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ABSTRACT. One of the most important issues in power system restoration (PSR) is
switching overvoltage caused by power equipment energization. This phenomenon may
damage some equipment and delay power system restoration. This paper proposes an
intelligent estimator which can be used to evaluate and control switching overvoltages.
Transformer, shunt reactor, and transmission lines are important devices in PSR and
their energization have been studied in this work. Artificial neural network (ANN) is
adopted as an intelligent approach to deal with these overvoltages. Both Multilayer Per-
ceptron (MLP) and Radial Basis Function (RBF) structures have been analyzed. Five
learning algorithms, backpropagation (BP), delta-bar-delta (DBD), extended delta-bar-
delta (EDBD), directed random search (DRS), and quick propagation (QP) were used to
train the MLP. In the cases of transformer and shunt reactor energization, ANNs are
trained with the worst case scenario of switching angle and remanent flux which reduce
the number of required simulations for training ANN. Also, for achieving good gener-
alization capability for developed ANN, equivalent parameters of the network are used
as ANN inputs. The simulated results for a partial of 39-bus New England test system
show that the proposed technique can estimate the peak values and duration of switching
overvoltages with good accuracy and EDBD algorithm presents best performance.
Keywords: Artificial neural networks, Harmonic index, Power system restoration,
Power equipment energization, Switching overvoltages

1. Introduction. In recent years, due to economic competition and deregulation, power
systems are being operated closer and closer to their limits. At the same time, power
systems have increased in size and complexity. Both factors increase the risk of major
power outages. After a blackout, power needs to be restored as quickly and reliably as
possible and, consequently, detailed restoration plans are necessary [1,2]. If the frequency
characteristic of the system shows resonance conditions around multiples of the funda-
mental frequency, very high and weakly damped temporary overvoltages (TOVs) of long
duration may occur when the system is excited by a harmonic disturbance, such as the
switching of lightly loaded transformers or transformer saturation [1,3-5].
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One of the major concerns in power system restoration is the occurrence of overvoltages
as a result of switching procedures. These can be classified as transient overvoltages,
sustained overvoltages, harmonic resonance overvoltages, and overvoltages resulting from
ferro-resonance. Steady-state overvoltages occur at the receiving end of lightly loaded
transmission lines as a consequence of line-charging currents (reactive power balance).
Excessive sustained overvoltages may lead to damage of transformers and other power
system equipment. Transient overvoltages are a consequence of switching operations on
long transmission lines, or the switching of capacitive devices, and may result in arrester
failures. Ferro-resonance is a non-harmonic resonance characterized by overvoltages whose
waveforms are highly distorted and can cause catastrophic equipment damages [1,6-9].

In [10], maximal voltages induced on overhead power lines by a nearby lightning stroke
are estimated. In [11], a comparison is made between two coupling models frequently used
to estimate the lightning-induced overvoltages in power lines. Also, in [12] fast transient
overvoltage in gas-insulated substation is estimated. In [13], a qualitative method of
prediction for voltages to the first peak value is provided, which is quantitative once the
‘universal curve’ (defined in the text) is known. In [14], an artificial neural network is
trained to estimate peak overvoltage generated in presence of back flashover. Also, in
[15] single-phase transmission line overvoltage peak is estimated by using artificial neural
network (ANN). Moreover, the author evaluated single-phase transformer overvoltages
using radial basis function (RBF) neural network in [16].

In this paper, switching overvoltages caused by transformer, shunt reactor, and trans-
mission line energization are evaluated. In order to study temporary overvoltages for a
large number of possible system configurations, it is necessary to run many time-domain
simulations resulting in a large amount of simulation time. In transformer and shunt
reactor energization study, a way to limit the overall calculation time is to reduce the
number of simulations by applying analytical or knowledge-based rules to discard a num-
ber of system configurations before an actual time-domain simulation is carried out. This
paper presents the artificial neural network (ANN) application for estimation of peak
and duration overvoltages under switching transients during transformer, shunt reactor,
and transmission lines energization. Moreover, in the ANN training process, equivalent
parameters of the network are used; this causes developed ANN can be applied to every
studied system. A tool such as the one proposed in this paper that can give the maxi-
mum switching overvoltage and its duration will be helpful to the operator during system
restoration; since after a blackout, power needs to be restored as fast and reliable as pos-
sible. Because of ANN responses to its inputs real-time, operators can use it to select the
best sequence of equipment energization. Also it can be used as a training tool for the
operators. Results of the studies are presented for a partial of 39-bus New England test
system to illustrate the proposed approach.

