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Abstract. The paper addresses the problem of designing a robust output/state model
predictive control for linear polytopic switched systems. We propose a new method for cal-
culation of control algorithm parameters for predictive robust control of a linear switched
polytopic system. Lyapunov function approach guarantees the multi-parameter-dependent
quadratic stability (MPDQS) and guaranteed cost for a closed-loop system. In the pro-
posed control scheme the required on line computation load is significantly less than that
in MPC references, which opens possibility to use this control design scheme not only for
plants with slow dynamics but also for faster ones. Sufficient robust stability conditions
are given in the form of BMI and respective heuristic LMI iterative algorithm. The ex-
amples show the effectiveness of the proposed output feedback design method.
Keywords: Model predictive control, Switched systems, Robust control, Lyapunov
function, Polytopic system

1. Introduction. Model predictive control (MPC) is an attractive control methodology
widely used in the academic and industry field. The popularity of MPC is mostly due to
its ability to directly deal with constraints leading to a safe operation of the plant under
all circumstances. In addition, performance criteria can be also embedded into MPC
problem hence improving the economics or quality of the operation. Based on the plant
model, constraints, measurements and cost function at every instant time, MPC predicts
the output plant variables up to time t + Ny – prediction horizon and requires the on-
line solution of an optimization problem to compute optimal control inputs over a fixed
number of future time instants t+Nu – control horizon. MPC is usually implemented in the
Receding Horizon fashion. In this setup only the first input variable u(t) is implemented
on the real plant. At the next sampling time, the optimization problem is reformulated
and solved with new measurement (Camacho and Bordons, 2004 [3]; Maciejovski, 2002
[15]; Rossiter, 2003 [25]). Therefore, the presence of the plant model is a necessary
condition for the development of the predictive control. The success of MPC depends on
the precision of the plant model. In practice, modelling real plants inherently includes
uncertainties that have to be considered in control design; that control design procedure
has to guarantee stability, performance and robustness properties of closed-loop systems
in the whole uncertainty domain. The survey of present state of MPC design can be
consulted in excellent papers of (Mayne et al., 2000 [16]; Zafiriou and Marchal, 1991 [31];
Polak and Yang, 1993 [21]; Zheng and Morari, 1993 [32]; Casavola et al., 2004 [4]; Kuwata
et al., 2007 [9]; Orukpe et al., 2007 [18]; Huang et al., 2011 [7]; Xia et al., 2008 [30]). There
exist various approaches to robustness issue in MPC, we concentrate on those, based on
LMI-BMI formulation.
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In the seminal work of (Kothare et al., 1996 [8]), the polytopic model or structured
feedback uncertainty model has been proposed for a design of robust MPC algorithm.
The main idea of (Kothare et al., 1996 [8]) is the use of infinite horizon (Ny → ∞) and the
respective design of control laws which guarantee the stability and robustness properties
with simple state feedback. In (Ding et al., 2008 [5]), output feedback robust MPC for
systems with both polytopic and bounded uncertainty with input/state constraints is
presented. Off-line, a sequence of output feedback laws based on the state estimators
is calculated, by solving LMI optimization problem. On-line, at each sampling time, an
appropriate output feedback law from this sequence is chosen. In (Veselý et al., 2010 [28])
the new concept of robust MPC control design procedure for polytopic systems and input
constraints for finite prediction horizon is proposed. In this paper the authors assume that
the model prediction is known and plant model belongs to the class of polytopic systems.
In (Nguyen et al., 2013 [22]), the original robust MPC control design procedure with input
constraints is proposed. A plant model and prediction model are uncertain and design
procedure is based on parameter-dependent Lyapunov function and guaranteed cost. One
step ahead prediction robust MPC controller design is proposed in (Veselý and Rosinová,
2009 [26]).
The topic of hybrid systems has attracted considerable attention from the industrial

