
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 11, November 2013 pp. 4343–4357

ESTIMATING DELAY BOUNDS OF TIME-DELAY SYSTEMS
WITH FUZZY MODEL-BASED APPROACH

Yan Zhao1, Rui Zhang2 and Chuntao Shao3

1Advanced Control Systems Laboratory of School of Electronics and Information Engineering
Beijing Jiaotong University

No. 3, Shangyuan Cun, Haidian District, Beijing 100044, P. R. China
zhaoresponsible@gmail.com

2Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences
Shenzhen 518055, P. R. China
zhangruiemail@yahoo.com.cn

3Department of Control Science and Engineering
Harbin Institute of Technology in Weihai

No. 2, West Wenhua Road, Huancui Dist., Weihai 264209, P. R. China
shaw@hit.edu.cn

Received November 2012; revised March 2013

Abstract. This paper aims at estimating the delay bounds of linear systems with un-
known state delay via a novel fuzzy model-based approach. Both robust stability analysis
and stabilization problems are investigated with the estimation. Fuzzy techniques are uti-
lized novelly by setting the time-varying delay to be distributed on the fuzzy set, and a
novel fuzzy model is proposed to describe the linear time-delay system, where the state
with time-varying delay is represented by an interpolation of states with some local con-
stant delays. Based on the model, a new approach incorporating with the developed fuzzy
discretized Lyapunov functional and slack matrix techniques is presented, and new sta-
bility criteria of time-delay systems are obtained. Further, the controller design method
is developed to guarantee the asymptotic stability of the closed-loop system. The obtained
stabilization conditions developed by the proposed fuzzy model-based approach are much
less conservative than those obtained by the traditional methods in some literature. The
results are presented in the form of linear matrix inequality, which can easily be solved
by standard software packages. Simulation examples are provided to show the less con-
servativeness and effectiveness of the obtained results.
Keywords: Time-delay systems, Fuzzy model, Robust stabilization, Fuzzy discretized
method

1. Introduction. After-effect phenomena often appear in various engineering, communi-
cation and chemical processes. In a control system, time delays often degrade the system’s
performance and even cause instability; therefore they have been regarded as an impor-
tant issue in control community [31, 32, 33]. Over the past years, many researchers have
paid great attention to time-delay systems and various problems have been investigated.
For instance, stability analysis is carried out in [10, 37]; stabilizing and H∞ control are
addressed in [36]; model reduction is presented in [38] and filtering problems are inves-
tigated in [9]. Various approaches have been proposed for the analysis and synthesis
of time-delay systems based on the theories of Lyapunov-Krasovskii method [21, 27],
Lyapunov-Razumikhin method, etc. Both delay-dependent [24] and delay-independent
approaches are proposed while the former is more preferred by the researchers. Much
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attention has been academically devoted to reducing the conservatism by developing new
Lyapunov functional methods [29].
Recently in the literature, delay partitioning ideas are involved in the construction of

Lyapunov functionals to obtain less conservative stability criteria for time-delay systems.
The topology separation approach is proposed in [18], and is extended to stability analysis
of general linear systems in [11]. Motivated by that, the delay term of the Lyapunov func-
tional is artificially partitioned into several parts in [6] to obtain less conservative stability
conditions. Later the approach is further extended to stability analysis and stabilization
of time-delay fuzzy systems [39]. Besides, an alternative approach is the so-called “dis-
cretized” method [7] with the kernel of the Lyapunov functional being piecewise linear.
This method can lead to much less conservative results. More recently, this discretized
method has been extended straightforwardly to the stabilization of fuzzy systems with
time-varying delay in [22]. It is noted that the delays concerned are mostly constant in
the above mentioned literature.
In the last decades, growing interests have been seen towards fuzzy control of complex

nonlinear systems. In particular, Takagi-Sugeno (T-S) fuzzy model based control has
drawn great attention [26, 34]. It has been proved that T-S fuzzy models can approximate
any smooth nonlinear systems to any accuracy on a compact set, which is realized through
smoothly connecting a family of local linear models by fuzzy membership functions. This
“blending” makes T-S fuzzy models in appearances of linear systems, and the stability
analysis and synthesis can be derived by making full use of the fruitful results on linear
systems. So far, a great number of results have been reported for T-S fuzzy systems. To
mention a few, the problem of stability analysis is investigated in [12]; stabilizing and
H∞ control are reported in [5, 15, 40]; reliable control strategies are presented in [28] and
sampled-data control is considered in [4]. On the other hand, complex delay phenomena
often appear in complex systems such as biology and synthetic biology systems. Some
information of the delay cannot be obtained such as the derivative of the time-varying
delay. In this case, an alternative approach which does not need the detailed information
of the time delay may be more interesting.
Inspired by the above observations, in this paper, we investigate the problem of robust

stability and stabilization of linear systems with unknown state delay. Fuzzy techniques
are utilized novelly by setting the time-varying delay to be distributed on the fuzzy set,
and a novel fuzzy model is proposed to describe the linear time-delay system, where the
state with time-varying delay is represented by an interpolation of states with some local
constant delays. Based on the model, a new approach incorporating with the developed
fuzzy discretized Lyapunov functional and slack matrix techniques is proposed, and new
stability criteria of time-delay systems are obtained. Further, the controller design method
is developed to guarantee the asymptotic stability of the closed-loop system. The obtained
stabilization condition developed by the proposed fuzzy model-based approach is much
less conservative than those by the traditional methods in some literature.
The contribution of this research is that the discretized idea is extended to the system

