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Abstract. This paper presents a chattering-free sliding mode control with unidirectional
auxiliary surfaces (UAS-SMC) for nonlinear system with state constraints. In contrast to
existing chattering-free sliding mode control (SMC) methods, the proposed strategy shows
another way to eliminate the chattering phenomenon. Moreover, the positively invariant
set in UAS-SMC is used to constrain the system states. Stability analysis is provided
based on Lyapunov stability theory. Finally, a numerical example is given to show the
benefits and properties of the proposed algorithm.
Keywords: UAS-SMC, Sliding mode, Nonlinear system, Chattering-free, Simplified
approaching law, State constraints

1. Introduction. The sliding mode control (SMC) strategy has attracted considerable
attention in the last decades. Due to its high robust features and convenience for real im-
plementation, this scheme has been widely applied in many applications such as time-delay
system, reusable launch vehicle, fuzzy system and disturbance observer [1-5]. However,
the existence of state constraints is an important problem which we should take into ac-
count. If we ignore this problem, the performance of controller may degrade, or in worst
cases, the system becomes unstable [6-8].

Thus, set invariance theory is introduced to solve this problem. The foundation of this
theory is a positively-invariant (PI) set Qi resulting in trajectories remaining in Qi for all
subsequent times. According to the selected shapes, PI sets could be divided into three
different kinds: polyhedrons offer good accuracy in expense of complexity, while ellipsoids
are, in that sense, the opposite [9]. Semi-ellipsoidal sets offer a convenient tradeoff. In
this approach, an invariant ellipsoid, which may exceed the constraints, is sought under
the condition that its intersection with the constraints retains the PI property [10].

The vast majority of research dealing with PI set is related to linear systems. And
only a few papers have addressed the issue of state constraints with sliding mode control
(SMC) [11]. In this paper, we proposed a design method called sliding mode control
with unidirectional auxiliary surfaces (UAS-SMC) for nonlinear system with state con-
straints. Unidirectional auxiliary surfaces, which naturally form PI sets, are introduced in
this method. The main advantage of this design is that system states are constrained by
unidirectional auxiliary surfaces instead of switching surfaces. Then, constraints are guar-
anteed when system states leaving the switching surfaces. A chattering-free approaching
law is given to eliminate the chattering phenomenon in the controller. And this paper is
organized as follows. Preliminary is given in Section 2. Section 3 introduces the control
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design of chattering-free UAS-SMC controller, while main results are presented in Section
4. Section 5 contains simulation results, and Section 6 concludes this paper.

2. Preliminary. Consider the following nonlinear system:

ẋ = f(x) + g(x)u (1)

where x = [x1, · · · , xn]T ∈ Rn is the system state vector, u ∈ Rn is control input,
f(x) ∈ Rn, g(x) ∈ Rn×n are continuous functions. It is assumed that g(x) is invertible
for all x. State constraints are usually formulated as a set of linear inequalities:

ψi = {(xi, ∫xi) |ni ≤ xi ≤ mi} , i = 1, · · · , n (2)

where term ∫xi dt is denoted as ∫xi. The purpose of this paper is to design a chattering-
free UAS-SMC controller under state constraints ψ = [ψ1, · · · , ψn]

T .

3. Control Design. In this section, we present the design process of UAS-SMC con-
troller. The whole process is divided into four steps:
Step 1: The switching surfaces for the state x in system (1) are given by:

s1 =x+ ξ1 ∫x = 0

s2 =x+ ξ2 ∫x = 0
(3)

where s1 = [s11, . . ., s1n]
T , s2 = [s21, . . ., s2n]

T , ∫x = [∫x1, . . ., ∫xn]T , ξ1 = diag{ξ11, . . .,
ξ1n}, ξ2 = diag{ξ21, . . ., ξ2n}, ξ1i > ξ2i > 0, i = 1, . . ., n. ξ1i > 0, ξ2i > 0 is given to
guarantee the stability of switching surfaces s1i = 0, s2i = 0. And ξ1i > ξ2i is used to
avoid the overlap of switching surfaces s1i = 0, s2i = 0.
Step 2: Based on the switching surfaces s1i, s2i, the No. 0i, . . ., 3i subspaces can be

defined in Figure 1, where

No. 0i subspace = {(xi, ∫xi)|s1i < 0, s2i < 0};
No. 1i subspace = {(xi, ∫xi)|s1i < 0, s2i ≥ 0};
No. 2i subspace = {(xi, ∫xi)|s1i ≥ 0, s2i < 0};
No. 3i subspace = {(xi, ∫xi)|s1i ≥ 0, s2i ≥ 0}

