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Abstract. Mining sequential rules are an important problem in data mining research.
It is commonly used for market decisions, management and behaviour analysis. In tradi-
tional association-rule mining, rule interestingness measures such as confidence are used
for determining relevant knowledge. They can reduce the size of the search space and
select useful or interesting rules from the set of the discovered ones. Many studies have
examined the interestingness measures for mining association rules, but have not been
devoted to mine sequential rules in sequence databases. In this paper, we thus consider
and apply several interestingness measures to generate all relevant sequential rules from
a sequence database. The prefix tree structure is also used to get the support values of
sequential patterns faster and reduce the execution time for mining sequential rules. Our
experimental results show that the run time for mining sequential rules with interesting-
ness measures on the prefix tree structure is much faster than that of other algorithms.
Keywords: Sequential pattern, Sequential rule, Sequence database, Interestingness
measure, Prefix tree

1. Introduction. Sequential pattern mining plays an important role in data mining re-
search and has a broad range of applications, including customer purchase behaviour
analysis [5,6], DNA sequence pattern analysis [8,18], guidance systems [38], web usage
behaviour analysis [31], and so on. Agrawal and Srikant [1] first proposed the sequential
pattern mining in 1995. The same authors later developed a generalized algorithm based
on the apriori property, called GSP [35]. Many other algorithms, which will be mentioned
in Section 2, have also been proposed to improve the effect of mining sequential patterns.
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However, when the support value is set low, many sequential patterns including irrelevant
or spurious patterns, may be obtained. Thus, designing an efficient sequential rule mining
process to remove these spurious patterns is important. Sequential rules express the tem-
poral relationships between sequential patterns from a sequence database [34]. Sequential
rules can be considered natural extension of original sequential patterns, just as associa-
tion rules are natural extension of frequent itemsets [35]. Using sequential rules, we can
know the series of events that will usually occur after a series of previous ones. Thus, they
can help users better understand the chronological order of the sequences present in the
sequence database. Like a sequential pattern, a sequential rule is also applied in many
application areas, including the stock market [5,6,21], weather observation [16], e-learning
[11], trade [9], and software engineering [26,41]. In addition, sequential rule mining is also
applied to address the prediction problem [10,12,13,16,17,21]. In the prediction problem, a
sequence of events that appear frequently in a database is not sufficient to predict events,
while sequential rules allow a better understanding of the prediction. An appropriate
sequential rule mining process, instead of mining only sequential patterns, is also desired.
The use of the interestingness measures of a rule can reduce the sizes of search spaces

and play an important role in selecting useful or interesting rules from the set of the
discovered rules. Many studies have examined interestingness measures to mine rules,
including support, confidence, cosine, lift, χ2, gini-index, Laplace, and phi-coefficient
[2,3,14,19,22-25,28,30,32,33,37,40] and so on. However, to the best of our knowledge,
these interestingness measures have been used for mining association rules in transac-
tion databases [25,33,37,40] but have not been used to mine sequential rules in sequence
databases except the traditional measures of support and confidence. Thus, the main aim
of this paper is to apply different interestingness measures to the sequential rule mining
problem. In this paper, we focus on some specific interestingness measures, including
Conviction [6], Cosine and Lift [37], etc., for mining relevant sequential rules. An algo-
rithm is proposed to generate all sequential rules from a set of sequential patterns in a
sequence database based on the prefix tree structure with these interestingness measures.
On a prefix tree, each node stores a sequential pattern and its corresponding support
value. When a sequential rule X ⇒ Y is mined, the prefix tree is directly traversed to
obtain the corresponding values, including the support values of X, Y and XY, which are
then used to calculate the measured value of the rule. Most interestingness measures of
a rule depend on the support value of the left hand side of the rule, and sometimes the
support value of the right hand side of the rule is also used to calculate the measured
values of a rule. The use of the prefix-tree structure in this paper can help easily get the
support values of sequential patterns to fast calculate the measure values of a rule.
The rest of this paper is organized as follows. Section 2 is a summary of related work.

Section 3 presents some definitions required for the sequential rule mining problem. Sec-
tion 4 discusses the proposed algorithm for mining sequential rules using interestingness
measures. Section 5 presents the experimental results, and Section 6 gives conclusions
and future work.