This paper is organized as follows. Section 2 presents the basic concepts of proposed
ANN models. Section 3 proposes a training technique based on equivalent circuit pa-
rameters. Also, a new harmonic-index is introduced for transformer and shunt reactor
energization to reduce the number of required simulations for training ANN. Section 4
presents the test cases and results. Discussion is reported in Section 5 and in Section 6,
a conclusion will be drawn.

2. The Artificial Neural Network. There are many types of neural networks for var-
ious applications available in the literature [17-21]. Multilayer Perceptrons (MLPs) and
Radial Basis Functions (RBFs) are examples of feed-forward networks and both universal
approximators. In spite of being different networks in several important respects, these
two neural network architectures are capable of accurately mimicking each other.
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2.1. Multilayer perceptrons (MLPs). Multilayer perceptrons are the simplest and
therefore most commonly used neural network architectures. The basic structure of the
MLP is shown in Figure 1. The MLP consists of three layers namely, the input layer, the
hidden layer, and the output layer. Training a network consists of adjusting weights of the
network using a different learning algorithm. In this paper, backpropagation (BP), the
delta-bar-delta (DBD), the extended delta-bar-delta (EDBD), the directed random search
(DRS), and quick propagation (QP) were used to train the MLP. A learning algorithm
gives the change Awj;(k) in the weight of a connection between neurons i and j. In the
next section, these learning algorithms have been explained briefly.

2.1.1. Backpropagation (BP) algorithm. The BP with momentum [17] is the most com-
monly adopted MLP training algorithm. It is a gradient descent algorithm and gives the
change Awj;(k) in the weight of a connection between neurons i and j as follows:

where z; is the input, « is a parameter called the learning coefficient, p is the momentum
coefficient, and 9, is a factor depending on whether neuron j is an output neuron or a
hidden neuron.

2.1.2. Delta-Bar-Delta (DBD) algorithm. The DBD algorithm is a heuristic approach to
improve the convergence speed of the weights in ANNs [22]. The weights are updated by

w(k+1) =w(k) + a(k)d(k) (2)

where «a(k) is the learning coefficient and assigned to each connection, (k) is the gradient
component of the weight change. §(k) is employed to implement the heuristic for incre-
menting and decrementing the learning coefficients for each connection. The weighted
average 6(k) is formed as

§(k) = (1—0)5(k) +05(k — 1) (3)
where 6 is the convex weighting factor. The learning coefficient change is given as
K §(k—1)5(k)>0
Aa(k) =< —pa(k) o(k—1)0(k) <0 (4)

0 otherwise
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where & is the constant learning coefficient increment factor, and ¢ is the constant learning
coefficient decrement factor.

2.1.3. FEstended Delta-Bar-Delta (EDBD) algorithm. The EDBD algorithm is an exten-
sion of the DBD and based on decreasing the training time for ANNs [23]. In this algo-
rithm, the changes in weights are calculated from:

Aw(k +1) = a(k)o(k) + p(k)Aw(k) (5)
and the weights are then found as
w(k+1) =w(k) + Aw(k) (6)

In Equation (5), a(k) and p(k) are the learning and momentum coefficients, respectively.
The learning coefficient change is given as

Kaexp(—7a |6(k)|) if 6(k —1)d(k) >0
Aa(k) = ¢ —paa(k) if 6(k—1)d0(k) <0 (7)
0 otherwise

where £, is the constant learning coefficient scale factor, exp is the exponential function,
Vo is the constant learning coefficient decrement factor, and -, is the constant learning
coefficient exponential factor. The momentum coefficient change is also written as

K exp(—y, [6(k)|) if 6(k — 1)6(k) > 0
Ap(k) = O—wM(k) if i(k —1)é(k) <0 (8)
otherwise

where £, is the constant momentum coefficient scale factor, ¢, is the constant momentum
coefficient decrement factor, and v, is the constant momentum coefficient exponential
factor. In order to take a step further to prevent wild jumps and oscillations in the
weight space, ceilings are placed on the individual connection learning and momentum
coefficients [23].