(4)

Figure 1. The four subspaces
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Figure 2. The UAS h0i, h1i, h2i, h3i

The appropriate points Ps1i+, Ps1i−, Ps2i+ and Ps2i− on switching surface s1i, s2i should
be selected inside the state constraint ni ≤ xi ≤ mi, where points Ps1i+, Ps2i− are located
in the fourth quadrant, and points Ps1i−, Ps2i− are located in the second quadrant, as
shown in Figure 2. It is noted that:

s1i(Ps1i+) = 0; s1i(Ps1i−) = 0

s2i(Ps2i+) = 0; s2i(Ps2i−) = 0
(5)

The lines Ps1i−Ps2i−, Ps1i+Ps2i−, Ps1i−Ps2i+, Ps1i+Ps2i+ defined in Figure 2 are unidirec-
tional auxiliary surfaces (UAS) h0i, h1i, h2i, h3i. The formulae of these UAS are given as
follows:

hki = ωki1xi + ωki2∫xi +Mi (6)

where k ∈ {0, 1, 2, 3}, ωki1 6= 0, Mi > 0. The coefficients ω1i1, ω2i1 in Equation (6) should
satisfy ω1i1 < 0, ω2i1 > 0, which is a sufficient condition for the existence of chattering-
free UAS-SMC controller [12]. The coefficients ωki1, ωki2 should satisfy the simplified
condition (7) in this paper.

ω0i1 = −ω3i1, ω0i2 = −ω3i2, ω1i1 = −ω2i1, ω1i2 = −ω2i2 (7)

Step 3: The UAS in Figure 2 would be utilized to design control input u when the
states are moving in No. 0i, . . . , 3i subspaces. The current UAS for state xi is given as:

hi = ωi1xi + ωi2 ∫xi +Mi, i = 1, . . ., n (8)

where Mi >0 is a constant value,

ωi1 =


ω0i1 s1i < 0, s2i < 0
ω1i1 s1i < 0, s2i ≥ 0
ω2i1 s1i ≥ 0, s2i < 0
ω3i1 s1i ≥ 0, s2i ≥ 0

, ωi2 =


ω0i2 s1i < 0, s2i < 0
ω1i2 s1i < 0, s2i ≥ 0
ω2i2 s1i ≥ 0, s2i < 0
ω3i2 s1i ≥ 0, s2i ≥ 0

Consequently, the compact form of current UAS could be rewritten as:

h = Ω1x+Ω2 ∫x+M (9)
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where h = [h1, . . ., hn]
T , Ω1 = diag{ω11, . . ., ωn1}, Ω2 = diag{ω12, . . ., ωn2}, M = [M1, . . .,

Mn]
T .

Step 4: The UAS-SMC control input u for the nonlinear system (1) is designed by
solving the equation

ḣ = Ω1(f(x) + g(x)u) +Ω2 · x = N

It follows that, the UAS-SMC control for system (1) can be expressed as:

u = g(x)−1(−f(x)−Ω−1
1 Ω2 · x+Ω−1

1 ·N ) (10)

where coefficients Ω1, Ω2· can be found in Equation (9); N = [N1, , . . ., Nn]
T , Ni > 0,

i = 1, . . ., n are the approaching laws.

4. Main Results. In this section, research for UAS-SMC theory falls into three different
parts. The first part relates to the proof of stability in UAS-SMC theory. A discussion
for positively invariant (PI) property of set Qi is shown in the second part. In order to
eliminate chattering phenomenon in UAS-SMC controller, a chattering-free approaching
law is described in the last part.

4.1. Stability proof. SMC is a widely studied technique which uses predefined switching
surfaces s to guarantee the stability. So Lyapunov function for SMC is usually formulated
as V = 1/2 · sTs. However, for the UAS-SMC theory, Lyapunov function is selected as a
complex form

V = 1/2(M − h)T (M − h) (11)

The proof for this Lyapunov function is given as follows.

Lemma 4.1. For state xi in system (1), the current UAS hi(xi)

hi(xi) = ωi1xi + ωi2 ∫xi +Mi, i = 1, . . ., n (12)

is a continuous function.