2. Related Work. The sequential pattern mining problem was firstly proposed by Agra-
wal and Srikant [1] in 1995. The same authors later applied the apriori property to de-
velop a generalized algorithm, called GSP [35]. Many other algorithms have also been
proposed to improve the effect of mining sequential patterns, including the SPADE [41]
algorithm, which was proposed to divide candidate sequences into distinct groups such
that each group could be completely stored in the main memory. The SPAM [4] algo-
rithm could speed up the mining process by using a lexicographic sequence tree and a
bitmap representation. PrefixSpan [29] examined the prefix subsequences and projected
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the corresponding postfix subsequences into projected databases. The PRISM [15] al-
gorithm used the primal block encoding approach to represent candidate sequences and
joined operations over the primal blocks to determine the frequency of each candidate.
Experimental results [15] also showed that PRISM was one of the best methods for mining
sequential patterns. It outperformed existing methods by an order of magnitude or more
and had a low memory footprint.

Spiliopoulou [34] proposed generating a full set of sequential rules from a set of frequent
sequences and adding a post-processing phase to remove some redundant rules. On the
basis of description in [34], Lo et al. [27] generalized and named for algorithm be the Full
algorithm to mine a full set of sequential rules. Besides, they also proposed a compressed
set of non-redundant rules that were generated from two sequence set types: the set
of projected-database-closed patterns (LS-Closed) and the set of closed patterns (CS-
Closed). The premise of a rule is a sequence in an LS-Closed set, and the consequence
is a sequence in a CS-Closed set. Van et al. [39] then improved the Full algorithm [27]
and proposed an algorithm, called MSR-Full, to find sequential rules between pairs of
sequential patterns. The algorithm was improved by sorting all sequential patterns in an
ascending order of sizes. Sequences that were prefixes of a sequence X could only appear
before X in the list of frequent sequential patterns. The authors [39] also gave another
algorithm, called MSR-PreTree. Based on the property of the prefix-tree structure, any
sequence X in the tree (except the tree root) is always a prefix of all sequences on the sub
trees in which each node was the sequence extension of X. The MSR-PreTree algorithm
could directly generate sequential rules. However, all the above algorithms proposed only
used the two traditional measures, support and confidence, to generate sequential rules.

In 1991, Piatetsky-Shapiro [30] proposed the statistical independence of rules, which
could be thought of as an interestingness measure as well. Many other measures [19,36]
have thus been proposed since then. To the best of our knowledge, these measures have
been used for mining association rules in transaction databases [25,33,37,40] but have not
been used to mine sequential rules in sequence databases except the traditional measures
of support and confidence. Thus, in this paper, we attempt to generate sequential rules
with the different interestingness measures.

3. Problem Definitions. A sequence database SD is a set of sequences S = {s1, s2, . . .,
sn}, where each sequence sx is an ordered list of itemsets. That is, sx = (x1, x2, . . ., xn),
where x1 occurs before x2, which occurs before x3, and so on, such that x1, x2, . . ., xn⊆ I,
where I is a set of items {i1, i2, . . ., in}. The size of a sequence is the number of itemsets
in the sequence. The length of a sequence is the number of items in the sequence. A
sequence with length l is called a l-pattern. A sequence with size k is called a k-sequence.

Given two sequences α = 〈a1 a2 . . . an〉 and β = 〈b1 b2 . . . bm〉, where ai, bi are itemsets.
The sequence α is called a subsequence of β and β is a supersequence of α, denoted α
⊆ β, if n ≤ m and there exist integers j1, j2, . . ., jn such that 1 ≤ j1 < j2 < . . . < jn ≤ m
and a1 ⊆ bj1, a2 ⊆ bj2, . . . , an ⊆ bjn. For example, if α = 〈(ab), d〉 and β = 〈(abc), (de)〉,
where a, b, c, d and e are items, then α is a subsequence of β and β is a supersequence of
α. The support of a sequence α sup(α) in a sequence database is the number of sequences
in the database containing α. Sequence α is a frequent sequence in a sequence database
SD if the support sup(α) of the sequence α is larger than or equal to the given minimum
support threshold minSup. A frequent sequence is called a sequential pattern.