with unknown state delays via the fuzzy techniques, which has not been mentioned in the
existing literature to the best of the author’s knowledge, and the obtained stabilization
results are less conservative than the existing ones especially for the small delay case.
Moreover, because the method proposed in this paper does not need the detailed infor-
mation of the delay, such as the derivative of the time-varying delay, the results are more
suitable for those complex systems with time delay. For example, some constant delays
can be measured in the kiln system, but what form of the delay is cannot be determined.
In this case, the model can be established as the fuzzy model proposed in this paper and
using the method proposed therein.
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The remainder of the paper is organized as follows. Section 2 formulates the problem
under consideration. The robust stability analysis and stabilization results are presented
in Section 3. Illustrative examples are given in Section 4 and some concluding remarks
are given in Section 5.

Notation: The superscript “T” stands for matrix transposition; Rn denotes the n-
dimensional Euclidean space; the notation P > 0 (≥ 0) means that P is positive definite
(semi-definite). In symmetric block matrices or complex matrix expressions, we use an
asterisk (∗) to represent a term that is induced by symmetry and diag{. . .} stands for a
block-diagonal matrix. Matrices, if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations.

2. Problem Formulation. In this section, the problem will be presented mathemati-
cally, and a model transformation will be given.

2.1. Plant model. Consider a linear system with a time-varying state delay which can
be described by the following linear model:{

ẋ (t) = (A+∆A (t))x (t) + (Ad +∆Ad (t))x (t− τ (t)) +Bu (t) , t > 0,
x (t) = ϕ (t) , t ∈ [−τ̄ , 0] ,

(1)

where x (t) ∈ Rn is the state vector; ϕ (t) is the initial condition; τ (t) is the time-varying
delay satisfying 0 ≤ τ0 ≤ τ (t) ≤ τ̄ and τ̄ is a real constant number; A and Ad are known
constant matrices with appropriate dimensions and ϕ (t) denotes a continuous vector-
valued initial function of t ∈ [−τ̄ , 0]. ∆A(t) and ∆Ad(t) denote the uncertainties in the
system and they are of the form [20]

∆A(t) = DaF (t)Ea, ∆Ad(t) = DdF (t)Ed, (2)

where Da, Dd, Ea and Ed are known constant matrices and F (t) is an unknown real
time-varying matrix with Lebesgue measurable elements bounded by

F T (t)F (t) ≤ I. (3)

2.2. Model transformation. The fuzzy model rules for the system in (1) is represented
as follows:

Fuzzy Rule i: IF τ(t) is about τi, THEN{
ẋ (t) = (A+∆A(t))x (t) + (Ad +∆Ad(t))x (t− τi) +Bu(t), i = 0, 1, . . . , r

x (t) = ϕ (t) , t ∈ [−τ̄ , 0] ,
(4)

The compact form of the system model in (4) can be further obtained by the fuzzy
inference engine as follows:

ẋ (t) = (A+∆A (t))x (t) + (Ad +∆Ad (t))
r∑

i=0

hi (τ (t))x (t− τi) +Bu(t),

x (t) = ϕ (t) , t ∈ [−τ̄ , 0] . (5)

Notice that the delay term x (t− τ (t)) is represented by the fuzzy interpolation of some
constant delay terms x (t− τi) with the constant delays τi, for i = 1, . . . ,m− 1 where m
is an integer, distributed equally in the range [τ0, τ̄ ]. The approximation error is∣∣∣∣∣x (t− τ (t))−

r∑
i=0

hi (τ (t))x (t− τi)

∣∣∣∣∣ <
r∑

i=0

hi (τ (t)) |x (t− τ (t))− x (t− τi)| ,

and since the system in (1) is continuous, we know that the approximation error is as
small as possible only if the interval between τ (t) and τi is as small as possible. Note
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that we have slightly abused the notation by using hi (τ (t)) with i = 0 to denote the
membership function distributing around the point τ0 for clarity.

2.3. Controller. The state-feedback control strategy is utilized as follows:

u(t) = Kx(t), (6)

where x(t) ∈ Rn is the input of the controller; u(t) ∈ Rm is the output of the controller;
K is the gain matrix of the state-feedback controller.
Therefore, we can obtain the closed-loop system as follows:

ẋ (t) = (A+∆A (t) +BK) x (t) + (Ad +∆Ad (t))
r∑

i=0

hi (τ (t))x (t− τi) ,

x (t) = ϕ (t) , t ∈ [−τ̄ , 0] . (7)

3. Main Results. In this section, we will give our main results. Asymptotical stability
conditions of system (5) will be given first, based on which a state-feedback controller
will be designed such that the system in (1) can be stabilized asymptotically. The pro-
posed discretized fuzzy Lyapunov functional approach will be utilized. Before proceeding
further, we first give the following lemmas needed for the subsequent derivations.

Lemma 3.1. [8] For any constant matrix M ∈ Rm×m, M = MT > 0, scalar γ > 0, vector
function ω : [0, γ] → Rm such that the integrations concerned are well defined, then

γ

∫ γ

0

ωT (β)Mω (β) dβ ≥
(∫ γ

0

ω (β) dβ

)T

M

(∫ γ

0

ω (β) dβ

)
.