and research community in recent decades. Wherever continuous and discrete dynamics
interact, hybrid system arises; that hybrid system theory studies the behaviour of dy-
namical systems, which involve continuous models described by differential or difference
equations and discrete model such as finite state machines or Petri net that describes the
software and logical behaviour. There are several approaches to model hybrid systems,
(Lunze and Lagarrigue, 2009 [13]). (Branicky et al., 1998 [1]) model a large class of hybrid
systems as they consider a discrete event system and continuous dynamics modelled by
differential or difference equation. Such models are used to formulate a general stability
analysis and controller synthesis framework for hybrid systems. Results for modelling
and stability analysis of hybrid systems have been presented in (Lygeros et al., 2005 [14];
Goebel and Teel, 2006 [6]; Lunze and Lagarrigue, 2009 [13]; Wang et al., 2012 [33]). The
survey of present state of hybrid systems can be consulted in the excellent paper and book
of (Lygeros et al., 2005 [14]) and (Lunze and Lagarrigue, 2009 [13]).
The research of MPC control of hybrid systems focuses on efficient ways to solve the

finite horizon constrained optimization problem and on techniques to a priori guarantee
stability and robustness properties of controlled system. The techniques developed for
standard MPC such as stabilization condition and others, (Mayne et al., 2000 [16]) do
not work for switched systems.
In this paper, we consider the class of hybrid system known as switched systems, (Liber-

zon, 2003 [11]). We pursue the idea of stability analysis of switched systems, (Lunze and
Lagarrigue, 2009 [13], Lazar, 2006 [10]) and combine these results with those obtained in
(Veselý et al., 2010 [28]) for a design of robust MPC controller using parameter-dependent
Lyapunov function and guaranteed cost approach. In this way. the new robust MPC
design procedure for hybrid system is obtained. The main contribution of present pa-
per is that all time demanding computations of robust output feedback MPC control of
hybrid system are realized off-line. The developed control design scheme employs multi-
parameter-dependent quadratic stability (MPDQS) to guarantee the robustness and per-
formance over the whole uncertainty domain.
The paper is organized as follows. Problem formulation and preliminaries on a predic-

tion output/state model as a polytopic system as well as stability conditions for switched
systems are given in Section 2. In Section 3, robust output feedback predictive con-
troller design using bilinear matrix inequality and heuristic LMI approach is presented.
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Two examples illustrate the effectiveness of the proposed method in Section 4. Finally,
conclusions are given.

Hereafter, the following notational conventions will be adopted: given a symmetric
matrix P = P T ∈ Rn×n, the inequality P > 0 (P ≥ 0) denotes matrix positive definiteness
(semi-definiteness). Given two symmetric matrices P , Q, the inequality P > Q indicates
that P − Q > 0. The notation x(t + k) will be used to define at time t k-steps ahead
prediction of a system variable x from time t onwards under specified initial state and input
scenario. I denotes the identity matrix of corresponding dimensions. q ∈ Iq indicates the
arbitrary switching algorithm and q + 1 is the first next mode to mode q for switching
system.

2. Problem Statement and Preliminaries. Consider the following linear discrete-
time switched uncertain system

x(t+ 1) = Aq(α)x(t) + Bq(α)u(t) (1)

y(t) = Cqx(t), q ∈ Iq = {1, 2, . . . , N}
where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, control and output variables of the
system, respectively; Aq(α), Bq(α) belong to the convex set Sq

Sq := {Aq(α) ∈ Rn×n, Bq(α) ∈ Rn×m} (2){
Aq(α), Bq(α) =

K∑
j=1

(Aqj, Bqj)αj, αj ≥ 0

}

j = 1, 2, . . . , K,
K∑
j=1

αj = 1

N -number of switched modes of uncertain system and Iq a finite set of indices; q ∈ Iq
indicates the arbitrary switching algorithm for switched system. We assume polytopic
uncertainty in each mode, where K is a number of vertices of uncertainty box. We
assume that for each mode number of vertices does not change. Aqj, Bqj and Cq are
known matrices of corresponding dimensions with constant entries.