Sequence α is a prefix of β if and only if ai = bi for all 1 ≤ i ≤ n < m.
If the prefix part α is removed from sequence β, then the remaining part of β is called

a postfix of β. Sequence α is an incomplete prefix of β if and only if ai = bi for all
1 ≤ i ≤ n − 1, an ⊂ bn and all items in (bn − an) are lexicographically after those in an.
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From the above definition, it can be derived that a sequence of size k has (k− 1) prefixes.
For example, a sequence 〈(A)(BC)(D)〉 has 2 prefixes: 〈(A)〉 and 〈(A)(BC)〉. Therefore,
〈(BC)(D)〉 is the postfix for prefix 〈(A)〉, and 〈(D)〉 is the postfix for prefix 〈(A)(BC)〉.
However, neither 〈(A)(B)〉 nor 〈(BC)〉 is considered as a prefix of the given sequence, but
〈(A)(B)〉 is an incomplete prefix of the given sequence.
A prefix tree is similar to a lexicographic tree [15,39], which starts from the tree root

at level 0. The root is set with a null sequence Ø, and each child node stores a sequential
pattern and its corresponding support value. At level 1, each node is set with a frequent
item; at level k, each node is set with a k-sequence. Recursively, the nodes at the (k+ 1)
level will be formed by extending a k-sequence with a frequent item. There are two
ways to extend a k-sequence: sequence extension and itemset extension [15]. In sequence
extension, an item from the whole set of items I is appended to the sequence as a new
itemset, and the size of the extended sequence always increases. Thus, a k-sequence α
is a prefix of all the sequence-extended sequences of α, and is also the prefix of all the
sub-nodes of the nodes which was sequence-extended from α. In itemset extension, an
item from the whole set of items I is appended to the last itemset in the sequence so
that the ID number of the item must be greater than the ID numbers of all the items

Table 1. A sequence database

SID Sequence
1 〈(AB)(B)(B)(AB)(B)(AC)〉
2 〈(AB)(BC)(BC)〉
3 〈(B)(AB)〉
4 〈(B)(B)(BC)〉
5 〈(AB)(AB)(AB)(A)(BC)〉

Figure 1. A prefix tree structure storing sequential patterns from Table 1
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in the last itemset. The size of itemset-extended sequences does not change, and α is an
incomplete prefix of all sub-nodes of the itemset-extended nodes in α.

Figure 1 shows the prefix tree of sequential patterns generated from the sequence data-
base in Table 1 with minSup = 50%. Sequences 〈(A)(B)〉 and 〈(A)(C)〉 are sequence-
extended sequences of 〈(A)〉, and 〈(AB)〉 is an itemset-extended sequence of 〈(A)〉. Se-
quence 〈(A)〉 is a prefix of all the sequences in T1 and an incomplete prefix of all the
sequences in T2. Similarly, sequence 〈(B)〉 has the three sequences-extended sequences
〈(B)(A)〉, 〈(B)(B)〉 and 〈(B)(C)〉, and the one itemset-extended sequence 〈(BC)〉. Se-
quence 〈(B)〉 is a prefix of all the sequences in T3 and an incomplete prefix of all the
sequences in T4.

Given the frequent sequential patterns of X and Y , there is a sequential rule X ⇒ Y , if
its confidence satisfies the minimum confidence threshold. The confidence of a sequential
rule X ⇒ Y is the ratio of the number of sequences that contain both X and Y against
the number of those that contain X. Similar to the association rule mining problem,
we also divide the sequential rule mining using interestingness measures from a sequence
database into two stages. The first stage is to mine sequential patterns that satisfy the
minSup. The next stage is to generate all the sequential rules with their interestingness
measures from the above sequential patterns.

4. Mining Sequential Rules with Interestingness Measures. In this section, we
describe the sequential rule mining process. The sequential rule mining problem, presented
above, contains two stages. The first stage is to mine sequential patterns from a sequence
database to satisfy the minSup threshold, and the second stage is to mine sequential rules
from the set of sequential patterns generated using the interestingness measure values. To
efficiently mine sequential patterns in the first stage, the PRISM [15] algorithm is adopted,
which uses the prime block encoding approach to represent candidate sequences and the
join operations over the prime blocks to determine the frequency for each candidate. All
the sequential patterns generated by the PRISM algorithm are stored in a prefix tree
structure.

4.1. Sequential rule mining. A sequential rule has the form X ⇒ Y (q, imv), where X
and Y are sequential patterns, X ∩ Y = Ø, q is the support of the rule (q = sup(X, Y )),
and imv is an interestingness measure value of the rule. In the traditional sequential rules,
imv is the confidence of a rule, and imv = sup(X,Y )/ sup(X).

