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Abstract. This paper investigates the problem of analysis of a Takagi-Sugeno (T-S)
fuzzy control system in the frequency domain. First, a linear plant with a T-S fuzzy con-
troller is considered, and the complex dynamic behaviors of the system generated by the
nonlinearity in the controller are analyzed. The global stability, instability and existence
of limit cycles of the system are predicted with the aid of the describing function method.
Then, the method is extended to the robust control of an uncertain system, and the con-
dition is given under which the T-S fuzzy controller can guarantee the global stability of
the closed-loop system. All the results are obtained straightforwardly by the frequency
domain graphic methods and simulations are finally provided to show the effectiveness of
the proposed analysis methods.
Keywords: T-S fuzzy controllers, Describing function method, Frequency response
methods, Global stability, Limit cycles

1. Introduction. In recent years, fuzzy logic control has become an alternative control
method relative to the traditional control theory, and its successful applications can be
found in many fields ranging from control engineering [7], pattern recognition [6] and
signal processing to decision making [16], etc. The advantages of fuzzy logic control
compared with the traditional control methods lie in its robustness and effectiveness in
dealing with both linear and nonlinear plants and those with incomplete knowledge of
models by virtue of the human intelligence involved. A fuzzy control system is composed
of a set of linguistic rules where skilled human operators’ experiences are involved, and
the precise control action is realized by the representation and evaluation of those rules
through fuzzy mathematical tools. Among many categories of fuzzy logic control methods,
the T-S fuzzy control has experienced a rapid and full development in the time domain
because it is model-based and thus capable to overcome the shortage of the conventional
fuzzy control method that the general theory of stability analysis and synthesis is out of
reach [11, 15, 18, 21]. This advantage has attracted remarkable attention from researchers,
and a great number of results have been reported [4, 8, 9, 14, 19, 20, 24, 25, 26, 27].

In the fuzzy control system, besides the nonlinearities in generation of fuzzy rules, the
fuzzification and defuzzification parts accompanied with the finite length of the universe
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of discourse of the input and output variables can introduce nonlinearities. The dynamic
behavior of the system becomes complicated as a result and it is necessary that we consider
both local stability and global stability problems. The local stability analysis for fuzzy
control systems can be found in much literature and various methods have been utilized.
For instance, the describing function method is used for Mamdani-type fuzzy control
systems in [1, 2]; the circle criterion and the multivariable circle criterion are applied for
Mamdani-type fuzzy control systems in [23] and for the MIMO case in [13]; the Popov
criterion has also been utilized for Mamdani-type fuzzy control systems in [3]. Moreover,
these years have witnessed the exploration of some conventional nonlinear control theories
and the popular application of Lyapunov methods based on linear matrix inequality tools
[22, 28]. The global stability problem of fuzzy control systems is more complicated and
the describing function method is often applied. The transient response of Mamdani-type
fuzzy control systems is analyzed and the global stability analysis is performed in [1, 2]
and the existence of limit cycles is predicted in [12].
The methods mentioned above with respect to frequency domain are mostly concerned

with the model-free fuzzy control systems. As the frequency domain method provides
direct graphic insight of the control system, which makes the controller synthesis more
straightforward, in recent years, researchers are switching the efforts to performing anal-
ysis and synthesis of T-S fuzzy control systems with frequency domain methods. For
example, in [3] a conicity criterion is employed to analyze the input-output stability of
the reactive navigation under fuzzy perception and fuzzy control; in [5] the circle criterion
is applied to obtain the sufficient conditions guaranteeing the stability of the simplest
T-S fuzzy control system with a linear plant; in [10] the describing function method is
utilized for MIMO T-S fuzzy models to predict the existence of multiple equilibria and
limit cycles, where the control synthesis is not involved.
Among those methods, the describing function method can help give a better under-

standing of the complex dynamic behaviors of the control systems [5]. Yet the existing
results using the describing function method are mostly related to the stability analysis
problem; the stabilization problem has not been addressed, which motivates this research.
In addition, many advanced control methods in time-domain are actually not applicable
in practice, and the frequency methods are often preferred by engineers which can effec-
tively depict the dynamic behavior of control systems. Moreover, it is proved that the
nonlinear fuzzy controller can guarantee a better performance of the system than the
linear controller. Besides, stability analysis and synthesis of the T-S fuzzy control system
are more simplified than those traditional ones. So it is of practical values to investigate
the frequency characteristic of the T-S fuzzy control system via the describing function
method, and the results contribute to many practical problems such as the robot control,
cement kiln control.
In this paper, we investigate the problem of analysis of the T-S fuzzy control system

