
presence of nonsymmetric bounds on controls.
Thus, consider the following general set of nD systems with control constraints:

x(i1 +N1, . . . , in +Nn) =∑N1

p1=0 · · ·
∑Nn

pn=0(Ap1...pnx(i1 + p1, . . . , in + pn) +Bp1...pnu(i1 + p1, . . . , in + pn)),
−u ≤ u(i1, . . . , in) ≤ ū

(8)
The problem that is solved now is the following: determine a bounded state-feedback

control law u(i1, . . . , in) = Kx (i1, . . . , in), such that the resulting closed-loop system is
positive and asymptotically stable, together with a bound x̄ on the the set of boundary
conditions, to ensure that −u ≤ u(i1, . . . , in) ≤ ū, with u > 0 and ū > 0 given, as long as
the boundary conditions fulfill 0 ≤ x(`1, `2, . . . , `n) ≤ x̄, for (`1, `2, . . . , `n) ∈ X .
First, we need to introduce an auxiliary result.

Lemma 5.1. Consider System (1) with u = 0 and assume that the system is positive and
there exists x such that ((A100...0 + A010...0 + · · ·+ ANN...N)− I)x ≤ 0. Then,

[0 ≤ x(`1, `2, . . . , `n) ≤ x, (`1, . . . , `n) ∈ X ] ⇒ [0 ≤ x(i1, i2, . . . , in) ≤ x,

∀(i1, i2, . . . , in) ∈ Nn]

Proof: Obviously, if (A100...0 + A010...0 + · · ·+ ANN...N)x ≤ x, then (A100...0 + A010...0 +
· · · + ANN...N)

kx ≤ x, for all k ∈ N. Hence, it can be checked by contradiction that∑
(`1,`2,...,`n)∈X (S(i1−`1,i2−`2,...,in−`n)(A100...0, A010...0, . . . , ANN...N))x ≤ x for all (i1, . . . , in) ∈

N. Therefore,

x(i1, . . . , in) =
∑

(`1,`2,...,`n)∈X

S(i1−`1,i2−`2,...,in−`n)(A100...0, A010...0, . . . , ANN...N)x(`1, `2, . . . , `n).

≤
∑

(`1,`2,...,`n)∈X

S(i1−`1,i2−`2,...,in−`n)(A100...0, A010...0, . . . , ANN...N)x ≤ x

for all (i1, . . . , in) ∈ N.

Theorem 5.1. Consider the following LP problem in the variables x̄ = [x̄1 . . . x̄q]
T ∈ Rq,

y1, . . . , yq ∈ Rm and z1, . . . , zq ∈ Rm:
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

x̄ > 0,
yi ≥ 0 for i = 1, . . . , q,
zi ≥ 0 for i = 1, . . . , q,(∑N

p1=0 . . .
∑N

pn=0Ap1...pn − In
)
x̄+

(∑N
p1=0 . . .

∑N
pn=0Bp1...pn

)∑q
i=0(yi − zi) < 0,∑q

i=0 yi ≤ ū,∑q
i=0 zi ≤ u,

ai1,...,ini,j x̄j + bi1,...,ini (yj − zj) ≥ 0 for 0 ≤ i1, . . . , in ≤ N, 1 ≤ i, j ≤ q,

(9)
with Ai1,...,in = [ai1,...,ini,j ] and BT

i1,...,in
= [(bi1,...,in1 )T . . . (bi1,...,inq )T ]. Then, system (1) un-

der the state-feedback control u(i1, . . . , in) = Kx(i1, . . . , in) is positive and asymptotically
stable, when

K = [x̄−1
1 (y1 − z1) · · · x̄−1

n (yn − zn)].

Moreover, it holds that −u ≤ u(i1, . . . , in) ≤ ū for any boundary condition satisfying
0 ≤ x(`1, `2, . . . , `n) ≤ x̄, (`1, `2, . . . , `n) ∈ X .

Proof: Select any x̄ = [x̄1 · · · x̄n]
T , y1, . . . , yn and z1, . . . , zn that solve (9) and define

K1 = [x̄−1
1 y1 · · · x̄−1

n yn] andK2 = [x̄−1
1 z1 · · · x̄−1

n zn]. As x̄ > 0, ai1,...,ini,j x̄j+bi1,...,ini (yi−zi) ≥
0, if and only if ai1,...,ini,j + bi1,...,ini x̄−1

j (yi − zi) ≥ 0, we obtain that the matrix Ai1,...,in +
Bi1,...,inK is nonnegative, with K = K1 −K2. The inequality(

N∑
p1=0

. . .