Proof: The proof to Lemma 4.1 is done by the definition of current UAS. It is shown
that current UAS hi(xi) is switching between different subspaces from the definition in
Equation (8). Without loss of generality, we assume that hi(xi) is switching between No.
1i and 3i subspaces, where switching point P (t) is given in Figure 3. The coordinate of
Ps1i+ is defined as (x, y). Note that point P (t) located on line 0Ps1i+ is found in the same
quadrant of point Ps1i+. There exists P (t) = (λ · x, λ · y), where λ > 0.
Definition of current UAS hi(xi) also shows the relationship between hi(xi) and hki(xi):

hi(xi) = h1i(xi) = ω1i1xi + ω1i2 ∫xi +Mi, when state xi in No. 1i subspace

hi(xi) = h3i(xi) = ω3i1xi + ω3i2 ∫xi +Mi, when state xi in No. 3i subspace
(13)

It is shown in Figure 3 that point Ps1i+ is located on UAS h1i(xi) and h3i(xi). The
following conclusion is obtained:

h1i(Ps1i+) = ω1i1 · x+ ω1i2 · y +Mi = 0

h3i(Ps1i+) = ω3i1 · x+ ω3i2 · y +Mi = 0
(14)

As we discussed before, the coordinate of P (t) is defined as (λ · x, λ · y), where λ >0.
It follows that

h1i(P (t)) = λ · (ω1i1 · x+ ω1i2 · y +Mi)− λ ·Mi +Mi

h3i(P (t)) = λ · (ω3i1 · x+ ω3i2 · y +Mi)− λ ·Mi +Mi

(15)

Considering Equation (14) and Equation (15), we have a conclusion that h1i(P (t)) =
h3i(P (t)). Consequently, current UAS hi(xi) is continuous while switching between No.
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Figure 3. Switching point P (t) between No. 1i and 3i subspaces

Figure 4. P (t) in No. 3i subspaces

1i and 3i subspaces. For the other subspaces, we have the same conclusion. So the current
UAS hi(xi) is a continuous function for state xi in system (1).

Lemma 4.2. For state xi in system (1), current UAS hi(xi)

hi(xi)= ωi1xi+ωi2∫xi +Mi, i = 1, . . ., n,Mi > 0 (16)

has the following conclusion: Mi − hi(xi) ≥ 0; if Mi − hi(xi) = 0, there exists xi = 0.
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Proof: Without loss of generality, we assume that point P (t) is in No. 3i subspace,
where line Ps1i+Ps2i+ forms the UAS h3i as shown in Figture 4. Note that points Ps1i+

and Ps2i+ are located on the UAS h3i. If we define the coordinates of points Ps1i+, Ps2i+

as Ps1i+ = (x1, y1), Ps2i+ = (x2, y2), Equation (17) is obtained with the aid of Equation
(6).

h3i(Ps1i+)= ω3i1x1+ω3i2y1 +Mi = 0

h3i(Ps2i+)= ω3i1x2+ω3i2y2 +Mi = 0
(17)

For point P (t) in Figure 4, coordinate of point P (t) is given as

P (t) = (xi, ∫xi) = λ1 · Ps1i+ + λ2 · Ps2i+ = (λ1 · x1 + λ2 · x2, λ1 · y1 + λ2 · y2) (18)

where λ1 ≥ 0, λ2 ≥ 0. Then, with the aid of Equation (6), the conclusion (17) is obtained
for point P (t).

h3i(P (t)) =ω3i1(λ1 · x1 + λ2 · x2)+ω3i2(λ1 · y1 + λ2 · y2) +Mi

=λ1 · (ω3i1x1+ω3i2y1 +Mi) + λ2 · (ω3i1x2+ω3i2y2 +Mi)

− (λ1 + λ2) ·Mi +Mi

(19)

Considering Equation (17), Equation (19) can be transformed into a simplified form.

Mi − h3i(P (t)) = (λ1 + λ2) ·Mi (20)

The coefficients λ1, λ2, Mi satisfy λ1 ≥ 0, λ2 ≥ 0 and Mi > 0 from previous discussion.
It follows that Mi − h3i(P (t)) ≥ 0 for P (t) in No. 3i subspace. Note that there exists
λ1 = 0, λ2 = 0 when Mi−h3i(P (t)) = 0. Then, coordinate of P (t) satisfies Equation (21)
for condition Mi − h3i(P (t)) = 0.

P (t) = (xi, ∫xi) = (λ1 · x1 + λ2 · x2, λ1 · y1 + λ2 · y2) = (0, 0) (21)

From the definition of current UAS hi(xi) in Equation (8), it is clear that hi(xi) =
h3i(xi) for state xi in No. 3i subspace. Therefore, we have conclusion thatMi−hi(xi) ≥ 0;
if Mi − hi(xi) = 0, there exists xi = 0 for state xi in No. 3i subspace. When state xi is
moving in other subspaces, we have similar conclusions. The discussion is omitted for the
sake of simplicity.