Lemma 3.2. For any constant matrix M ∈ Rm×m, M = MT > 0, scalar τ > 0, vector
function ω : [−τi+1, −τi−1] → Rm such that the integrations concerned are well defined,
then

τ

∫ −τi

−τi+1

ωT (β)Mω (β) dβ + τ

∫ −τi−1

−τi

ωT (β)Mω (β) dβ

≥
(∫ −τi−1

−τi

ω (β) dβ +

∫ −τi

−τi+1

ω (β) dβ

)T

M

(∫ −τi−1

−τi

ω (β) dβ +

∫ −τi

−τi+1

ω (β) dβ

)
(8)

Proof: From Lemma 3.1, (8) can be obtained straightforwardly. �

Lemma 3.3. [35] Given matrices Φ = ΦT , D, E and R = RT > 0 of appropriate
dimensions,

Φ +DFE + ETF TDT < 0,

for all F satisfying F TF ≤ R, if and only if there exists a scalar ε > 0 such that

Φ + εDDT + ε−1ETRE < 0.

3.1. Stability analysis. In this subsection, stability of the unforced system of (5) will be
analyzed with the help of a fuzzy discretized Lyapunov functional approach and slack ma-
trix techniques. The following theorem shows the criteria guaranteeing the asymptotical
stability of the closed-loop system.

Theorem 3.1. The system with interval time-varying delay in (5) is asymptotically stable
if there exist matrices Rij = RT

ji, Qi, M , Si > 0, scalars ε1,2 > 0, for i, j = 0, . . . , r,
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P > 0, Zi > 0, Gi > 0, for i = 1, . . . , r, where Si >
1

τi−1
Gi, Zi < Gi and Si−1 < Si, such

that the following inequalities are satisfied:[
P Q̃

Q̃T R̃ + S̃

]
> 0, (9)



Ω N1 · · · Nr W T
x E

T
a W̄ T

H1
ET

d

∗ −τ−1
0 Z1 · · · 0 0 0

∗ ∗ . . .
...

...
...

∗ ∗ ∗ −τ−1
r−1Zr 0 0

∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ −ε2I

 < 0, i = 0, 1, . . . , r, (10)

where

R̃ =


R00 R01 . . . R0r

R10 R11 . . . R1r
...

...
. . .

...
Rr0 Rr1 · · · Rrr

 , S̃ =


S0

τ
0 0 0

0 S1

τ
0 0

0 0
. . . 0

0 0 0 Sr

τ

 , Q̃ = [Q0, Q1, . . . Qr] ,

Ω = Ŵ T
x PWx +W T

x PŴx + 2Ŵ T
x Q̄1Wf1 + 2Ŵ T

x Q̄2Wf2 +W T
x (S1 + S2 + . . .+ Sr)Wx

+2W T
H1
S̄1WH1 − 2W T

x S̄2WH1 + 2 (N1 +N2 + . . .+Nr)Wx −W T
H1
S̄3WH1

−2
[
N1 N2 N3 . . . Nr 0

]
WH1 +W T

H2
S̄4WH2 +W T

f1
S̄5Wf1 − 2MŴx

+2M (A+BK)Wx + 2W T
f2
R̄1WH1 − 2W T

f2
R̄1WH2 − 2W T

f2
R̄2WH2 + 2W T

f1
R̄3WH1

−2W T
f1
R̄4WH2 − 2W T

f2
R̄5WH1 + 2W T

f2
R̄6WH2 + 2W T

f2
R̄7WH2 + 2W T

f2
R̄5WH2

−2W T
f1
R̄9WH1 + 2W T

f1
R̄9WH2 − 2W T

f2
R̄8WH2 + 2W T

f2
R̄9WH1 − 2W T

f2
R̄9WH2

+2
1

τ
W T

f1
R4Wf1 − 2

1

τ
W T

f2
R4Wf1 +

1

τ
W T

f2
R3Wf1 +

1

τ
W T

f1
R3Wf2 −

1

τ
W T

f1
R3Wf1

+
1

τ
W T

f1
R2Wf2 +

1

τ
W T

f2
R2Wf1 −

1

τ
W T

f1
R2Wf1 + 2MAd

[
. . . In(i) . . .

]
WH1

+ε1 (MDa) (MDa)
T + ε2 (MDd) (MDd)

T − 2W T
x

1

τ
Q̄2Wf1 + 2W T

x Q̄3WH1

+2W T
f1
R̄8WH2 − 2W T

f2
R̄3WH1 − 2

1

τ
W T

f2
R1Wf1 + 2W T

x Q̄4WH2 ,

Q̄1 =
[
Q0 Q1 . . . Qr−1

]
, Q̄2 =

[
Q1 −Q0 Q2 −Q1 . . . Qr −Qr−1

]
,

Q̄3 =
[
Q1 Q2 −Q0 Q3 −Q1 . . . Qr −Qr−2 −Qr−1

]
,

Q̄4 =
[
Q0 −Q1 Q0 −Q2 Q1 −Q3 Qr−2 −Qr Qr−1 −Qr

]
,

S̄1 = diag{S1, S2, . . . , Sr, 0}, S̄2 =
[
S1 S2 S3 . . . Sr 0

]
,

S̄4 = diag{S0 − S1, S0 − S2, S1 − S3, . . . , Sr−2 − Sr, Sr−1 − Sr},

S̄5 = diag

{
1

τ
(S0 − S1) ,

1

τ
(S1 − S2) , . . . ,

1

τ
(Sr−1 − Sr)

}
,

R̄1 =
[
R1 0

]
, R̄2 =

[
0 R1

]
, R̄3 =

[
R2 0

]
, S̄3 = diag{0, S0, S1, . . . , Sr−1},

R̄4 =

 R01 · · · 2R0r R0r
...