2.1.4. Directed random search (DRS) algorithm. The directed random search is a rein-
forcement learning approach and used to calculate the weights of ANNs. This algorithm
also tries to minimize the overall error [24]. Random steps are taken in the weights and
a directed component is added to the random step to enable an impetus to pursue pre-
viously search directions. The DRS is based on four procedures as random step, reversal
step, directed procedure and self-tuning variance. In the random step, a random value is
added to each weight of network and the error is then evaluated for all training sets as

w(k + 1) = wpest + dw(k) 9)

where wyes; is the best weight vector previous to iteration k and dw(k) is the delta weight
vector at iteration k. Depending on the error evaluation, the weights are replaced with
the new weights. If there is no improvement at the error in the random step, some random
value is subtracted from the weight value during the reversal step, that is

w(k 4+ 1) = Wpest — dw(k) (10)

In [24], a directed procedure has been added to the random step to further improve with
reversals. The new weights are obtained from:

w(k + 1) = wyest — dw (k) + dp(k) (11)

where dp(k) is the directed procedure and based on the history of success or failure of the
random steps.
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2.1.5. Quick propagation (QP) algorithm. The QP algorithm was developed by Fahlman
[25] as a new method of improving the rate of convergence in MLPs. First, the changes
in weights are calculated as

Aw(k) = eL(k) + aQ(k) (12)

where £ and « are the learning coefficients for the linear and the quadratic terms, respec-
tively,

- {0 140 .
and
Ok) = { pdaw(l 1) it h(k) (k) = (725) b= 1)) > 0 "
Aq(k) otherwise

In Equations (13) and (14), the variables are shown as follows: h(k) = OE/0w(k) is the
gradient calculated by the BP, accumulated from epoch k& — 1 to epoch k, and normalized
with respect to epoch size and number of weights incoming to the neuron, Aw(k) is the
change in weight from epoch k£ — 1 to epoch k ignoring weight decay and clipping, pu is
the maximum growth factor, and Aq(k) = (Aw(k)h(k))/(h(k—1) —h(k)) is the step that
jumps to minimum of parabola. The weight is then updated using the delta weight and
the weight decay coefficient:

w(k) = (1—=8w(k — 1)+ Aw(k) (15)
where ¢ is the decay rate.

2.2. Radial basis function neural network (RBFNN). An alternative network ar-
chitecture to the MLP is the RBEFN. Figure 2 shows the structure of the RBF neural
network, which comprises of three layers. The hidden layer possesses an array of neurons,
referred to as the computing units. The number of such units can be varied depending
on user’s requirement [18,26]. Different basis functions like spline, multi-quadratic, and
Gaussian functions have been studied, but the most widely used one is the Gaussian type.

In comparison to the other types of neural network used for pattern classification like
back propagation feedforward networks, the RBF network requires less computation time
for learning and has a more compact topology. The Gaussian RBF is found not only

Input Hidden Output
Layer Laver Layer

FIGURE 2. The structure of RBF neural network
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suitable in generalizing a global mapping but also in refining local features without altering
the already learned mapping. Each hidden unit in the network has two parameters called
a center (w) and a width (o) associated with it. The response of one such hidden unit to

the network input X, X = [z, o, .. ,xn]T is expressed as:

o () = exp (=15 1X — ) (16)

where wy, is the center vector for kth hidden unit, oy is the width of the Gaussian function,
and || || denotes the Euclidean norm. The output layer comprises a number of nodes
depending on the number of fault types to be classified which perform simple summation.
The response of each hidden unit (1) is scaled by its connecting weights (a’s) to the
output nodes and then summed to produce the overall network output. The overall
network output is expressed as:

fm(X) :amo+zamk¢k(X) (17)

k=1

where N indicates the total number of hidden neurons in the network, o, is the connect-
ing weight of the kth hidden unit to mth output node, and «,,, is the bias term for the
corresponding mth output neuron. The learning process of the RBFNN involves with the
allocation of new hidden units and tuning of network parameters. The learning process
is terminated when the output error goes under the defined threshold [27].