Theorem 4.1. Given system (1), assuming that approaching law Ni is a positive value,
if the control law (10) is applied, system (1) is asymptotically stable.

Proof: The Lyapunov function for system (1) is selected as

V = 1/2 · (M − h)T (M − h) (22)

where h = [h1, . . ., hn]
T , M = [M1, . . .,Mn]

T . If we define Vi = 1/2 · (Mi−hi)2, Lyapunov
function V is rewritten as V =

n∑
i=1

Vi. From the above discussion Lemma 4.1, it is noted

that function Vi is continuous. So Lyapunov function V is continuous. On the other
hand, function V could deduce an obvious conclusion that V ≥ 0; if V = 0, there exists
Vi = 1/2(Mi − hi)

2 = 0. Then, considering the discussion in Lemma 4.2, the following
conclusion is obtained:

V ≥ 0; if V = 0, there exists x = [x1, · · · , xn]T = 0 (23)

On the other hand, the time derivative of V along the system trajectories is expressed
as:

V̇ = (M − h)T (Ṁ − ḣ) (24)
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Under the definition of M , ḣ in Step 3 and Step 4, we have the following results:

V̇ =
n∑

i=1

V̇i

= −
n∑

i=1

(Mi − hi) ·Ni

(25)

According to the above assumption, approaching law Ni is a positive value. Meanwhile,
from Lemma 4.2, we have Mi − hi(xi) ≥ 0 and if xi 6= 0, there exists Mi − hi(xi) > 0.
Thus, the time derivative of Vi satisfies the following conclusion:

V̇i ≤ 0; if xi 6= 0, there exists V̇i < 0 (26)

Considering V =
n∑

i=1

Vi and x = [x1, · · · , xn]T , conclusion (26) can be rewritten as

V̇ ≤ 0; if x 6= 0, there exists V̇ < 0 (27)

From conclusion (23) and (27), it is noted that system (1) is asymptotically stable.

4.2. Positively invariant property. In this section, we describe a set Qi with UAS hki
and provide the proof for positively invariant property in this set. As discussed in [9], the
positively invariant property of Qi is defined as follows:

Definition 4.1. [9] The set

Qi = {(xi, ∫xi)|hki ≥ 0, k = 0, 1, 2, 3}, i = 1, . . ., n (28)

is said positively invariant (PI) for a system of the form

ẋ = f(x) + g(x)u

if for all (xi(0),
∫ 0

−∞ xi(τ)dτ) ∈ Qi the solution (xi(t),
∫ t

−∞ xi(τ)dτ) ∈ Qi for t > 0. If

(xi(0),
∫ 0

−∞ xi(τ)dτ) ∈ Qi implies (xi(t),
∫ t

−∞ xi(τ)dτ) ∈ Qi for all t > 0 then we say that
Qi is invariant.

Theorem 4.2. Given system (1), if the control law (10) is applied, the set Qi is a posi-
tively invariant set.

Proof: Set Qi is proved as a PI set by using reduction to absurdity. Considering the
initial state P (0) = (xi(0),

∫ 0

−∞ xi(τ)dτ) ∈ Qi in No. ji subspaces, we assume that there

exists P (t) = (xi(t),
∫ t

−∞ xi(τ)dτ) /∈ Qi in No. ki subspaces, where j, k ∈ {0, 1, 2, 3}. From
the definition of Qi, it is noted that hji(P (0)) ≥ 0. On the other hand, we notice that,
for P (t) /∈ Qi in No. ki subspaces, there exists hki(P (t)) < 0 as shown in Figure 5.

From hji(P (0)) ≥ 0 and hi = hji in No. ji subspaces, we obtain conclusion (29).

Vi(P (0)) = 1/2 · (Mi − hi)
2 = 1/2 · (Mi − hji(P (0)))

2 ≤ 1/2 ·M2
i (29)

From hki(P (t)) < 0 and hi = hki in No. ki subspaces, we obtain conclusion (30).