. . .
...

...
R(r−1)1 · · · 2R(r−1)r R(r−1)r

 , R̄7 =
[
R3 0

]
, R̄8 =

[
R4 0

]
,
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R̄5 =
[
0 R3

]
, R̄6 =

 R01 · · · 2R0r R0r
...

. . .
...

...
R(r−1)1 · · · 2R(r−1)r R(r−1)r

 ,

R̄9 =
[
0 R4

]
, R1=

 R11 · · · R1r
...

. . .
...

Rr1 · · · Rrr

 , R2 =

 R01 · · · R0r
...

. . .
...

R(r−1)1 · · · R(r−1)r

 ,

R3 =

 R10 · · · R1(r−1)
...

. . .
...

Rr0 · · · Rr(r−1)

 , R4 =

 R00 · · · R0(r−1)
...

. . .
...

R(r−1)0 · · · R(r−1)(r−1)

 ,

WH1 =
[
0rn,n I(r+1)n 0rn,(3r+2)n

]
, Wf1 =

[
0rn,(2r+2)n Irn 0rn,(r+1)n

]
,

WH2 =
[
0(r+1)n I(r+1)n 0(r+1)n,(2r+1)n

]
, Wf2 =

[
0rn,(3r+2)n Irn 0rn,r

]
,

W̄ T
H1

= W T
H1


...

In(i)
...

 , Ŵx =
[
0n,(4r+2)n In

]
, Wx =

[
In 0n,(4r+3)n

]
.

Proof: Choose a quadratic functional as follows:

V (t) = V1 (t) + V2 (t) + V3 (t) + V4 (t) , (11)

where

V1 (t) = xT (t)Px (t) ,

V2 (t) =
r∑

i=1

2xT (t)

∫ −τi−1

−τi

(hi−1Qi−1 + hiQi) x (t+ ξ) dξ,

V3 (t) =
r∑

i=1

r∑
j=1

∫ −τi−1

−τi

∫ −τj−1

−τj

xT (t+ ξ)

× (hihjRij + hi−1hjRi−1,j + hihj−1Ri,j−1 + hi−1hj−1Ri−1,j−1) x (t+ η) dξdη,

V4 (t) =
r∑

i=1

∫ −τi−1

−τi

xT (t+ ξ) (hi−1Si−1 + hiSi) x (t+ ξ) dξ,

hi, i = 1, . . . , r is the brevity of hi (ξ + t), i = 1, . . . , r, which are the membership functions
satisfying the similar triangular distribution. First, we prove that the above functional is
a Lyapunov functional. Introducing the following vector function

Φ =



∫ −τ0
−τ1

h0x (t+ ξ) dξ∫ −τ0
−τ1

h1x (t+ ξ) dξ +
∫ −τ1
−τ2

h1x (t+ ξ) dξ∫ −τ1
−τ2

h2x (t+ ξ) dξ +
∫ −τ2
−τ3

h2x (t+ ξ) dξ
...∫ −τr−1

−τr
hrx (t+ ξ) dξ

 ,

and after some transformation, we can obtain

V2 (t) = 2xT (t) Q̃Φ, V3 (t) = ΦT R̃Φ. (12)

According to Lemma 3.2, we have

ΦT S̃Φ =

∫ −τ0

−τ1

h0x (t+ ξ) dξT
S0

τ

∫ −τ0

−τ1

h0x (t+ ξ) dξ
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+

(∫ −τ0

−τ1

h1x (t+ ξ) dξ +

∫ −τ1

−τ2

h1x (t+ ξ) dξ

)T
S1

τ

×
(∫ −τ0

−τ1

h1x (t+ ξ) dξ +

∫ −τ1

−τ2

h1x (t+ ξ) dξ

)
+ . . .

+

∫ −τr−1

−τr

hrx (t+ ξ) dξT
Sr

τ

∫ −τr−1

−τr

hrx (t+ ξ) dξ

≤
∫ −τ0

−τ1

h2
0x (t+ ξ)T S0x (t+ ξ) dξ +

∫ −τ0

−τ1

h2
1x (t+ ξ)T S1x (t+ ξ) dξ

+

∫ −τ1

−τ2

h2
1x (t+ ξ)T S1h1x (t+ ξ) dξ + . . .