in the frequency domain. First, a linear plant with a T-S fuzzy controller is considered,
and the complex dynamic behaviors of the system generated by the nonlinearity in the
controller are analyzed. The global stability, instability and existence of limit cycles of the
system are predicted with the aid of the describing function method. Then, the method
is extended to the robust control of an uncertain system, and the condition is given such
that the T-S fuzzy controller guarantees the global stability of the closed-loop system.
All the results are obtained straightforwardly by the frequency domain graphic methods
and simulations are finally provided to show the effectiveness of the proposed analysis
methods.
The organization of the paper is as follows. Section 2 formulates the system under

investigation, which is a plant with a T-S fuzzy controller. The T-S fuzzy controller is
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analyzed and the method is extended to an uncertain plant case in Section 3. Numerical
examples are given to illustrate the effectiveness of the proposed approaches in Section 4
and the paper is concluded in Section 5.

Notations: Rn denotes the n-dimensional Euclidean space, the notation |·| refers to
the amplitude of the transfer function. Matrices, if not explicitly stated, are assumed to
have compatible dimensions.

2. Problem Formulation. In this section, the problem will be formulated mathemat-
ically. A simple T-S fuzzy controller is utilized to control a linear plant. For the conve-
nience of the analysis of the closed-loop system in the frequency domain, the control loop
is arranged in Figure 1.

Figure 1. The control loop

2.1. Plant. Consider a linear system with the following realized state space model:

ẋ (t) = Ax (t) +Bu (t) ,

y (t) = Cx (t) , (1)

where x (t) ∈ Rn×n is the state vector, and matrices A ∈ Rn×n, B ∈ Rn and C ∈ R1×n

are known.

2.2. T-S fuzzy controllers. The T-S fuzzy system approximates a nonlinear system
by a “blending” of some linear functions, which express the local linear properties of
the nonlinear system by fuzzy implications. Specifically, the T-S fuzzy system is of the
following form:

Rule i: IF θ1(t) is Mi1 and θ2(t) is Mi2 and · · · and θn(t) is Min, THEN

ŷi (t) = aiθ (t) , (2)

i = 1, · · ·, r,

where r is the number of IF-THEN rules; θ (t) =
[
θ1(t), θ2(t), . . . , θn(t)

]
is the

premise variable vector and Mij is the fuzzy set. The linear function ŷ (t) = aiθ(t) is the
consequence of the ith IF-THEN rule, where ai ∈ R1×n. The possibility that the ith rule
will fire is given by the product of all the membership functions associated with the ith
rule:

hi(θ (t)) =
n∏

j=1

Mij (θj(t)) , (3)

where Mij(θj(t)) represents the grade of membership of θj(t) in Mij. Then, it can be seen
that for all t we have

hi(θ (t)) ≥ 0, i = 1, 2, · · · , r,
r∑

i=1

hi(θ (t)) = 1. (4)
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By using the center-of-gravity method for defuzzification, the whole T-S fuzzy system can
be represented as follows:

ŷ (t) =
r∑

i=1

hi(θ (t))aiθ (t) . (5)

The approximation sense of the T-S fuzzy system in (5) is twofold: one is the approximator
of the n-dimensional nonlinear dynamic system with enough fuzzy rules, and the other
is a universal approximator of any nonlinear state feedback controller. Here, the latter
sense is represented by the simplest one of the T-S fuzzy controllers which consists of the
following two rules:
Controller Rule i: IF e (t) is Mi, THEN

ui (t) = Kie (t) , (6)

i = 1, 2,

where e (t) ∈ R1 is the input of the local controller and ui (t) ∈ R1 is the output of the
local controller; Ki is the gain of the feedback controller. Thus, the controller can be
represented by the following input-output form:

u (t) =
r∑

i=1

hi(e (t))Kie (t) . (7)

The triangular membership functions are utilized for hi(e (t)), as shown in Figure 2.

Figure 2. The fuzzy membership function

3. Analysis and Synthesis of T-S Fuzzy Controllers. In this section, the describing
function method, which is well known as a successful technique for solving the nonlinear
control problems, will be reviewed and applied to the analysis of the T-S fuzzy control
system in the frequency domain.