Vi(P (t)) = 1/2 · (Mi − hi)
2 = 1/2 · (Mi − hki(P (t)))

2 > 1/2 ·M2
i (30)

Considering Equation (29) and Equation (30), there exists Vi(P (0)) < Vi(P (t)) for
system (1). However, as discussed in Theorem 4.1, function Vi is a continuous function
with negative derivative V̇i ≤ 0. State trajectory should satisfy the conclusion Vi(P (0)) ≥
Vi(P (t)). Then, we find the contradiction. Hence, the above assumption is incorrect. For
initial state P (0) ∈ Qi, there exists P (t) ∈ Qi for all t > 0. So set Qi is a positively
invariant set under Definition 4.1.
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Figure 5. P (t) /∈ Qi in No. ki subspaces

According to Theorem 4.2, set Qi can be proved as a positively invariant set. Then,
state xi is constrained in ψi for any initial state inside Qi under the condition Qi ∈ ψi.
In other words, if we design set Qi inside constraints ψi as shown in Figure 2, the state
constraints ψ will be satisfied.

4.3. Chattering-free design. The above results are useful to construct a PI set with
UAS-SMC method and verify if it retains invariance, but does not consider the chattering
phenomenon in UAS-SMC method. This phenomenon will lead to low control accuracy
and high wear of moving mechanical parts, which is harmful to the practical applications.
In this section, we provide an approaching law to eliminate the chattering phenomenon
in UAS-SMC method. This chattering-free approaching law Ni is defined as:

Ni = ωi2 · xi + ωi1{κi(ai · xi − ki · s2i) + (1− κi)[1/2 · (ai + bi)xi]} (31)

where ki > 0, ai = −ω0i2/ω0i1 = −ω3i2/ω3i1, bi = −ω1i2/ω1i1 = −ω2i2/ω2i1

κi =

 |s2i| /(|s1i|+ |s2i|) s1i · s2i ≤ 0, s1i 6= 0
|s2i| /(|s2i|+ |xi|) s2ixi ≤ 0, xi 6= 0

1 s1ixi ≥ 0

In the following, two lemmas are given to prove the chattering-free property in ap-
proaching law (31):

Lemma 4.3. If the switching surfaces s1i, s2i satisfy ξ1i > ξ2i > 0 and points Ps1i+,
Ps2i−, Ps1i−, Ps2i− are selected as shown in Step 2, there exist ω0i1 > 0, ω0i2 > 0, ω3i1 < 0,
ω3i2 < 0.

Proof: As shown in Figure 6, line Ps1i−Ps2i− is called UAS h0i in No. 0i subspace, where
points Ps1i− and Ps2i− are located in the fourth and the second quadrants respectively. It
follows that h0i passes through the third quadrant. Then, there exist points C = (0, c)
and D = (d, 0), c < 0, d < 0 on the UAS h0i. Considering Equation (6), we obtain the
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Figure 6. The location of UAS h0i

following equations

h0i(C) =ω0i1·0 + ω0i2·c+M i = 0

h0i(D) =ω0i1·d+ ω0i2·0 +M i = 0
(32)

where Mi > 0, coefficients ω0i1 and ω0i2 can be expressed as

ω0i1 = −Mi/d; ω0i2 = −Mi/c (33)

Note that there exist c < 0, d < 0 and Mi > 0, we have conclusion ω0i1 > 0, ω0i2 > 0.
Similarly, the conclusion ω3i1 < 0, ω3i2 < 0 is obtained.

Lemma 4.4. If the coefficients ω1i1, ω1i2 in Equation (6) satisfy the chattering-free con-
dition ω1i1 < 0, ω2i1 > 0, we have inequality ai < bi, where the coefficients are expressed
as

ai = −ω0i2/ω0i1 = −ω3i2/ω3i1, bi = −ω1i2/ω1i1 = −ω2i2/ω2i1

Proof: According to Equation (6), UAS h1i is given as follows:

h1i = ω1i1xi + ω1i2 ∫xi +Mi (34)

Note that UAS h1i can be located in three different areas, namely, Area 1, Beyond 2 and
Beyond 3 in Figure 7, where the definitions of these areas are given as:

Area 1 = {h1i|bi = −ω1i2/ω1i1 < −ξ−1
2i , h1i(Ps2i−) = 0}; Beyond 2 = {h1i|0 > bi =

−ω1i2/ω1i1 > −ξ−1
2i , h1i(Ps2i−) = 0}; Beyond 3 = {h1i|bi = −ω1i2/ω1i1 > 0, h1i(Ps2i−) = 0}.