+

∫ −τr−1

−τr

h2
rx (t+ ξ)T Srhrx (t+ ξ) dξ

≤
∫ −τ0

−τ1

x (t+ ξ)T
(
h2
0S0 + h2

1S1

)
x (t+ ξ) dξ

+

∫ −τ1

−τ2

x (t+ ξ)T
(
h2
1S1 + h2

2S2

)
x (t+ ξ) dξ

+ . . .+

∫ −τr−1

−τr

x (t+ ξ)T
(
h2
r−1Sr−1 + h2

rSr

)
x (t+ ξ) dξ,

and thus we can obtain

ΦT S̃Φ ≤ V4 (t) , (13)

which together with (11) and (12) implies

V1 (t) + V2 (t) + V3 (t) + V4 (t) ≥
[
xT (t) ΦT

] [ P Q̃

Q̃T R̃ + S̃

] [
x (t)
Φ

]
. (14)

From inequality (9), we can conclude V (t) ≥ 0.
Next, we prove that the derivative of the quadratic functional in (11) is negative. The

derivative of the quadratic functional can be obtained as follows:

V̇1 (t) = ẋT (t)Px (t) + xT (t)Pẋ (t) ,

V̇2 (t) =
r∑

i=1

2ẋT (t)

∫ −τi−1

−τi

(hi−1Qi−1 + hiQi) x (t+ ξ) dξ

+
r∑

i=1

2xT (t)

∫ −τi−1

−τi

(
1

τ
Qi−1 −

1

τ
Qi

)
x (t+ ξ) dξ

+
r∑

i=1

2xT (t) (hi−1Qi−1 + hiQi) [x (t− τi−1)− x (t− τi)] ,

V̇3 (t) =
r∑

i=1

r∑
j=1

∫ −τi−1

−τi

xT (t+ ξ) dξ

× (hihjRij + hi−1hjRi−1,j + hihj−1Ri,j−1 + hi−1hj−1Ri−1,j−1)
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× (x (t− τj−1)− x (t− τj)) +
r∑

i=1

r∑
j=1

(x (t− τi−1)− x (t− τi))

× (hihjRij + hi−1hjRi−1,j + hihj−1Ri,j−1 + hi−1hj−1Ri−1,j−1)∫ −τj−1

−τj

x (t+ η) dη + +(hi − hj−1)Ri,j−1 + (hj − hi−1)Ri−1,j)x (t+ η) dξdη,

+
r∑

i=1

r∑
j=1

∫ −τi−1

−τi

∫ −τj−1

−τj

xT (t+ ξ)
1

τ
(− (hi + hj)Rij + (hi−1 + hj−1)Ri−1,j−1

V̇4 (t) =
r∑

i=1

(
xT (t− τi−1) (hi−1Si−1 + hiSi)x (t− τi−1)

)
−

r∑
i=1

(
xT (t− τi) (hi−1Si−1 + hiSi)x (t− τi)

)
+

r∑
i=1

∫ −τi−1

−τi

xT (t+ ξ)
1

τ
(Si−1 − Si) x (t+ ξ) dξ. (15)

Since 0 ≤ hi ≤ 1, the following inequality is apparently true:

V̇4 (t) ≤
r∑

i=1

{
xT (t− τi−1)Six (t− τi−1)− xT (t− τi)Si−1x (t− τi)

}
+

r∑
i=1

h2
i−1

{
xT (t− τi−1) (Si−1 − Si)x (t− τi−1)

}
+

r∑
i=1

h2
i

{
xT (t− τi) (Si−1 − Si)x (t− τi)

}
+

r∑
i=1

∫ −τi−1

−τi

xT (t+ ξ)
1

τ
(Si−1 − Si) x (t+ ξ) dξ, (16)

and xT (t− τi−1)Six (t− τi−1) can be further relaxed by considering Zi < Gi with the
help of slack matrices Ni and Mi:

xT (t− τi−1)Six (t− τi−1)

≤ 2xT (t− τi−1)Six (t− τi−1) + xT (t)Six (t)− 2xT (t)Six (t− τi−1)

−
(∫ t

t−τi−1

ẋ (w) dw

)T

Si

∫ t

t−τi−1

ẋ (w) dw −
∫ t

t−τi−1

φTNiG
−1
i NT

i φdw

+2φTNix (t)− 2φTNix (t− τi−1)− 2φTNi

∫ t

t−τi−1

ẋ (w) dw + τi−1φ
TNiZ

−1
i NT

i φ

+2φTM (ẋ (t)− (A+∆A (t))x (t) + (Ad +∆Ad (t))x (t− τi))

= 2xT (t− τi−1)Six (t− τi−1) + xT (t)Six (t)− 2xT (t)Six (t− τi−1) + 2φTNix (t)

−2φTNix (t− τi−1) + τi−1φ
TNiZ

−1
i NT

i φ+ 2φTM (ẋ (t)− Ax (t) + Adx (t− τi))

−
[ (∫ t

t−τi−1
ẋ (w) dw

)T

φT

] [ Si NT
i

Ni τi−1NiG
−1
i NT

i

] [ (∫ t

t−τi−1
ẋ (w) dw

)
φ

]
dw.
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Si >
1

τi−1
Gi implies the last term in the above inequality is negative. The derivative of

the Lyapunov functional in (15) can be rewritten as the following compact form:

V̇ (t) ≤ φTΩφ+ φT
(
τ1N2Z

−1
2 NT

2 + . . .+ τr−1NrZ
−1
r NT

r

)
φ− 2φTMŴxφ

+2φTM (A+∆A (t))Wxφ+
r∑

i=0

hi (τ (t)) 2φ
TM (Ad +∆Ad (t))x (t− τi) ,

where

φ =
[
xT (t) HT

1 HT
2 fT

1 fT
2 ẋT (t)

]T
, H1 =


x (t− τ0)
x (t− τ1)

...
x (t− τr)

 ,

H2 =


h0x (t− τ0)
h1x (t− τ1)

...
hrx (t− τr)

 , f1 =


∫ −τ0
−τ1

x (t+ ξ) dξ∫ −τ1
−τ2

x (t+ ξ) dξ
...∫ −τr−1

−τr
x (t+ ξ) dξ

 , f2 =


∫ −τ0
−τ1

h1x (t+ ξ) dξ∫ −τ1
−τ2

h2x (t+ ξ) dξ
...∫ −τr−1

−τr
hrx (t+ ξ) dξ

 .