2.1. Prediction model for a switched system. Simultaneously with (1) we consider
the nominal model of system (1) for each mode q ∈ Iq in the form

x(t+ 1) = Aqox(t) + Bqou(t) (3)

y(t) = Cqx(t), q = 1, 2, . . . , N

where Aqo, Bqo are any constant matrices from the convex bounded domain Sq (2). The
nominal model (3) will be used for calculation of y(t + k), k = 1, 2, . . . , Ny on output
prediction horizon up to Ny, while (1) is considered as a real plant description providing
plant output. Therefore, in the robust controller design we assume that for time t, output
y(t) for each mode of switched system is obtained from the uncertain real plant model (1),
and the predicted outputs for time t+ 1, . . . , t+Ny are obtained from model prediction,
which is constructed by nominal model (3). Thus, the uncertain model for robust control
calculations with predicted states and outputs for the time instants t+ k, k = 1, 2, . . . , N
is given by

• k = 2
x(t+ 2) = Aqox(t+ 1) +Bqou(t+ 1) = AqoAq(α)x(t) + AqoBq(α)u(t) +Bqou(t+ 1)

• k = 3
x(t+ 3) = A2

qoAq(α)x(t) + A2
qoBq(α)u(t) + AqoBqou(t+ 1) +Bqou(t+ 2)
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• for k

x(t+ k) = Ak−1
qo Aq(α)x(t) + Ak−1

qo Bq(α)u(t) +
k−2∑
i=0

Ak−i−2
qo Bqou(t+ 1 + i) (4)

and the corresponding output is

y(t+ k − 1) = Cqx(t+ k − 1) (5)

Uncertain model of plant (1) with predicted states (4), (5) for k = 1, 2, . . . , Ny − 1 can be
written in a compact form as

z(t+ 1) = Aqf (α)z(t) +Bqf (α)v(t) (6)

yf (t) = Cqfz(t)

where
z(t)T = [x(t)T . . . x(t+Ny − 1)T ], (7)

v(t)T = [u(t)T . . . u(t+Nu − 1)T ],

yf (t)
T = [y(t)T . . . y(t+Ny − 1)T ]

Nu is control horizon. For the next developments we assume that Ny = Nu, then matrices
in (6) are

Bqf (α) =


Bq(α) 0 ... 0

AqoBq(α) Bqo ... 0
... ... ... 0

A
Ny−1
qo Bq(α) A

Ny−2
qo Bqo ... Bqo

 (8)

Aqf (α) =


Aq(α) 0 ... 0

AqoAq(α) 0 ... 0
... ... ... ...

A
Ny−1
qo Aq(α) 0 ... 0

 (9)

Cqf = blockdiag{Cq} ∈ RNy(l×n)

Matrix dimensions are Aqf (α) ∈ RnNy×nNy , Bqf (α) ∈ RnNy×mNy and Cf ∈ RlNy×nNy .
It is well known, that the fixed order dynamic output feedback control design problem

is a special case of the static output feedback problem (SOF), since the closed-loop system
for the fixed order case has exactly the same structure as the SOF case with appropriately
augmented system matrices. To assess the performance quality a quadratic cost function
known from LQ theory is often used. However, in practice the response rate or overshoot
are often limited. Therefore we include into the LQR cost function the additional term
for state variable to open the possibility to damp the oscillations and limit the response
rate. Consider the cost function, associated with the system (6), in the form

J =
∞∑
t=0

J(t) (10)

where
J(t) = z(t)TQz(t) + v(t)TRv(t) + z(t+ 1)TSz(t+ 1)

Q = blockdiag{Qi}, S = blockdiag{Si}, i = 0, 1, . . . , Ny − 1 and R = blockdiag{Ri} are
positive definite (semidefinite) and positive definite constant matrices of corresponding
dimensions respectively.
The problem studied in this paper can be formulated as follows. Design the robust

model predictive controller for switched uncertain system (1) and given prediction horizons
Ny, Nu using output feedback in the form

v(t) = Fqyf (t) = FqCqfz(t) (11)
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where Fq is the static output feedback gain matrix for q = 1, 2, . . . , N modes of uncertain
plant which guarantee the closed-loop system (12) stability, robustness and guaranteed
cost. In this paper, the output feedback gain matrix Fq is calculated off line and there is
no need to update it every sample time. Equations (10) and (11) imply that for output
feedback model predictive control design for switched systems we will use the infinite
optimization horizon and finite output/input prediction horizon. For closed-loop system
one obtain

z(t+ 1) = (Aqf (α) +Bqf (α)FqCqf )z(t) = Aqc(α)z(t) (12)

Note that due to receding horizon strategy, only the first m rows of matrix Fq are used
for real plant control. The other part of matrix Fq serves for predicted output variables
calculation. Model prediction for output can be obtained from (4) and (5) substituting
Aq(α) = Aqo, Bq(α) = Bqo. If control horizon Nu < Ny then corresponding entries of
matrix Fq are equal to zero.