For surface h1i in Beyond 2, the discussion is shown as follows:
As shown in Figure 8, there exists a point E = (e, 0), e < 0 on the surface h1i. If we

substitute E = (e, 0) into Equation (34), condition ω1i1 = −Mi/e > 0 will be obtained.
However, coefficient ω1i1 should satisfy the chattering-free condition ω1i1 < 0. So UAS h1i
in Beyond 2 is not considered in this paper.

For the surface h1i in Beyond 3, the discussion is given as:
As shown in Figure 9, there exists a point F = (0, f), f < 0 on the surface h1i. If we

substitute F = (0, f) into Equation (34), condition ω1i2 = −Mi/f ≥ 0 is obtained. Note
the coefficient ω1i1 should satisfy the chattering-free condition ω1i1 < 0. Then, we have
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Figure 7. UAS h1i in Area 1, Beyond 2 and Beyond 3

Figure 8. UAS h1i in Beyond 2

result bi = −ω1i2/ω1i1 ≥ 0. On the other hand, there exists result ai = −ω0i2/ω0i1 < 0 as
shown in Lemma 4.3. Thus, conclusion ai < bi is obtained.
For the surface h1i in Area 1, the discussion is given as:
According to the expression in Equation (6), the formula of h0i = 0 and h1i = 0 can be

transformed into the following form.

∫xi = −ω0i1/ω0i2 · xi−Mi/ω0i2; ∫xi = −ω1i1/ω1i2 · xi−Mi/ω1i2 (35)
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Figure 9. UAS h1i in Beyond 3

Figure 10. UAS h1i in Area 1

Note that coefficients ω0i1, ω0i2 need to satisfy ω0i1 > 0, ω0i2 > 0 in Lemma 4.3. Then, the
gradients of h0i = 0 and h1i = 0 are given as −ω0i1/ω0i2 < 0 and −ω1i1/ω1i2 respectively.

Considering the gradient of h0i = 0 in Figure 10, the gradient of h1i = 0 in Area 1 is
more attached to negative infinity. So we obtain result (36)

−ω1i1/ω1i2 < −ω0i1/ω0i2 < 0 (36)

Taking the reciprocals of elements in Equation (36), it is noted that

0 > −ω1i2/ω1i1 > −ω0i2/ω0i1 (37)
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According to the definitions of ai, bi in Equation (31), we have ai = −ω0i2/ω0i1 =
−ω3i2/ω3i1, bi = −ω1i2/ω1i1 = −ω2i2/ω2i1. Then, ai < bi is obtained. Considering the
above results, it is clear that, if the coefficients ω1i1, ω1i2 satisfy ω1i1 < 0, ω2i1 > 0, there
exists ai < bi.

Theorem 4.3. Given system (1), if chattering-free condition ω1i1 < 0, ω2i1 > 0 and
simplified condition (7) are satisfied, the system with UAS-SMC controller (10) and ap-
proaching law (31) is chattering-free and stable.

Proof: First of all, a discussion is required for the demonstration. The purpose of
this theorem is to design a chattering-free UAS-SMC controller (10). As the chattering-
free approaching law is predefined in Equation (31), what we need to do is to verify the
continuous and stable property. Then, proof in this theorem falls into two different parts.
The first part relates to the chattering-free property. And the second part focuses on the
stability of UAS-SMC controller.
(1) Chattering-free Property
Note that the formula κi in Equation (31) is written as:

κi =

 |s2i| /(|s1i|+ |s2i|) s1i · s2i ≤ 0, s1i 6= 0
|s2i| /(|s2i|+ |xi|) s2ixi ≤ 0, xi 6= 0

1 s1ixi ≥ 0
(38)

Considering Equation (38), we can obtain the following conclusions:
When s1i = 0, |s2i|/(|s1i|+|s2i|) = 1; when s2i = 0, |s2i|/(|s2i|+|xi|) = 0 and |s2i|/(|s1i|+

|s2i|) = 0; when xi = 0, |s2i|/(|s2i|+ |xi|) = 1. Thus, κi in Equation (38) is continuous.
According to the design process in Step 3, coefficients Ω1, Ω2 and N are predefined as

Ω1 = diag{ω11, . . ., ωn1}, Ω2 = diag{ω12, . . ., ωn2}, N = [N1, . . ., Nn]
T

Then, the elements in −Ω−1
1 Ω2 · x+Ω−1

1 ·N can be expressed as follows:

−Ω−1
1 Ω2 · x+Ω−1

1 ·N = [−ω−1
11 ω12 · x1 + ω−1

11 N1, . . .,−ω−1
n1 ωn2 · xn + ω−1

n1Nn]
T (39)

If we define function ϕi as

ϕi = −ω−1
i1 ωi2 · xi + ω−1

i1 Ni, i = 1, . . ., n (40)

conclusion (41) is obtained by substituting Equation (31) into Equation (40).