A sequential rule can be created by splitting a sequential pattern into two parts: the
prefix (pre) and the postfix (post). If pre is concatenated with post, denoted pre++post,
then the result is the original sequential pattern. A sequential rule r can thus be formed
as pre ⇒ post (sup, imv). The support sup(r) of r is thus sup(pre++post). The interest-
ingness measure value of r is imv, and the traditional measure value of r is the confidence
measure conf(r) of r. That is, conf(r) = sup(pre++post)/ sup(pre). A sequence of size
k has (k − 1) prefixes, and can thus have (k − 1) sequential rules.

4.2. Interestingness measures. Interestingness measures are important metrics for
rule mining in the data mining research. They can reduce the search space size and
play an important role in selecting useful or interesting rules from a set of the discovered
rules. Recent research has examined the interestingness measures for mining rules. Table
2 shows some interestingness measures.

From the equations in Table 2, it can be easily observed that the terms often used
to calculate a measured value of the rule X ⇒ Y are the total number of sequences
in a sequence database (n), the number of sequences that contain X(nX), the number
of sequences that contain Y (nY ), the number of sequences that contain both X and
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Table 2. Some interestingness measures for a rule X ⇒ Y

Interestingness measure Equation Value Reference

Confidence nXY

nX

3
5

[22]

Support nXY

n
3
5

[22]

Conviction nXnȲ

nnXȲ

5∗2
5∗2 = 1 [8,20]

Lift nnXY

nXnY

5∗3
5∗3 = 1 [20,24]

Piatetsky-Shapiro nXY − nXnY

n
3− 5∗3

5
[19,20,27]

Cosine nXY√
nXnY

3√
5∗3 [19]

Jaccard nXY

nX+nY −nXY

3
5+3−3

= 3
5

[19,23]

Y (nXY ), the number of sequences that contain X but not Y (nXȲ ), and the number
of sequences that contain Y but not X(nX̄Y ). If we know n, nX , nY and nXY , other
terms for calculating the measured value in these equations can be easily determined like
nXȲ = nX − nXY , nX̄Y = nY − nXY , nX̄ = n − nX and nȲ = n − nY . Consider the
sequence database in Table 1. If X = 〈(B)〉 and Y = 〈(B)(BC)〉, then n = 5, nX = 5,
nY = 3 and nXY = 3. These terms then derive nX̄ = 0, nȲ = 2, nXȲ = 2. Table 2 also
presents the interestingness measure values for the rule X ⇒ Y .

4.3. Proposed algorithm. The previous algorithm PRISM in [15] is first applied to
generate sequential patterns stored in the prefix tree structure. An algorithm based on
the characteristics of the prefix tree is then proposed to generate sequential rules with
interestingness measures. By traversing the prefix tree, the algorithm can then easily
identify the components of a rule, such as the pre and the post parts, and can calculate the
measured values of the rule. Figure 2 presents the proposed algorithm to mine sequential
rules with interestingness measures.
In Figure 2, the algorithm first calls the PRISM(SD, minSup) procedure to generate all

sequential patterns and store these patterns in the prefix tree structure. For each node SP
at level 1 of the prefix tree, it calls the GENERATE SR FROM TREE ROOT(SP Root)
procedure to generate sequential rules from each sub-tree with SP as its root node. When
the procedure GENERATE SR FROM TREE ROOT(SP Root) is processed, there are
two types of nodes: sequence-extended and itemset-extended nodes. Since the size of
the itemset-extended nodes set does not change w.r.t the root node size based on the
definition of itemset extension, sequential rules are not generated from this itemset-
extended node set. Only sequential rules from sequences on the subtrees whose nodes
are sequence-extended nodes of the root are generated from the called procedure GEN-
ERATE SR FROM SUBTREE(Pre, Subtree), because the sequence at the root denoted
as pre will form the prefix of all extended sequences from the sequence-extended nodes
of the root. Hence, for each sub–tree, sequential rules from the sequences on the subtree
following the prefix pre are generated. All the extended nodes of the current root then
become prefixes of the subtrees at the next level, and this procedure is recursively called
for every extended node of the root. This recursive process is repeated until the last level
of the prefix tree is reached.
Besides, in the procedure GENERATE SR FROM SUBTREE(Pre, Subtree), the input

is sequences pre and Subtree so that pre is a common prefix of all the sequences on the
subtree. For each sequence SP in the subtree, the rule “pre⇒post” is generated such that
post is a postfix of SP with respect to the prefix pre.
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Figure 2. The proposed algorithm for generating sequential rules based
on a prefix tree



4818 T.-T. PHAM, J. LUO, T.-P. HONG AND B. VO

Most of the interestingness measures (imv) for a rule depend on the support (nPost) of
Post. To obtain the support of Post, the procedure FIND SUP POST(RNode, Post) is
called, where RNode is a not-empty and the first root node of Post on the prefix tree. The
procedure FIND SUP POST(RNode, Post) produces the support of Post by traversing
the branch of the prefix tree based on the root node RNode, which is the prefix of Post.