3. Training Artificial Neural Network. The sample system considered for explana-
tion of the proposed methodology and training ANNs is a network shown in Figure 3.
In [15,16], an ANN is trained to evaluate overvoltages; but it is necessary to train an
ANN for every system. In this paper, training of ANN is performed based on equivalent
circuits of Figure 3. In other words, the equivalent parameters of the network are added
to ANN inputs to achieve good generalization capability for developed ANNs. In fact, in
this approach ANN is trained just once for sample system of Figure 3. It is just sufficient
to convert every studied system to equivalent system of Figure 3; then it is possible to use
developed ANNs to evaluate overvoltages. Therefore, developed ANNs can be applied to
every studied system.

To train ANNs, all experiments have been repeated for different system parameters.
After learning, all parameters of the trained networks have been frozen and then used
in the retrieval mode for testing the capabilities of the system on the data not used in
learning. The testing data samples have been generated through the PSB program by
placing the parameter values not used in learning, by applying different parameters. A
large number of testing data have been used to check the proposed solution in the most
objective way at practically all possible parameters variation. Relative error is calculated
by the difference of PSB output and ANN output:

IANN — PSB]
e 2P

B elative — 1
Fetative (%) 538 00 (18)
and absolute error is calculated as:

Erapsolte = |[ANN — PSB| (19)

Specification of ANNs is presented in Table 1.
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FIGURE 3. Sample systems for power equipment energization study. (a)
Transformer energization, (b) shunt reactor energization, and (c) trans-
mission line energization. G: generator, Reqy: equivalent resistance, Legy:
equivalent inductance, and Ceqy: equivalent capacitance.

TABLE 1. Specification of developed ANNs

Number of Number of neurons Training time
ANN model| ;3 4en layers in each hidden layer [epochs]
BP 2 10 50
DBD 3 6 165
EDBD 3 7 69
DRS 3 6 43
QP 3 5 146
RBF 2 10 85

3.1. Transformer switching study. The major cause of harmonic resonance overvolt-
age problems is the switching of lightly loaded transformers at the end of transmission
lines. The harmonic-current components of the same frequency as the system resonance
frequencies are amplified in case of parallel resonance, thereby creating higher voltages
at the transformer terminals. This leads to a higher level of saturation, resulting in
higher harmonic components of the inrush current that again results in increased volt-
ages. This can happen particularly in lightly damped systems, common at the beginning
of a restoration procedure when a path from a black-start source to a large power plant
is being established and only a few loads are restored yet [1,8]. Overvoltage will put the
transformer into saturation, causing core heating and copious harmonic current genera-
tion. Circuit breaker called upon to operate during periods of high voltage will reduce
interrupting capability.
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Unlike [16], which is applicable for single-phase transformers and its evaluation is based
on RBF, this work proposed an approach for three-phase systems and its evaluation is
based on six ANN models. Also, equivalent circuit parameters are selected as ANN inputs
to enhance generalization capability of the developed ANN. Moreover, in [16] operators
need to determine switching angle and remanent flux which is very difficult; whereas as
mentioned below, there is no need to these parameters.

Normally for harmonic overvoltages analysis during transformer energization, the worst
case of the switching angle and remanent flux must be considered which is a function of
switching time, transformer characteristics and its initial flux condition, and impedance
characteristics of the switching bus [28]. Using the worst switching angle and remanent
flux, the number of simulations for each case can be reduced significantly.

In order to determine worst-case switching time and remanent flux, the following index
is defined as

W= ZZJ(h’) 'Ij(h7t0;¢r) (20)

where %, is the switching time, ¢, is the initial transformer flux, and A is the harmonic
number. This index can be a definition for the worst-case switching condition and rema-
nent flux. Using a numerical algorithm, one can find the switching time and remanent
flux for which W is maximal (i.e., harmonic overvoltage is maximal).