ϕi = κi(ai · xi − ki · s2i) + (1− κi)[1/2 · (ai + bi)xi] (41)

Note that elements κi, (ai · xi − ki · s2i) and [1/2 · (ai + bi)xi] are continuous, the element
ϕi in Ω−1

1 Ω2 · x+Ω−1
1 ·N is a continuous function. Considering the continuity of f(x),

g(x) and Ω−1
1 Ω2 · x + Ω−1

1 ·N , UAS-SMC controller (10) with approaching law (31) is
continuous. Then, the system is chattering-free.
(2) Stable Property
The stable property of UAS-SMC controller with chattering-free approaching law (31)

is given in this part. Firstly, we will prove that approaching law (31) satisfies Ni ≥ 0 and
Ni = 0 if and only if xi = 0, ∫xi = 0.
As shown in Figure 11, the state space is divided into three subspaces: s1i · s2i ≤ 0;

s2i · xi ≤ 0; s1i · xi ≥ 0. Then, for state xi in subspace s1i · s2i ≤ 0, the discussion is given
as follows:
When state xi satisfies s1i ≥ 0, s2i ≤ 0, it is noted that the point (xi, ∫xi) is located

in No. 2i subspace by comparing Figure 1 and Figure 11. Then, we have ωi1 = ω2i1 > 0,
ωi2 = ω2i2, xi ≤ 0, s2i ≤ 0, ki > 0 and bi = −ω2i2/ω2i1 from the definitions in Step
3 and Step 4. According to Lemma 4.4, conclusion ai < bi is obtained. So there exist
ai · xi − ki · s2i ≥ bi · xi and 1/2 · (ai + bi)xi ≥ bi · xi. On the other hand, 0 ≤ κi ≤ 1
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Figure 11. The subspaces in the state space

is obtained from the formula form of κi in Equation (38). With above conclusions, it is
clear that

κi(ai · xi − ki · s2i) + (1− κi)[1/2 · (ai + bi)xi] ≥ bi · xi.
If we substitute this inequality into the approaching law (31), the following result is
obtained:

Ni = ωi2·xi+ωi1{κi(ai·xi−ki·s2i)+(1−κi)[1/2·(ai+bi)xi]} ≥ ω2i2·xi+ω2i1·bi·xi = 0 (42)

where Ni = 0 if and only if xi = 0, ∫xi = 0.
Similarly, for state xi satisfies s1i ≤ 0, s2i ≥ 0, there exist

Ni = ωi2·xi+ωi1{κi(ai·xi−ki·s2i)+(1−κi)[1/2·(ai+bi)xi]} ≥ ω1i2·xi+ω1i1·bi·xi = 0 (43)

where Ni = 0 if and only if xi = 0, ∫xi = 0.
For state xi in subspaces s2i ·xi ≤ 0 and s1i ·xi ≥ 0, we can also infer that Ni ≥ 0, where

Ni = 0 if and only if xi = 0, ∫xi = 0. For the sake of simplicity, the detail discussion is
omitted here.

According to above discussion, chattering-free approaching law satisfies that Ni ≥ 0
and Ni = 0 if and only if xi = 0, ∫xi = 0. Then, there exists Ni > 0 for xi 6= 0.
Considering Theorem 4.1, the stability of system is guaranteed. Note that the chattering-
free property of UAS-SMC controller with approaching law (31) is already proved in the
previous discussion. Then, the proof for Theorem 4.3 is finished.

5. Simulation Experiment. In this section, a discussion is given to show the difference
between conventional SMC and chattering UAS-SMC methods.

Considering the following nonlinear system:

ẋ = f(x) + g(x)u (44)

where x = [x1, x2]
T , f(x) = [−2x1+2x1x2+2 · sin(x2),−x2 ·cos(x1)]T , g(x) = diag{1, 1},

u = [u1, u2]
T .
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It is assumed that the initial states are x1(0) = 0.275,
∫ 0

−∞ x1(t)dt = −0.55; x2(0) =

−0.275,
∫ 0

−∞ x2(t)dt = −0.55. And the state constraints for system (44) are given as:

ψ =
{
x|x = [x1, x2]

T ,−0.55 ≤ xi ≤ 0.55, i = 1, 2
}

(45)