2.2. Robust stability of switched system. To guarantee closed-loop stability of un-
certain system over the whole uncertainty domain Sq, for q = 1, 2, . . . , N , the concept of
quadratic stability (QS) is frequently used. That is, one Lyapunov function is considered
for the whole uncertainty domain Sq. Experience and stability analysis have shown that
quadratic stability is rather conservative in many cases, therefore robust stability with
parameter dependent Lyapunov function P (α) has been introduced in (Peaucelle et al.,
2000 [19]). Using the concept of parameter dependent Lyapunov stability, it is possible
to formulate the following definition and lemma for stability of switched systems.

Definition 2.1. (Lunze and Lagarrigue, 2009 [13]) We say that a switched linear discrete-
time system (1) is multi-parameter-dependent quadratically stable (MPDQS) if there exist
three positive constants a0, a1, a2 and a Lyapunov function

V (x(t), q) = x(t)TPq(α)x(t) (13)

such that
a1||x(t)||2 ≤ V (x(t), q) ≤ a2||x(t)||2 (14)

where Pq(α) =
∑K

j=1 Pq,jαj and whose difference along the system solutions is negative

decreasing, that is for every x(0) ∈ Rn, every q ∈ Iq and every t we have

∆V (x(t), q) =V (x(t+ 1, q + 1))− V (x(t, q))

≤ − a0||x(t)||2
(15)

Lemma 2.1. (Lunze and Lagarrigue, 2009 [13]) The following statements are equivalent

• There exists a quadratic Lyapunov function

V (x(t), q) = x(t)TPq(α)x(t)

strictly decreasing along the system trajectories for all q ∈ Iq.
• There exist N symmetric matrices Pi(α) = Pi(α)

T , i = 1, 2, . . . , N satisfying the
LMI’s [

Pi(α) Aic(α)
TPj(α)

Pj(α)Aic(α) Pj(α)

]
> 0 (16)

• There exist N symmetric positive definite matrices Si(α) and N matrices Gi, i =
1, 2, . . . , N , satisfying the LMI’s[

Gi +GT
i − Si(α) GT

i Aic(α)
Aic(α)Gi Sj(α)

]
> 0 (17)

(i, j) ∈ Iq × Iq
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The notion of guaranteed cost is defined in a standard way.

Definition 2.2. Consider the system (6). If there exists a control law v(t)∗ and a positive
scalar J∗ such that the closed-loop system (12) is stable and the closed-loop cost function
(10) value J satisfies J ≤ J∗ then J∗ is said to be the guaranteed cost and v(t)∗ is said to
be the guaranteed cost control law for the system (6).

Lemma 2.2. (Rosinová et al., 2003 [24]) Consider the closed-loop system (12) with con-
trol algorithm (11). Control algorithm (11) is the guaranteed cost control law if and only
if there exists a positive definite matrix Pq(α), q = 1, 2, . . . , N and matrix Fq such that
the following condition holds

Be = ∆V (x(t), q) + J(t) ≤ 0, q = 1, 2, . . . , N (18)

Considering the above robust stability results, the problem of robust MPC design for
switched systems can be summarized as:

min
Fq

{z(t)TQz(t) + v(t)TRv(t) + z(t+ 1)TSz(t+ 1)} (19)

Subject to:

• z(t+ 1) = Aqc(α)z(t)
• robust stability condition (16)
• guaranteed cost condition (18)
• input, output, state or other constraints conditions.

For input constraints see (Veselý et al., 2010 [28]). The above described procedure (instead
of constraints) will be formulated in the Bilinear Matrix Inequality (BMI) form in Theorem
3.1 and in the Linear Matrix Inequality (LMI) form in the two step heuristic switched
controller design approach.