Figure 4(a) shows the result of the PSB frequency analysis at bus 2 (Figure 3(a)). The
magnitude of the thevenin impedance, seen from bus 2, Zy,s shows a parallel resonance
peak at 246 Hz. Figures 4(b), 4(c) and 4(d) show changes of W index with respect to the
current starting angle and remanent flux for three phases. As shown in Figure 4, Wiy« p is
bigger than Wiax Ao and Wiax c. Therefore, if simulation is performed based on switching
angle and remanent flux related to Wi,y 5, maximum overvoltages is achieved. Table 2
summarizes the results of overvoltages simulation for four different switching angles and
remanent fluxes including Winaxa (80° and 0.62 p.u.), Wiax s (39° and 0.65 p.u.), Wiax,c
(87° and 0.09 p.u.). Results verify the effectiveness of W index.

Based on this approach, switching angle and remanent flux are eliminated from ANN
inputs; thus, ANN training procedure time is reduced significantly. Therefore, for training
ANN, following parameters are considered as ANN inputs:

e Voltage at transformer bus before switching
e Equivalent resistance of the network
Equivalent inductance of the network
Equivalent capacitance of the network

Line length

Saturation curve slope

The steps for harmonic overvoltages assessment and estimation are listed below:

1) Determine the characteristics of transformer that should be energized.

2) Calculate the Z;(h) at the transformer bus for h = 2f,, ..., 10 fo.

3) Compute the worst switching angle and remanent flux for simulation.

4) Run PSB simulation.

5) Determine the overvoltage peak and duration.

6) Repeat Steps 1 to 5 with various system parameters to learn artificial neural network.
)

7) Test the artificial neural network with different system parameters.

Schematic diagram of transformer energization study during power system restoration
is illustrated in Figure 5.
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FIGURE 4. (a) Impedance at bus 2 of Figure 2(a), and changes of W index
with respect to current starting angle and remanent flux in (b) Phase A,
(c) Phase B, and (d) Phase C.

TABLE 2. Effect of switching time and remanent flux on the maximum of
overvoltages and duration of Ve, > 1.3 p.u.

Transformer Energization Study:

Switching Angle Remanent Flux V.

Duration of

[deg.] [p.u.] [p-u.] (Vpeak > 1.3 p.u.) [s]
39 0.65 2.1961 0.7544
80 0.62 1.8095 0.4627
87 0.09 1.8831 0.8469
15 0.3 1.5319 0.2753

Shunt Reactor Energization Study:

Switching Angle Remanent Flux V..

Duration of

[deg.] [p-u.] [p-u.] (Vpeak > 1.3 p.u.) [s]
20 0.27 1.9205 0.5628
20 0.65 1.5841 0.3394
7 0.27 1.6537 0.3064
60 0.5 1.5293 0.2675

1799
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Ficure 5. ANN-based approach to analyze switching overvoltages during
transformer energization

3.2. Shunt reactor energization study. Long EHV transmission lines are generally
compensated by means of shunt reactor sets. Reactor failures have directed attention to
the transient overvoltages generated by reactor switching. Shunt reactors are applied to
regulate the reactive power balance of a system by means of compensating for the surplus
reactive power generation of transmission lines. Reactors are normally disconnected at
heavy load and connected to the lines at periods of low load. Consequently, frequent
switching is a significant characteristic of shunt reactors in order that they can react to
the changing system load condition [29].

Transients caused by shunt reactor switching have been an important parameter in the
design of the relevant equipment (reactor, circuit breaker, insulation) of power systems.
Based on considered model for shunt reactor, it is possible to use harmonic index which
is defined in previous section. Table 2 summarizes the results of overvoltages simulation
for four different switching angles and remanent fluxes that verify the effectiveness of W
index for shunt reactor energization study.

Consequently, in this case following parameters are selected as ANN inputs:

e Voltage at shunt reactor bus before switching
e Equivalent resistance of the network
Equivalent inductance of the network
Equivalent capacitance of the network

Line length

Shunt reactor capacity

e Saturation curve slope

The steps of overvoltages assessment and estimation follow:

1) Determine the characteristics of shunt reactor that should be energized.
2) Calculate the Z;(h) at the shunt reactor bus for h = 2fy, ..., 10 fo.
3) Compute the worst switching angle and remanent flux for simulation.
4) Run PSB simulation.