According to the design process in Section 3, chattering-free UAS-SMC controller can be
designed as follows:
Step 1: The switching surfaces are given as follows:

s1 = x+ ξ1 ∫x = 0

s2 = x+ ξ2 ∫x = 0
(46)

where s1 = [s11, s12]
T , s2 = [s21, s22]

T , ∫x = [∫x1, ∫x2]T , ξ1 = diag{2, 2}, ξ2 = diag{0.5,
0.5}.
Step 2: Considering the state constraints −0.55 ≤ xi ≤ 0.55, points Ps1i+, Ps1i−,

Ps2i+, Ps2i− are selected as shown in Figure 12, where Ps1i+ = (0.55,−0.275), Ps1i− =
(−0.55, 0.275), Ps2i+ = (−0.275, 0.55), Ps2i− = (0.275,−0.55).

Figure 12. The UAS h0i, h1i, h2i, h3i

Coordinates of points Ps1i+, Ps1i−, Ps2i+, Ps2i− can be used to design UAS h0i, h1i, h2i,
h3i. Then, the formulae of h0i, h1i, h2i, h3i are given as follows:

h0i =1/0.275 · xi + 1/0.275 · ∫xi + 1

h1i = − 1/0.825 · xi + 1/0.825 · ∫xi + 1

h2i =1/0.825 · xi − 1/0.825 · ∫xi + 1

h3i = − 1/0.275 · xi − 1/0.275 · ∫xi + 1

(47)

Step 3: According to the UAS in Figure 12 input u, current UAS hi can be expressed
as:

hi = ωi1xi + ωi2 ∫xi +Mi, i = 1, 2 (48)
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where

ωi1 =


1/0.275 s1i < 0, s2i < 0
−1/0.825 s1i < 0, s2i ≥ 0
1/0.825 s1i ≥ 0, s2i < 0
−1/0.275 s1i ≥ 0, s2i ≥ 0

, ωi2 =


1/0.275 s1i < 0, s2i < 0
1/0.825 s1i < 0, s2i ≥ 0
−1/0.825 s1i ≥ 0, s2i < 0
−1/0.275 s1i ≥ 0, s2i ≥ 0

, Mi = 1

Consequently, the compact form of current UAS is rewritten as:

h = Ω1x+Ω2∫x+M (49)

where h = [h1, h2]
T , Ω1 = diag{ω11, ω21}, Ω2 = diag{ω12, ω22}, M = [M1,M2]

T .
Step 4: The chattering-free UAS-SMC controller for system (44) is expressed as:

u = g(x)−1(−f(x)−Ω−1
1 Ω2 · x+Ω−1

1 ·N ) (50)

where N = [N1, N2]
T . From the discussion in Section 4.3, the chattering-free approaching

law Ni is expressed as

Ni = ωi2 · xi + ωi1{κi(ai · xi − ki · s2i) + (1− κi)[1/2 · (ai + bi)xi]} (51)

where ai = −1, bi = 1, ki = 10

κi =

 |s2i| /(|s1i|+ |s2i|) s1i · s2i ≤ 0
|s2i| /(|s2i|+ |xi|) s2ixi ≤ 0

1 s1ixi ≥ 0

The simulation results of state x1, x2 with chattering-free UAS-SMC and conventional
SMC methods are given as follows.

Figure 13. Trajectory of point (x1, ∫x1)

Figure 13 and Figure 14 show the trajectories of state x with chattering-free UAS-
SMC and conventional SMC strategies. Note that state xi (i = 1, 2) is constrained in
state constraint ψ under chattering-free UAS-SMC method. However, the constraint is
not satisfied under SMC controller as shown in Figure 13 and Figure 14. Figure 15 shows
the control inputs u1 and u2 with chattering-free approaching law Ni. It is clear that
chattering phenomenon is eliminated with chattering-free approaching law (31).
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Figure 14. Trajectory of point (x2, ∫x2)

Figure 15. Control inputs of chattering-free UAS-SMC

6. Conclusions. An innovative method called sliding mode control with unidirectional
auxiliary surfaces (UAS-SMC) is proposed in this paper. The main advantage of this
design is that system states are constrained by unidirectional auxiliary surfaces instead
of switching surfaces. Then, constraints are guaranteed when system states leaving the
switching surfaces. On the other hand, a chattering-free approaching law is given to elimi-
nate the chattering phenomenon in the controller. As shown in the examples, the proposed
strategy can guarantee the satisfaction of state constraints and avoid the overshoots in
the system.
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