3.1. Describing function method. The describing function method fits the control
loop composed of a nonlinear element and a linear element as in Figure 1. The amplitude
of the higher order harmonics is usually smaller than that of the first harmonic in the
response signal of the nonlinear element; moreover, most linear plants have the character-
istic of low-pass filtering. Thus only the first harmonic can survive the linear part while
the higher order ones are exhausted. Therefore, if the input e (t) is set to be a sinusoidal
signal A sin (ωt), we can assume that only the first harmonic of x (t) is back to e (t) in
the loop. So the nonlinear part can be replaced by a describing function which changes
the amplitude and phase of the input sinusoidal signal. The definition of the describing
function is as follows [12]:

N (A,ω) =
B

A
ejφ
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with j =
√
−1, where N (A, ω) is the describing function; B and A are the amplitudes of

the first harmonic response and the input signal, respectively. By replacing the nonlinear
part with the describing function, the solutions of the equation

1 +N (A,ω)G (jω) = 0 (8)

will correspond to limit cycles of the system, where G (s) is the transfer function of the
linear plant, that is, if A = A1 and ω = ω1 satisfy Equation (8), a limit cycle will exist
with the amplitude A1 and period 2π/ω1. The solutions of this equation can be found
by sketching the curves G (jω) for 0 < ω < ∞ and −1/N (A,ωi) for 0 < A < ∞ and
different values of ωi. If the curve of G (jω) for ω = ωi intersects the curve corresponding
to −1/N (A,ωi) for a certain A this intersection is the reflection of the existence of a limit
cycle. The stability of this limit cycle can be analyzed by the Loeb criterion.

3.2. Application to T-S fuzzy controllers. By considering the membership function
in Figure 2, the output of the T-S fuzzy controller can be obtained by computing (7):

u (t) =


K2e (t) e (t) < −a

K1−K2

a
e (t)2 +K1e (t) −a ≤ e (t) < 0

K2−K1

a
e (t)2 +K1e (t) 0 ≤ e (t) < a
K2e (t) e ≥ a

.

Given the input signal e (t) = A sin (ωt), the formulation of the output control signal u (t)
between [0, π] is

u (t) =


K2−K1

a
(A sin (ωt))2 +K1A sin (ωt) 0 ≤ ωt < α
K1−K2

a
e (t)2 +K1e (t) α < ωt < π − α
K2e (t) α ≤ ωt ≤ π − α

,

where α = sin−1 a
A
, and the formulation between [π, 2π] can be obtained similarly.

Therefore, the first harmonic of the output control signal is

u (t) = A1 cosωt+B1 sinωt,

where

A1 =
1

π

∫ 2π

0

u (t) cosωtd (ωt) , B1 =
1

π

∫ 2π

0

u (t) sinωtd (ωt) .

By simple computation, we can obtain the describing function of the nonlinear part

N (A) =
4

π

[
K2 −K1

a
A

(
2

3
+

1

3

(
1−

( a
A

)2) 3
2

−
√

1−
( a
A

)2)

+K1

(
1

2
sin−1 a

A
− a

2A

√
1−

( a
A

)2)
+K2

(
π

4
− 1

2
sin−1 a

A
+

a

2A

√
1−

( a
A

)2)]
.

When A → ∞, −1/N (A) = − 1
K2

and when A → a, −1/N (A) = − 1
K1+

8
3π

(K2−K1)
, which

shows that the curve of −1/N (A) is a line beginning at the point
(
− 1

K1+
8
3π

(K2−K1)
, 0
)

and terminating at
(
− 1

K2
, 0
)
on the complex plane.

When the controller is designed such that the line −1/N (A) is on the left side of the
Nyquist curve of the linear plant, the closed-loop system will be stable; when the line
−1/N (A) intersects the Nyquist plot of G (s) with amplitude A and frequency ω, there
will be a limit cycle with the same amplitude and frequency, and when the line −1/N (A)
is on the right side of the Nyquist plot without any intersection, the closed-loop system
will be instable.
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3.3. Plants with uncertainties. In this subsection, we will extend the result to the
robust control problem of an uncertain system. The condition will be obtained such that
the closed-loop system is globally stable and the field where limit cycles may appear will
be estimated.
Suppose there are some uncertainties in linear plant (1) and the model has the following

form:

ẋ(t) = (A0 +∆A) x(t) + (B0 +∆B)u (t) ,

y = Cx (t) ,

where ∆A and ∆B are unknown matrices with appropriate dimensions. The transfer
function of the uncertain system can be represented as

G (s) = G0 (s) + ∆G (s) ,

where G0 (s), G (s) and ∆G (s) are the transfer functions of the nominal system, uncertain
system and the unknown dynamics, respectively. If ∆G (s) is bounded and there exists a
rational function r (jw) such that

|∆G (jw)| ≤ |r (jw)| , ∀ω ∈ R,

then the Nyquist plot of the uncertain system will distribute in the field between the
envelope curve of the circles with radius |r (jw)| and centers on the Nyquist curve of
G0 (jw), where the bound function r (jw) can be found through the Bode plot method.
Therefore, when the controller is designed such that the line of −1/N (A) intersects the
field swept by the circles, that is, the field between the envelop curves of the circles, limit
cycles may appear; when the controller is designed such that the line −1/N (A) is on
the left side of the envelop curves without any intersection the closed-loop system will
be stable, and when the line −1/N (A) is on the right side of the envelop curves, the
closed-loop system will be instable.
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Figure 3. The Nyquist plot of G (s)
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r (jw) can be obtained in Bode plot: first calculate the difference between the frequency
responses of G (jw) and G0 (jw), i.e., G (jw)−G0 (jw) and represent it in Bode plot. Then
find a function r (jw) such that |r (jw)| covers |G (jw)−G0 (jw)|.

It is noticed that for the uncertain system, the limit cycles with accurate amplitude
and frequency cannot be obtained here. However, we give a field where the limit cycles
may appear, and the condition guaranteeing the global stability of the fuzzy system.

4. Simulations. In this section, simulation examples will be illustrated to show the
effectiveness of the proposed analysis methods. A linear plant will be considered and
different behaviors of the closed-loop system with different designed T-S fuzzy controllers
will be shown.
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Figure 4. State response of the system
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Figure 5. The error of the system
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Figure 6. State response of the system
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Figure 7. The trajectory of the system

Consider the following system

G (s) =
1

s (0.2s+ 1) (0.1s+ 1) (0.05s+ 1)
.

The Nyquist plot of the system is shown in Figure 3, where the plot intersects the real
axis of the complex plane at point (−0.107, 0), that is, the limit cycle will appear with
amplitude A = 0.107 and frequency ω = 5.42 rad/s. When the control gains in T-S fuzzy
controller (6) are designed as K1 = 2 and K2 = 4, the line of −1/N (A) with start point
(−0.2704, 0) and end point (−0.2500, 0) does not intersect the Nyquist plot of G (s). The
closed-loop system is stable. The state response is shown in Figure 4 and the error is
shown in Figure 5, where the initial state is (0.1, 0.2, 0.3, 0.3).
When the control gains are chosen as K1 = 35 and K2 = 8, the line of −1/N (A) begins

at (−0.1250, 0) and terminates at (−0.0828, 0) intersecting the Nyquist plot of G (s) at
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Figure 8. The error of the system
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Figure 9. The trajectory of the system

(−0.107, 0). According to the Loeb criterion, there is a stable limit cycle with amplitude
A = −0.107 and ω = 5.42 rad/s. Figure 6 shows the state response of the system, where
the states are oscillating with decreasing amplitudes; Figure 7 depicts the limit cycle and
Figure 8 gives the error response of the system, where the initial state (0.1, 0.2, 0.3,
0.00003) is in the limit circle.

When the control gains are chosen as K1 = 8 and K2 = 12, the line of −1/N (A) begins
at (−0.0878, 0) and terminates at (−0.0833, 0) on the right side of the Nyquist plot of
G (s) without any intersection. The closed-loop system is instable, as shown in Figure 9
and Figure 10.

5. Concluding Remarks. This paper has investigated the problem of analysis of a T-S
fuzzy control system. Different dynamic behaviors of a system composed of a plant with
a T-S fuzzy controller have been predicted based on the describing function method. The
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Figure 10. The error of the system

method has been extended to robust control of the uncertain system. The results are all
obtained straightforwardly by frequency domain graphic methods. Finally, the simulations
have been provided to show the effectiveness of the proposed analysis methods. The future
work should include the investigation of the frequency analysis of the fuzzy systems with
more rules and time delay [17].
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