3. Robust Model Predictive Controller Design for Switched Systems. In this
section we present a new procedure to design a static output feedback robust predictive
controller for switched systems which ensures the guaranteed cost using PDQS. Our main
result is summarized in the following theorem.

Theorem 3.1. Consider the uncertain switched system (6) with control algorithm (11)
and cost function (10). The closed-loop system (12) is robustly MPDQS in convex set Sq,
q ∈ Iq defined by (2), if there exist positive definite matrix Pq(α), matrices N1q, N2q, and
gain matrix Fq for q = 1, 2, . . . , N such that the following BMI is satisfied

Wq(α) = {wijq(α)}2×2 < 0 (20)

where

w11q =Pq+1(α) +N1q +NT
1q + S

w12q = −N1qAqc(α) +NT
2q

w22q =Q− Pq(α)−N2qAqc(α)− Aqc(α)
TNT

2q + CT
qfF

T
q RFqCqf

for all q ∈ Iq. In our denotation mode q+1 is the first next mode to mode q for arbitrary
switching mode (q ∈ Iq).

Proof: Since the matrix [Aqc(α); I] has a full column rank, (20) implies that

[Aqc(α)
T I]Wq(α)[Aqc(α)

T I]T < 0

from which one obtains

Aqc(α)
TPq+1(α)Aqc(α)− Pq(α) +Q+ C ′

qfF
′
qRFqCfq + Aqc(α)

′SAqc(α) < 0 (21)
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which is equivalent to (18). It completes the proof of robust sufficient stability condition
given by Theorem 3.1.

Because of linearity with respect to αi, i = 1, 2, . . . , K, the inequality (20) for jth vertex
and qth mode can be written as follows.

Corollary 3.1. The closed-loop system (14) is robust MPDQS in a convex set Sq, q ∈ Iq
if there exist positive definite matrix Pq(α), matrices N1q, N2q, and gain matrix Fq for
q = 1, 2, . . . , N such that [

Pq+1,j +N1q +NT
1q + S ∗

−AT
qcjN

T
1q +N2q ϑqj

]
< 0 (22)

where

ϑqj = Q− Pqj −N2qAqcj − AT
qcjN

T
2q + CT

qfF
T
q RFqCqf

j = 1, 2, . . . , K, and for arbitrary switching (q + 1, q) ∈ Iq × Iq).

We have used the multi Lyapunov function approach for robust controller design for
each mode of hybrid system where for guaranteeing the robust stability and performance
the parameter-dependent Lyapunov function has been used. Finally, we have multi-
parameter-dependent Lyapunov function and multi-parameter-dependent quadratic sta-
bility (MPDQS). We can conclude that if the BMI’s (20) are feasible with respect to
% ∗ I > Pq,j = P T

q,j > 0, N1q, N2q and static output feedback gain matrix Fq (it need to
be stressed that Fq is constant output feedback gain matrix and there is no need to be
updated at every sample time) then the closed-loop system (12) with control algorithm
(11) is multi-parameter-dependent quadratically stable with guaranteed cost (10) in the
convex set (2). Note that due to control horizon strategy only the first m rows of matrix
Fq are used for real uncertain switched plant control, the other part of matrix Fq serves
for prediction of output variables future values.

3.1. Two step heuristic robust switched controller design approach. One of the
most important issues raised in numerical solution of optimization problem is feasibility
or convergence in dependence on the problem size. Since the controller design requires
numerical solution of BMI, and the size of the optimization problem significantly increases
with increased number of step prediction Ny(Nu), this limits the choice of Ny(Nu). This
feature restricts the effectiveness of proposed design procedures especially for large-scale
systems. Solution of this issue can be then realized by reformulating the optimization
problem into the form of LMI instead of BMI. A frequent approach to cope with non-
linear terms in (20) is to employ linearization. In our case, the nonlinear term on the
main diagonal (−N2qAqc(α) − Aqc(α)