According to Lemma 3.3 and Schur complement, the inequality in (10) guarantees V̇ (t) <
0. Thus, one can always find a small scalar ε > 0 such that V (t) ≥ ε ‖x (t)‖2 and
V̇ (t) ≤ −ε ‖x (t)‖2. The proof is completed. �

3.2. Controller design. In this subsection, based on the stability criteria, the state-
feedback controller will be designed so that the closed-loop system is asymptotically stable.

Theorem 3.2. There exists a state-feedback controller such that the system with time-
varying delay in (1) is asymptotically stable if there exist matrices R̆ij = R̆T

ji, Q̆i, X, Y ,

S̆i > 0, scalar ε1,2,3 > 0, for i, j = 0, . . . , r, P̆ > 0, Z̆i > 0, Ği > 0, for i = 1, . . . , r, where

S̆i >
1

τi−1
Ği, Z̆i < Ği and S̆i−1 < S̆i, such that for i = 0, 1, . . . , r, the following inequalities

are satisfied: [
P̆ Q
∗ R̃+ S

]
> 0, (17)

Ω̆ N̆1 · · · N̆r Γ1 Γ2

∗ −τ−1
0 Z̆1 . . . 0 0 0

∗ ∗ . . .
...

...
...

∗ ∗ ∗ −τ−1
r−1Z̆r 0 0

∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ −ε2I


< 0, (18)

where

R̃ =


R̆00 R̆01 . . . R̆0r

∗ R̆11 . . . R̆1r
...

...
. . .

...

∗ ∗ · · · R̆rr

 , S =


S̆0

τ
0 0 0

∗ S̆1

τ
0 0

∗ ∗ . . . 0

∗ ∗ ∗ S̆r

τ

 , Q =
[
Q̆0, Q̆1, . . . Q̆r

]
,

Γ1 = W T
x X

TET
a , Γ2 = W T

H1
X̄T , X̄ = X

[
. . . In(i) . . .

]
ET

d ,

Ω̆ = Ŵ T
x P̆Wx +W T

x P̆ Ŵx + 2Ŵ T
x Q̌1Wf1 + 2Ŵ T

x Q̌2Wf2 + 2W T
x Q̌3WH1 + 2W T

x Q̌4WH2
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+W T
x

(
S̆1 + . . .+ S̆r

)
Wx + 2W T

H1
Š1WH1 − 2W T

x Š2WH1 − 2W T
x

1

τ
Q̌2Wf1

+2
(
N̆1 + N̆2 + . . .+ N̆r

)
Wx −W T

H1
Š3WH1 − 2

[
N̆1 . . . N̆r 0

]
WH1

−2W T
f2
Ř2WH2 + 2W T

f2
Ř6WH2 + 2W T

f1
Ř3WH1 − 2W T

f2
Ř3WH1 − 2W T

f1
Ř4WH2

+2W T
f2
Ř5WH2 + 2W T

f1
Ř8WH2 − 2W T

f1
Ř9WH1 + 2W T

f1
Ř9WH2 − 2W T

f2
Ř8WH2

−2
1

τ
W T

f2
R
¯ 1Wf1 + 2

1

τ
W T

f1
R
¯ 4Wf1 − 2

1

τ
W T

f2
R
¯ 4Wf1 +

1

τ
W T

f2
R
¯ 3Wf1 +

1

τ
W T

f1
R
¯ 3Wf2

+
1

τ
W T

f1
R
¯ 2Wf2 +

1

τ
W T

f2
R
¯ 2Wf1 −

1

τ
W T

f1
R
¯ 2Wf1 + 2UAdX

[
. . . In(i) . . .

]
WH1

+W T
H2
Š4WH2 +W T

f1
Š5Wf1 − 2UXŴx + 2UAXWx + 2UBYWx + 2W T

f2
Ř1WH1

−2W T
f2
Ř1WH2 − 2W T

f2
Ř5WH1 + 2W T

f2
Ř7WH2 + 2W T

f2
Ř9WH1 − 2W T

f2
Ř9WH2

−1

τ
W T

f1
R
¯ 3Wf1 + ε1(UDaD

T
a U

T ) + ε2(UDdD
T
d U

T ) + ε3(UDbD
T
b U

T )