4.4. An example. An example is given here to illustrate the above algorithm. Consider
the sequence database presented in Table 1, with minSup = 50%. All the sequential
patterns in the database are stored on the prefix tree shown in Figure 1.
Note that when the minimum interestingness measure threshold minThreshold is 0,

the numbers of the sequential rules generated from the prefix tree in Figure 1 for all
of the different interestingness measures are equal (totally 23 sequential rules), includ-
ing 〈(A) ⇒ (B)〉; 〈(A) ⇒ (C)〉; 〈(A) ⇒ (B)(B)〉; 〈(A) ⇒ (B)(C)〉; 〈(A)(B) ⇒ (B)〉;
〈(A)(B) ⇒ (C)〉; 〈(AB) ⇒ (B)〉; 〈(AB) ⇒ (C)〉; 〈(AB) ⇒ (B)(B)〉; 〈(AB) ⇒ (B)(C)〉;
〈(AB)(B) ⇒ (B)〉; 〈(AB)(B) ⇒ (C)〉; 〈(B) ⇒ (A)〉; 〈(B) ⇒ (B)〉; 〈(B) ⇒ (C)〉;
〈(B) ⇒ (AB)〉; 〈(B) ⇒ (BC)〉; 〈(B) ⇒ (B)(B)〉; 〈(B) ⇒ (B)(C)〉; 〈(B) ⇒ (B)(BC)〉;
〈(B)(B) ⇒ (B)〉; 〈(B)(B) ⇒ (C)〉; 〈(B)(B) ⇒ (BC)〉. However, when the minimum
interestingness measure threshold minThreshold is greater than 0, the numbers of se-
quential rules generated are different. Table 3 shows the results of the sequential rules
generated from the prefix tree with the different interestingness measures. For example, if
the minimum interestingness measure for minConfidence, minLift and minCosine are set
at 0.8, then 10 sequential rules satisfy minConfidence, 17 sequential rules satisfy minLift
and only 6 sequential rules satisfy minCosine generated as shown in Table 3. To quickly
get the support (nPost) of the right-hand side of the rule, the algorithm only needs to
traverse the branch of the prefix tree based on the root nodes that are the prefixes of
the post sequence of the rule. For example, consider the process of generating sequential
rules from the root node 〈(A)〉 on the prefix tree in Figure 1 with the Lift measure. The
sequential rules are generated as follows. The root node 〈(A)〉 has one itemset-extended
sequence 〈(AB)〉 and two sequence-extended sequences 〈(A)(B)〉 and 〈(A)(C)〉. Because
〈(A)〉 is an incomplete prefix of 〈(AB)〉 and all sub-nodes of 〈(AB)〉 which extended from
〈(AB)〉, the algorithm does not need to generate rules from the nodes with prefix 〈(A)〉.
On the contrary, since 〈(A)〉 is a prefix of the two sequence-extended sequences 〈(A)(B)〉
and 〈(A)(C)〉, the following rules can be generated: 〈(A) ⇒ (B)〉 and 〈(A) ⇒ (C)〉.
For the sequential rule 〈(A) ⇒ (B)〉, since the support value of the sequential pattern
B is 5 by traversing the prefix tree and the calculated Lift measure value of the rule
in Table 2 is less than minLift, the rule 〈(A) ⇒ (B)〉 is not generated. Similarly for
the rule 〈(A) ⇒ (C)〉, since the support value of the sequential pattern C is 4 and the
calculated Lift measure value in Table 2 is 0.9375, which is greater than minLift, the

sequential rule 〈(A)〉
(3,0.9375)⇒ 〈(C)〉(5, 4, 4, 3) is generated. Moreover, 〈(A)〉 is a prefix of all

the sub-nodes of 〈(A)(B)〉 and 〈(A)(C)〉, such that the algorithm can generate rules as
well from the subnodes in a similar process, the subnodes include sequences 〈(A)(B)(B)〉
and 〈(A)(B)(C)〉. The above generating sequential rules process is applied for two these