TNT
2q) can be linearized by its upper bound. It is

important to note that the off-diagonal nonlinear term (N1qAqc(α)) is much problematic.
The problem is that the off-diagonal element should be bounded as a whole. For our case,
the elimination approach proposed in Veselý et al. 2011 [29] can be used. In this section
an alternative new two step heuristic robust switched controller design LMI approach is
presented. In the first step, the classical elimination lemma is applied to (20) simultane-
ously for individual vertices with the same feedback gain matrix. In the second step, the
overall system robust stability is checked through sufficient condition (20).
Heuristic approach
Let there exist MPDLM (13), static output feedback gain matrix Fq and matrix Nq2 such
that for the j-th vertex and mode q ∈ I, the following conditions hold:

AT
qcj(Pq+1j + S)Aqcj − Pqj +Q+ CT

fqF
T
q RFqCfq < 0 (23)

Q− Pqj −Nq2Aqcj − AT
qcjN

T
q2 + CT

fqF
T
q RFqCfq < 0 (24)
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j = 1, 2, . . . , K; (q, q + 1) ∈ I × I

From (23) and (24) after small manipulation and using Schur complement formula one
obtains 

Pqj −Q AT
qcj AT

qcj CT
fqF

T
q

Aqcj S−1 0 0
Aqcj 0 P−1

q+1j 0
FqCfq 0 0 R−1

 > 0 (25)

and [
φqj GT

qj

Gqj −R

]
< 0 (26)

where
φqj = Q− Pqj −Nq2Aqfj − AT

qfjN
T
q2 −Nq2BqfjR

−1BT
qfjN

T
q2

and Gqj = BT
qfjN

T
q2 −RFqCfqj.

Note that the off-diagonal terms in (25) and (26) are in LMI’s form, (linear with respect
to unknown matrices) the only two nonlinear terms are in diagonal part, they are P−1

q+1j

and −Nq2BqfjR
−1BT

qfjN
T
q2. Using classical linearization approach, the above two BMI

terms can be reduced to two LMI ones. On the base of heuristic approaches (25) and
(26) the robust switched controller design procedure for a design of static output feedback
controller is summarized as follows:

• For a given performance matrices Q, R, if the solutions of (25) and (26) are feasible
with respect to matrices Fq, Pqj, Nq2, q = 1, 2, . . . , N ; j = 1, 2, . . . , K then the
stability and performance is guaranteed for each mode and vertex of uncertainty
box.

• For known gain matrix Fq checks the robust stability and performance using (20)
which reduces to LMI conditions. If the solution is feasible, the designed robust
controller guarantees the robust stability and performance in the uncertainty box
defined by (2). If (20) is not feasible return to first step. For first step calculation
increases the eigenvalues of matrix Q and obtains the new matrices Fq, Pq,j, Nq2.
Robust stability and performance is checked in second step with original value of
matrix Q.

• If there is no solution with proposed algorithm the two step heuristic algorithm fails.

4. Examples.

Example 4.1. This example illustrates the methodology of the control design procedure
proposed above (20), namely its ability to cope with robust stability of predictive control
for hybrid system. Stability is assessed using spectral radius of closed-loop system matrix.
This example was generated by computer. The basic data are: order of system n = 3,
number of modes N = 2, number of inputs and outputs m = 1, number of uncertainty
p = 1, eigenvalues of extended hybrid systems (extended system has been obtained using
standard approach, see Veselý and Rosinová, 2013 [27]). The open loop system (including
I term) eigenvalues are:
mode q = 1, eigHS1 :
firstpolsystem = {1.000;−0.6685; 0.1213;−0.0726},
secondpolsystem = {1.000;−0.6649; 0.1132;−0.0605};
mode q = 2, eigHS2 :
firstpolsystem = {1.000; 0.6057;−0.6751; 0.0639},
secondpolsystem = {1.000; 0.6265;−0.6581; 0.0492}.
Prediction and control horizons Ny = 3; Nu = 3. The problem is to design PI robust
predictive controller for the above hybrid system with performance matrices Q = qI, q =
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0.0001; R = rI; r = 1; S = sI; s = 0. The obtained gain matrices which guarantee
the closed-loop stability, robustness properties of predictive control of hybrid system for
q = 1, 2; Fq, are
Mode q = 1