Q̌1 =
[
Q̆0 Q̆1 . . . Q̆r−1

]
, Q̌2 =

[
Q̆1 − Q̆0 Q̆2 − Q̆1 . . . Q̆r − Q̆r−1

]
,

Q̌3 =
[
Q̆1 Q̆2 − Q̆0 Q̆3 − Q̆1 . . . Q̆r − Q̆r−2 −Q̆r−1

]
,

Q̌4 =
[
Q̆0 − Q̆1 Q̆0 − Q̆2 Q̆1 − Q̆3 Q̆r−2 − Q̆r Q̆r−1 − Q̆r

]
,

Š1 = diag{S̆1, . . . , S̆r, 0}, Š2 =
[
S̆1 . . . S̆r 0

]
, Š3 = diag{0, S̆0, . . . , S̆r−1},

Š4 = diag{S̆0 − S̆1, S̆0 − S̆2, S̆1 − S̆3, . . . , S̆r−2 − S̆r, S̆r−1 − S̆r},

Š5 = diag

{
1

τ

(
Š0 − Š1

)
, . . . ,

1

τ

(
Šr−1 − Šr

)}
, Ř1 =

[
R
¯ 1 0

]
, Ř2 =

[
0 R

¯ 1

]
,

Ř3 =
[
R
¯ 2 0

]
, Ř4 =

 R̆01 · · · 2R̆0r R̆0r
...

. . .
...

...

R̆(r−1)1 · · · 2R̆(r−1)r R̆(r−1)r

 , Ř5 =
[
0 R

¯ 3

]
,

Ř6 =

 R̆01 · · · 2R̆0r R̆0r
...

. . .
...

...

R̆(r−1)1 · · · 2R̆(r−1)r R̆(r−1)r

 , Ř7 =
[
R
¯ 3 0

]
, Ř8 =

[
R
¯ 4 0

]
,

Ř9 =
[
0 R

¯ 4

]
, R
¯ 1 =

 R̆11 · · · R̆1r
...

. . .
...

R̆r1 · · · R̆rr

 , R
¯ 2 =


R̆01 · · · R̆0r

R̆11 · · · R̆1r
...

. . .
...

R̆(r−1)1 · · · R̆(r−1)r

 ,

R
¯ 3 =

 R̆10 · · · R̆1(r−1)
...

. . .
...

R̆r0 · · · R̆r(r−1)

 , R
¯ 4 =

 R̆00 · · · R̆0(r−1)
...

. . .
...

R̆(r−1)0 · · · R̆(r−1)(r−1)

 .

Furthermore, if the above inequalities are satisfied, the controller gain in (6) is given by

K = Y X−1 (19)

Proof: Suppose there exist matrices P̆ > 0, Z̆i > 0, Ği > 0, S̆i > 0, R̆ij = R̆T
ji, Q̆i, X

and Y satisfying the inequalities in (17) and (18). Without loss of generality, we assume
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X is invertible. Define Π = X−T and the following matrices:

Ξ = diag {Π,Π, . . . ,Π} ∈ R(7r+4)n×(5r+4)n,

Ξ1 = diag {Π,Π, . . . ,Π} ∈ R(r+2)n×(r+2)n,

Ξ2 = diag {Π,Π, . . . ,Π} ∈ R(r+1)n×(r+1)n,

Ξ3 = diag {Π,Π, . . . ,Π} ∈ R(4r+4)n×(4r+4)n,

and pre- and post-multiplying (17) with Ξ1 and ΞT
1 , and (18) with diag {Ξ, I, I} and its

transposition, then we have[
ΠP̆ΠT ΠQΞT

2

∗ Ξ2

(
R̃+ S

)
ΞT
2

]
> 0, (20)

Ξ3Ω̆Ξ
T
3 Ξ3N̆1Π

T · · · Ξ3N̆rΠ
T Ξ3Γ1 Ξ3Γ2

∗ −τ−1
0 ΠZ̆1Π

T . . . 0 0 0

∗ ∗ . . .
...

...
...

∗ ∗ ∗ −τ−1
r−1ΠZ̆rΠ

T 0 0
∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ −ε2I


< 0, i = 0, 1, . . . , r. (21)

By defining the following matrix variables

P = ΠP̆ΠT , Q̃ = ΠQΞT
2 , R̃ = Ξ2R̃ΞT

2 , S̃ = Ξ2SΞT
2 , ΠR̆ijΠ

T = Rij,

Qi = ΠQ̆iΠ
T , Si = ΠS̆iΠ

T , Zi = ΠZ̆iΠ
T , Zi = ΠZ̆iΠ

T , Ni = Ξ3N̆iΠ
T ,

and calculating the items in inequalities (20) and (21), the following equality can be
obtained by considering Y = KX:

Ξ3Ω̆Ξ
T
3 = Ω,

where a transfermation is used that UΠ = M . Besides, we have

Ξ3Γ1 = W T
x ΠX

TET
a = W T

x E
T
a , Ξ3Γ2 = W T

H1
ΠX

[
. . . In(i) . . .

]
ET

d = W T
H1
ET

d .

Thus we can obtain (9) and the following inequality

Ω N1 · · · Nr W T
x E

T
a W̄ T

H1
ET

d

∗ −τ−1
0 Z1 · · · 0 0 0

∗ ∗ . . .
...

...
...

∗ ∗ ∗ −τ−1
r−1Zr 0 0

∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ −ε2I

 < 0, i = 0, 1, . . . , r,

which guarantee Theorem 3.1. The proof is completed. �

4. Numerical Examples. In this section, the examples will be provided to show the
less conservatism and the effectiveness of the proposed method.

Example 4.1.