subnodes and only 〈(A)〉
(3,0.9375)⇒ 〈(B)(C)〉(5, 4, 4, 3) sequential rule is generated. The above

process can then be repeated for all the subnodes of 〈(A)〉 to generate sequential rules.
All the remaining nodes on the prefix tree in Figure 1 can be similarly processed, and the
results are shown in Table 3.
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5. Experimental Results. Experiments were then made to evaluate the performance
of the proposed algorithm for sequential rule mining using different interestingness mea-
sures. An algorithm modified from the Full algorithm [27], called modified Full algorithm,
for generating only traditional sequential rules by using the confidence measure was also
run for comparison. All the experiments were performed on a PC machine with dual-core
2.81 GHz, 2 GBs RAM, running Windows XP professional, and implemented by C#.
The synthetic databases were generated by the IBM synthetic data generator to mimic
transactions in a retail environment. The synthetic data generation program used the
following parameters: C was the average number of itemsets per sequence, T was the
average number of items per itemset, S was the average number of itemsets in maximal
sequences, I was the average number of items in maximal sequences, N was the num-
ber of distinct items, and D was the number of sequences. Two synthetic databases,
C6T5S4I4N1kD1k and C6T5S4I4N1kD10k, were used in the experiments. Table 4 shows
numbers of sequential patterns, numbers of sequential rules with interestingness measures,
and the execution time in the two synthetic databases, corresponding to their minimum
supports and different rule measures between the proposed algorithm and the modified
Full algorithm.
The experimental results in Table 4 show that sequential rule mining with interesting-

ness measures using the proposed algorithm based on the prefix tree was always much
faster than that using the modified Full algorithm. The former only consumed a small
amount of time when compared with the latter. The time ratio was calculated as fol-
lows: (mining time on the prefix tree/mining time on the modified Full) *100%. For the
C6T5S4I4N1kD1k dataset with minSup = 0.5% and the confidence measure, the mining
time based on the Prefix tree was 0.22, and based on the Full algorithm was 265.77,
such that the time ratio was (0.22/265.77)*100%, which was 0.08%. If the Lift mea-
sure was used, the time ratio was (9.47/588.92)*100%, which was 1.61%. Similarly, the
time ratio of the cosine measure was (9.35/595.27) *100%, which was 1.57%, for the
Piatetsky-Sharipo measure was (9.39/592.15)*100%, which was 1.59%, for the conviction
measure was (9.38/596.41)*100%, which was 1.57%, and for the Jaccard measure was
(9.4/594.09)*100%, which was 1.58%. Among all the above time ratios, the one for the
confidence measure was the smallest, because it did not need to revisit the prefix tree
to determine the support of Y (the right-hand side of rules). According to the results
in Table 4, it could be easily seen that for low minimum support values, the number of
sequential rules generated from sequence databases was large and the proposed algorithm
outperformed the modified Full algorithm much. Though the modified Full algorithm had
to scan a set of sequential patterns to determine the support of the right-hand side of
each rule, the proposed algorithm only traversed the branch of the prefix tree based on
the root nodes that were the prefixes of the sequence on the right-hand side of each rule.
Thus, the use of the prefix tree structure is an effective approach for mining sequential
rules with all of the different interestingness measures.
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6. Conclusions and Future Work. In this paper, we have considered and applied
several interestingness measures, which have been used for mining association rules and
mining unexpected sequential rules, etc., to mine sequential rules from a set of sequen-
tial patterns in sequence databases. In large sequence databases, the determination of
measured values becomes difficult, and the time required to compute measure values and
generate rules is long. This paper thus uses the prefix tree structure to compute the
values fast and to reduce the time for mining sequential rules. By traversing the prefix
tree, the proposed approach can immediately determine which sequences are the left- and
right-hand sides of a rule as well as their support values to compute the interestingness
measure values of the rule from the sequential pattern set.
The experimental results show that the performance of the proposed algorithm for

mining sequential rules with different interestingness measures on the prefix tree structure
is much better than that of the modified Full algorithm. In the future, we will attempt to
apply these interestingness measures for mining non-redundant sequential rules [27] based
on the prefix tree structure. Besides, the incremental data mining problem have been
proposed in recent years [20]. We will also study incremental data mining for maintaining
sequential patterns and sequential rules in the future.
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