F1 =

 1.2137 0.5588 −0.0036 −0.1363 0.3130 0.9458
0.1255 0.0807 0.0636 −0.0496 0.1638 0.3993
0.1880 0.0535 −0.0122 −0.0254 0.0404 0.1506


Maximal abs(eigenvalue) of the closed-loop polytopic system is MaxEig = 0.5618. Maxi-
mal eigenvalue of Lyapunov matrices for evaluation of the guaranteed cost is maxλ(Pi) =
457.8764.
Mode q = 2

F2 =

 0.4336 0.5028 −0.0965 0.1049 −0.1791 −0.6000
0.0092 −0.4784 0.1124 −0.0989 0.1778 0.7549
0.2983 0.1513 −0.0168 0.0414 −0.0902 −0.2132


Maximal abs(eigenvalue) of the closed-loop polytopic system is MaxEig = 0.7086. Maxi-
mal eigenvalue of Lyapunov matrices for evaluation of the guaranteed cost is maxλ(Pi) =
522.2856. Inequality (22) is feasible, the proposed predictive controller for hybrid system
guarantees the robustness properties of the closed-loop system and its performance. Note
that from the obtained gain matrices, the proportional and integral part of PI controller
can be obtained in the following way (Veselý and Rosinová, 2013 [27]). The gain matrix
Fq = [Kp +Ki Ki] or, last half part of gain matrix Fq, q = 1, 2 is equal to integral part
of controller, Ki and first half part is equal to a sum of proportional Kp and integral Ki

gain matrices. Note that due to control horizon strategy only the first m rows of matrix
Fq, q = 1, 2 are used for real uncertain switched plant control that is for the first mode the
control algorithm is given as (m = 1):

u(t) = ((1.2137 + .1363)− 0.1363/s)y(t) + ((.5588− 0.3130) + 0.3130/s)y(t+ 1)

+ ((−0.0036− 0.9458) + 0.9458/s)y(t+ 2)

and for the second mode

u(t) = ((0.4336− 0.1049)− 0.1049/s)y(t) + ((.5028 + 0.1791)− 0.1791/s)y(t+ 1)

+ ((−0.0965 + 0.6000)− 0.6000/s)y(t+ 2).

From the above control algorithm it is clear that predictive control algorithm proposed in
(Kothare et al., 1996 [8]) is a special case of algorithm proposed in this paper.

Example 4.2. This example illustrates the methodology of the control design procedure
proposed as heuristic approach to design robust controller which ensures MPDQS, guar-
anteed cost for hybrid system controlled by predictive algorithm. The discrete model of
system (2) is generated by computer and extended for controller I part.
Mode q = 1, first vertex

Aq1 =


−0.7186 −0.0613 −0.3136 0.0430 −0.0597 0
0.1620 0.0167 −0.2309 −0.5262 −0.0756 0
−0.2881 −0.1218 0.1070 −0.1291 −0.2105 0
0.2673 −0.0575 −0.1647 −0.1866 −0.0155 0
−0.6844 −0.4282 0.4393 0.0301 −0.4115 0

0 1.0000 1.0000 1.0000 0 1.0000

 ;
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Bq1 =


0.1906
−0.4126
−0.2042
−0.0475
0.0730

0

 ; CT
q =


0 0
1 0
1 0
1 0
0 0
0 1


second vertex

Aq2 =


−0.7157 −0.0661 −0.3276 0.0367 −0.0659 0
0.1709 0.0163 −0.2330 −0.5341 −0.0832 0
−0.2857 −0.1199 0.1016 −0.1294 −0.2071 0
0.2702 −0.0580 −0.1689 −0.1846 −0.0212 0
−0.6953 −0.4330 0.4358 0.0287 −0.4104 0

0 1.0000 1.0000 1.0000 0 1.0000

 ;

BT
q2 =

[
0.1928 −0.4160 −0.2100 −0.0440 0.0824 0

]
;