N∑
pn=0

Ap1...pn − In

)
x̄+

(
N∑

p1=0

. . .

N∑
pn=0

Bp1...pn

)
q∑

i=0

(yi − zi) < 0

is equivalent to (
N∑

p1=0

. . .

N∑
pn=0

(Ap1...pn +Bp1...pnK)

)
x̄ < 0.

Since x̄ > 0 and
(∑N

p1=0 . . .
∑N

pn=0(Ap1...pn +Bp1...pnK)
)
≥ 0 are positive, then by using

Proposition 4.1, we can conclude that the matrix
(∑N

p1=0 . . .
∑N

pn=0(Ap1...pn +Bp1...pnK)
)

is also Schur.
Furthermore, by Lemma 5.1, the trajectory of the closed-loop system is such that

0 ≤ x(i1, i2, . . . , in) ≤ x̄ for any boundary condition satisfying 0 ≤ x(`1, `2, . . . , `n) ≤ x̄,
(`1, `2, . . . , `n) ∈ X . Using this fact and recalling that yi ≥ 0 and zi ≥ 0, or equivalently,
K1 ≥ 0,K2 ≥ 0 and

∑q
i=0 yi ≤ ū,

∑q
i=0 zi ≤ u, it is easy to see that the state-feedback

control u(i1, . . . , in) = Kx(i1, . . . , in) fulfills −u ≤ u(i1, . . . , in) ≤ ū, for any boundary
condition satisfying 0 ≤ x(`1, `2, . . . , `n) ≤ x̄.

6. Numerical Example. In order to illustrate the proposed design methodology for
controlled positivity, we deal with an nD system described by (1) with N = 2, n = 3 and
the following matrices:

A021 =

 −1.5 0.1 0.2
0.2 0.5 0.3
0 0 0.1

, A102 =

 0 0 0
0 0 0
1 1 0.2

, A110 =

 0.1 0.02 0
0 0.1 0.08
0 0.05 0.1

,
B021 =

 1
1
0

, B102 =

 0
0
0.5

, B110 =

 0
0.5
0.5

.
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Of course, as the matrix A021 has a negative component, the free system (i.e., when u =
0) is not positive. So, its stabilization with positivity via state-feedback is a challenging
problem, specially in the presence of bounded controls, e.g., −1 ≤ u(i, j) ≤ 1000.
The objective is, therefore, to design a state-feedback controller that stabilizes the

system and enforces it to be positive in the presence of bounded controls (u = −1 and
u = 1000). For this purpose, it suffices to use the results of Theorem 5.1. Thus, it is only
necessary to find a feasible solution of the inequalities (9), such as the following:

d1
d2
d3
y1
y2
y3
z1
z2
z3


=



666.666
1
1

1000
0
0
0
0.1
0.15


.

For this numerical solution, the following stabilizing controller provides the desired
positivity to the closed-loop system under bounded control:

K =
[
1.5 −0.1 −0.15

]
.

The corresponding system matrices in closed-loop are

A021 +B021K =

 0 0 0
1.7 0.4 0.15
0 0 0.1

 ,

A102 +B102K =

 0 0 0
0 0 0

1.75 0.95 0.125

 ,

A110 +B110K =

 0.1 0.02 0
0.75 0.05 0.005
0.75 0 0.025

 .

Hence, it suffices to look at the entries of the matrices A021+B021K and A102+B102K,
A110+B110K to confirm that the closed-loop system is positive (according to Proposition
2.1). In addition, according to Theorem 3.1, the closed-loop system is asymptotically
stable (it can be checked that the matrix A021+B021K+A102+B102K+A110+B110K has
all the eigenvalues inside the unit circle). Moreover, all the states of the feedback system
fulfill

0 ≤ x(i, j) ≤

 666.666
1
1

 ,

as long as the boundary states also fulfill these bounds.

7. Conclusions. This paper has provided a sound and practical approach for the synthe-
sis of stabilizing state-feedback controllers for nD systems described by a general model
under the requirement of positivity of the closed-loop system. For this, conditions for the
solvability of the controlled positivity problem have been proposed, including the pres-
ence of bounds (maybe nonsymmetric) on the controls. These conditions are expressed
in terms of Linear Programs. An illustrative numerical example has been looked at.
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