Consider the following system:

ẋ (t) = Ax (t) + Adx (t− τ (t)) ,

with

A =

[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
.
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Table 1. Maximum delay values τ̄

Methods τ0 2 3 4 5 6
[19] τ̄ 2.505 3.259 4.074 − −
[23] τ̄ 2.566 3.341 4.169 5.028 6.014

Theorem 3.1 τ̄ 6.803 7.803 8.803 9.809 10.809

We suppose that the complex delay system has the above form, and the purpose is to
show the effectiveness of the proposed fuzzy modelling method.
First, suppose that the time-varying delay satisfies τ0 ≤ τ (t) ≤ τ̄ and τ0 > 0. With the

given delay lower bound, we obtain the upper bound containing the asymptotical stability
of the system from Theorem 3.1 in this paper is 6.803, where the division number of the
delay range is 3 and the division interval is 1.601 for τ0 = 2, 3, 4 and 1.603 for τ0 = 5, 6.
Comparably, with the same lower delay bound, we also give the results obtained by the
methods in most recent available literature, shown in Table 1. Table 1 shows that the
delay upper bounds obtained by our method are larger than those obtained in [19, 23];
for example, the delay upper bounds obtained by the methods in [19, 23] are 2.5048 and
2.5663 respectively. Next, we assume that the time-varying delay satisfies τ0 ≤ τ (t) ≤ τ̄
and τ0 = 0. In this case, the maximum value obtained by Theorem 3.1 is 4.982, where
the division number of the delay range is 3 and the equal interval is 1.6608. Comparably,
the maximum delay upper bounds obtained from Corollary 3 in [17] and Corollary 2 in
[23] are 4.472 and 3.918 respectively.
The delay upper bounds obtained based on the fuzzy model are larger, which indicates

that under some special situations that the current delay information is unknown, the
proposed fuzzy model method can be effective. The simulation also confirms that the
stability of the local systems is a sufficient condition not a necessary one for a T-S fuzzy
system; readers who are interested in that are referred to the example in [13] for details.

Example 4.2.

Consider the following system [3, 14]:

ẋ (t) = (A+∆A(t))x (t) + (Ad +∆Ad(t))x (t− τ) + Bu(t),

where

A =

[
0 0
0 1

]
, Ad =

[
−2 −0.5
0 −1

]
, B =

[
0
1

]
,

Da = 0.2I, Ea = I, Ed = 0.

The purpose is to compare the conservatism of the result obtained in this paper and those
in the recent available results. More specifically, we compare the maximum delay bounds
obtained by Theorem 3.2 in this paper and the results in other literature. The maximum
delay upper bounds obtained from Theorem 3.2 in [17] is 0.90, while the upper bound
obtained by our results is 2.163 with the delay lower bound 0.3. The detailed comparison
data is presented in Table 2.

Example 4.3.

Consider a continuous stirred tank reactor (CSTR) system, whose model is:

ẋ (t) = Ax (t) + Adx (t− h (t)) +Bu (t) ,
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Table 2. Maximum delay values τ̄

Case (τ0) Cases (τ̄) K
0 τ̄ by [16] 0.45 −

τ̄ by [3] 0.55 [−0.020 52.86]
τ̄ by [2] 0.58 [−0.31 −4.44]
τ̄ by [14] 0.84 [−34.72 −18.41]

τ̄ by Theorem 3.2 1.86 [−754.59 − 272.27]
0.3 τ̄ by [14] 0.90 [−70.22 −33.14]

τ̄ by Theorem 3.2 2.16 [−756.61 −272.83]

0 1 2 3 4 5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

 

 
x1
x2

Figure 1. The trajectories of the closed-loop system

where x1 (t) corresponds to the conversion rate of the reaction, and x2 (t) is the dimen-
sionless temperature. The parameters are the same as those in [1], and

A =

[
−2.0508 0.3958
−6.4066 1.6168

]
, Ad =

[
0.25 0
0 0.25

]
,

B =

[
0
0.3

]
.

It is assumed that h (t) = 1.2 sin (t). The goal is to design an controller such that the
closed-loop system is asymptotically stable with the time-varying delay. When choosing
the upper bound of the time delay h̄ = 1.2 and solving the LMIs in Theorem 3.2, we
obtain the controller gain K =

[
21.28 −13.5

]
. Figure 1 shows the state variables of

the closed-loop system, where the initial condition is assumed to be in [0.5,−0.3]. From
Figure 1, we can see that the state variables of the closed-loop system converge to zero.
The effectiveness of the proposed controller design approach is apparent.

Except the practical use for systems or processes with time-varying delay, the proposed
method can be used for other complex systems such as the biology system, kiln system,
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where the detailed information of the time delay cannot be obtained, and only some local
constant delays can be measured.

5. Conclusions. This paper has investigated the problem of robust stability and sta-
bilization of linear systems with unknown state delay. The fuzzy techniques have been
utilized novelly to construct a model by setting the time-varying delay to be distributed
on the fuzzy set. Concerned with the stability analysis, a new approach incorporating
with the fuzzy discretized Lyapunov functional is proposed, and with the help of slack
matrix techniques, the stability conditions are obtained. Further, the controller has been
designed based on the fuzzy model which can stabilize the approximated system effec-
tively with much less conservatism, which is the main contribution of this paper. Future
work should include dealing with the time delay in nonlinear systems or filtering problems
[30].
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