Mode q = 2, first vertex

Aq1 =


−0.4369 0.1016 −0.4134 −0.1973 −0.1591 0
0.1907 −0.1266 −0.2434 −0.4720 −0.2845 0
−0.1585 −0.2925 −0.1955 −0.2475 −0.0671 0
0.4310 0.0793 −0.0017 −0.1270 0.0971 0
−0.4664 −0.4959 0.2207 −0.3991 −0.2188 0
0.4000 1.0000 1.0000 1.0000 0.4000 1.0000

 ;

Bq1 =


0.0937
−0.7478
−0.1154
−0.1972
−0.0063

0

 ; CT
q =


0 0
1 0
1 0
1 0
0 0
0 1


second vertex

Aq2 =


−0.4412 0.0969 −0.4209 −0.2022 −0.1564 0
0.2002 −0.1249 −0.2441 −0.4713 −0.2918 0
−0.1569 −0.2892 −0.1940 −0.2486 −0.0694 0
0.4369 0.0819 −0.0054 −0.1204 0.0878 0
−0.4758 −0.5023 0.2084 −0.4005 −0.2234 0
0.4000 1.0000 1.0000 1.0000 0.4000 1.0000

 ;

BT
q2 =

[
0.0978 −0.7515 −0.1224 −0.1910 −0.0015 0

]
For prediction and control horizons Ny = 4; Nu = 4 the size of resulting matrices are
Aqf ∈ R24×24, Bqf ∈ R24×4 and Cqf ∈ R8×24. The aim is to design PI robust predictive
controller for the above switched system with performance specified by matrices Q = qI,
q = 0.001; R = rI; r = 1; S = sI; s = 0 and 0 < Pqj < % = 200. After the first step
(6 iteration procedure) and second step (no iteration) of heuristic algorithm the obtained
gain matrices which guarantee the MPDQS of closed-loop predictive control of switched
system (11) for mode q = 1, 2; Fq, we have obtained approximately the same results (27).

Fq =


0.3365 0.4815 0.3008 0.1453 0.1551 −0.0979 −0.2619 0.0900
0.5520 0.7268 0.0681 −0.0059 −0.0225 0.1848 0.0422 0.0775
0.0307 −0.2350 −0.0128 0.0903 0.0503 −0.1999 −0.0653 −0.0697
0.2462 0.4764 0.0172 −0.1505 −0.0171 0.2547 0.0512 0.1561


(27)
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Maximal abs(eigenvalues) of closed-loop polytopic system for the first and the second
modes are: MaxEigs = 0.9122, 0.7190 respectively. Maximal eigenvalues of Lyapunov
matrices for the first and the second modes for evaluation of the guaranteed cost are
maxλ(Pi) = 178.1927, 186.4939 respectively. For calculation of parameters P and I of
controller gain matrices see Example 4.1. Note that due to control horizon strategy only
the first row of matrix Fq, q = 1, 2 is used for real uncertain predicted switched plant
control that is for the first and second mode the control algorithm is given as

u(t) = ((0.3365− 0.1551) + 0.1551/s)y(t) + ((0.4815 + 0.0979)− 0.0979/s)y(t+ 1)

+ ((0.3008 + 0.2619)− 0.2619/s)y(t+ 2) + ((0.1453− 0.09) + 0.09/s)y(t+ 3).

5. Conclusions. The paper addresses the problem of designing the output/state feed-
back robust model predictive controller for hybrid systems with Ny and Nu output and
control prediction horizons. The main contribution of the presented results is twofold: The
obtained robust control algorithm guarantees the closed-loop system multi-parameter-
dependent quadratic stability and guaranteed cost in the whole uncertainty domain. The
required on-line computation load is significantly less than in robust MPC and hybrid
control literature (according to the best knowledge of authors), which opens possibility
to use this control design scheme not only for plants with slow dynamics but also for
faster ones. All calculation (gain matrices) have been realized off-line. The design pro-
cedure leads to using BMI approach for small size systems and heuristic LMI iterative
one for large scale systems. The proposed heuristic approach has been proved in practical
examples as extremely successful. In each tested example the robust stability test was
successful and approved the results obtained by the first step of the proposed heuristic
procedure. Finally, two examples illustrate the effectiveness of the proposed method.
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