)

5) Determine the overvoltage peak and duration.
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Backpropagation:

\4 L.L. "’1)5]3 "’Ep errory TPSB TBp errort
0.9212 146 1.3018 1.2695 2.4828 0.0826 0.0839 1.5142
0.9405 175 1.3477 1.3121 2.6414 0.2148 0.2197 2.2942
0.9822 205 1.4961 1.4816 0.9661 0.3561 0.3547 0.3841
0.1006 227 1.5908 1.6286 23790 0.4459 04313 3.2682
1.0629 240 1.7606 1.8010 2.2928 0.4103 0.4076 0.6561
1.0891 265 1.8247 1.8351 0.5691 0.5719 0.5666 0.9316
1.1714 290 1.9072 1.9151 0.4165 0.5246 0.5100 2.7924
1.2073 316 1.9208 1.8873 1.7443 0.6128 0.6233 1.7066
Delta-bar-delta:

VvV L.L. Vpsn VDBD errory TPSB T])B]) errorrt
0.9212 146 1.3018 1.2647 2.8515 0.0826 0.0799 3.2491
0.9405 175 1.3477 1.3050 3.1703 0.2148 0.2104 2.0303
0.9822 205 1.4961 1.5027 0.4445 0.3561 0.3559 0.0594
0.1006 227 1.5908 1.6417 3.1968 0.4459 0.4440 0.4230
1.0629 240 1.7606 1.7216 22133 0.4103 0.4227 3.0195
1.0891 265 1.8247 1.8309 0.3414 0.5719 0.5816 1.6950
1.1714 290 1.9072 1.9258 0.9747 0.5246 0.5091 2.9570
1.2073 316 1.9208 1.8840 1.9141 0.6128 0.6083 0.7329
Extended delta-bar-delta:

\% L.L. "’PSB "’EDBD errory TPSB TEDBD errorr
0.9212 146 1.3018 1.3277 1.9909 0.0826 0.0849 2.7368
0.9405 175 1.3477 1.3698 1.6429 0.2148 0.2156 0.3521
0.9822 205 1.4961 1.4955 0.0417 0.3561 0.3524 1.0292
0.1006 227 1.5908 1.5720 1.1799 0.4459 0.4496 0.8308
1.0629 240 1.7606 1.7506 0.5676 0.4103 0.4179 1.8581
1.0891 265 1.8247 1.7740 2.7800 0.5719 0.5701 0.3202
1.1714 290 1.9072 1.9280 1.0893 0.5246 0.5320 1.4186
1.2073 316 1.9208 1.8853 1.8499 0.6128 0.6150 0.3670
Directed random search:

\% L.L. "’PSB "’DRS errory TPSB TDRg errorr
0.9212 146 1.3018 1.2620 3.0561 0.0826 0.0851 2.9775
0.9405 175 1.3477 1.3237 1.7798 0.2148 0.2190 1.9620
0.9822 205 1.4961 1.4714 1.6535 0.3561 0.3677 3.2536
0.1006 227 1.5908 1.6615 4.4459 0.4459 0.4350 2.4383
1.0629 240 1.7606 1.7576 0.1698 0.4103 0.4187 2.0398
1.0891 265 1.8247 1.7520 3.9833 0.5719 0.5882 2.8539
1.1714 290 1.9072 1.9856 4.1098 0.5246 0.5085 3.0765
1.2073 316 1.9208 1.8520 3.5828 0.6128 0.6340 34612
Quick propagation:

\4 LL. VPSE "rop errory TPSB TQ}: errorr
0.9212 146 1.3018 1.3144 0.9692 0.0826 0.0830 0.5027
0.9405 175 1.3477 1.3499 0.1616 0.2148 0.2161 0.6133
0.9822 205 1.4961 1.5012 0.3400 0.3561 0.3452 3.0539
0.1006 227 1.5908 1.6366 2.8821 0.4459 0.4558 2.2283
1.0629 240 1.7606 1.8034 24319 0.4103 0.4068 0.8537
1.0891 265 1.8247 1.8044 1.1098 0.5719 0.5846 2.2275
1.1714 290 1.9072 1.8438 3.3258 0.5246 05211 0.6642
1.2073 316 1.9208 1.9185 0.1206 0.6128 0.6143 0.2474
Radial basis function:

VvV L.L. Vpsn VRBF errory TPSB T]{BI errorrt
0.9212 146 1.3018 1.3454 3.3513 0.0826 0.0812 1.7433
0.9405 175 1.3477 1.3932 3.3771 0.2148 0.2216 3.1530
0.9822 205 1.4961 1.4878 0.5516 0.3561 0.3489 2.0113
0.1006 227 1.5908 1.6448 3.3971 0.4459 0.4327 2.9581
1.0629 240 1.7606 1.7016 3.3501 0.4103 0.4209 2.5852
1.0891 265 1.8247 1.8557 1.6988 0.5719 0.5836 2.0510
1.1714 290 1.9072 1.8538 2.8010 0.5246 0.5201 0.8636
1.2073 316 1.9208 1.9303 0.4966 0.6128 0.6271 2.3325

V = voltage at transformer bus before switching [p.u.]. L.L. = line length [km]. Vpsz = overvoltage peak calculated by PSB [p.u.]. Vgp=
overvoltage peak calculated by BP [p.u.]. Voep = overvoltage peak calculated by BDB [p.u.]. Vepep = overvoltage peak calculated by
EBDB [p.u.]. Vpgs = overvoltage peak calculated by DRS [p.u.]. Vge = overvoltage peak calculated by QP [p.u.]. Vggr = overvoltage
peak calculated by RBF [p.u.]. Tesg = overvoltage duration calculated by PSB [s]. Tee = overvoltage duration calculated by BP [s]., Tpep =
overvoltage duration calculated by BDB [s]. Tepgp = overvoltage duration calculated by EBDB [s]. Tprs = overvoltage duration
calculated by DRS [s]. Top = overvoltage duration calculated by QP [s]. Tger = overvoltage duration calculated by RBF [s]. errory =

voltage error [%], errorr = duration time error [%]. Phase = phases that have maximum overvoltages.
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TABLE 4. Some sample testing data and output for shunt reactor energization

Backpropagation:

v L.L. S.R. \fvpsg VBP €Iroly TPSB TBP errort
1.1442 150 70 1.5011 1.4944 0.4442 0.1936 0.1925 0.5640
1.1561 165 45 1.5453 1.5271 1.1784 0.2375 0.2438 2.6534
1.2302 178 30 1.6769 1.6516 1.5091 0.3469 0.3363 3.0489
1.2514 200 30 1.7481 1.8016 3.0588 0.3952 0.4001 1.2277
1.3326 215 23 1.9507 1.9387 0.6145 0.5104 0.5226 2.3994
1.3326 215 17 1.9914 1.9268 3.2455 0.5536 0.5593 1.0295
1.4165 230 17 2.1652 2.1548 0.4804 0.6742 0.6867 1.8572
1.4327 242 10 2.2479 2.3140 2.9419 0.7593 0.7372 29135
Delta-bar-delta:

v L.L. S.R. VesB VoD errory Tese Tosp errort
1.1442 150 70 1.5011 1.5092 0.5378 0.1936 0.1999 3.2751
1.1561 165 45 1.5453 1.5605 0.9835 0.2375 0.2337 1.6026
1.2302 178 30 1.6769 1.7027 1.5403 0.3469 0.3498 0.8417
1.2514 200 30 1.7481 1.7158 1.8450 0.3952 0.3846 2.6736
1.3326 215 23 1.9507 1.9195 1.6010 0.5104 0.4968 2.6576
1.3326 215 17 1.9914 2.0524 3.0638 0.5536 0.5680 2.5923
1.4165 230 17 2.1652 2.1259 1.8132 0.6742 0.6917 2.6029
1.4327 242 10 2.2479 2.1737 3.3027 0.7593 0.7565 0.3707
Extended delta-bar-delta:

A% L.L. S.R. \fvpsg VEDBD errory TPSB TIDBD errorr
1.1442 150 70 1.5011 1.5441 2.8622 0.1936 0.1988 2.6914
1.1561 165 45 1.5453 1.5312 0.9125 0.2375 0.2342 1.3860
1.2302 178 30 1.6769 1.7118 2.0802 0.3469 0.3502 0.9553
1.2514 200 30 1.7481 1.7495 0.0788 0.3952 0.3957 0.1303
1.3326 215 23 1.9507 1.9217 1.4884 0.5104 0.5224 2.3565
1.3326 215 17 1.9914 1.9696 1.0945 0.5536 0.5619 1.5035
1.4165 230 17 2.1652 2.1530 0.5652 0.6742 0.6849 1.5811
1.4327 242 10 2.2479 2.2338 0.6257 0.7593 0.7431 2.1345
Directed random search:

A% L.L. S.R. \fvpsg V])Rg errory TPSB TDRS errorr
1.1442 150 70 1.5011 1.5568 3.7097 0.1936 0.1878 3.0204
1.1561 165 45 1.5453 1.4770 44220 0.2375 0.2299 3.2185
1.2302 178 30 1.6769 1.7320 3.2861 0.3469 0.3369 2.8893
1.2514 200 30 1.7481 1.7752 1.5474 0.3952 0.3877 1.8857
1.3326 215 23 1.9507 1.8994 2.6283 0.5104 0.5014 1.7584
1.3326 215 17 1.9914 1.9817 0.4850 0.5536 0.5333 3.6726
1.4165 230 17 2.1652 2.2535 4.0784 0.6742 0.6838 1.4284
1.4327 242 10 2.2479 2.3369 3.9584 0.7593 0.7871 3.6654
Quick propagation:

v L.L. S.R. \fvpsg VQP €Iroly TPSB Top errort
1.1442 150 70 1.5011 1.5525 34254 0.1936 0.1997 3.1252
1.1561 165 45 1.5453 1.5068 24944 0.2375 0.2433 24613
1.2302 178 30 1.6769 1.7063 1.7517 0.3469 0.3536 1.9451
1.2514 200 30 1.7481 1.7769 1.6488 0.3952 0.3926 0.6455
1.3326 215 23 1.9507 1.9466 0.2087 0.5104 0.5142 0.7421
1.3326 215 17 1.9914 2.0389 2.3869 0.5536 0.5521 0.2707
1.4165 230 17 2.1652 2.1620 0.1485 0.6742 0.6958 3.1983
1.4327 242 10 2.2479 2.2423 0.2501 0.7593 0.7405 24735
Radial basis function:

AY L.L. S.R. Vps]; VRB}' errory TPSB TRB}' errorr
1.1442 150 70 1.5011 1.4751 1.7296 0.1936 0.2014 4.0248
1.1561 165 45 1.5453 1.5032 2.7267 0.2375 0.2430 2.3245
1.2302 178 30 1.6769 1.6349 2.5026 0.3469 0.3579 3.1622
1.2514 200 30 1.7481 1.6928 3.1630 0.3952 0.3979 0.6912
1.3326 215 23 1.9507 1.8899 3.1182 0.5104 0.4885 4.2906
1.3326 215 17 1.9914 1.9681 1.1696 0.5536 0.5401 24340
1.4165 230 17 2.1652 2.2182 24456 0.6742 0.6536 3.0588
1.4327 242 10 2.2479 2.2323 0.6923 0.7593 0.7605 0.1645

V = voltage at reactor bus before switching [p.u.]. L.L. = line length [km]. S.R. = shunt reactor capacity [MVAR]. Vpsg = overvoltage
peak calculated by PSB [p.u.], Vep= overvoltage peak calculated by BP [p.u.]. Vpsp = overvoltage peak calculated by BDB [p.u.]. Vepsp
= overvoltage peak calculated by EBDB [p.u.]. Vprs = overvoltage peak calculated by DRS [p.u.]. Vop = overvoltage peak calculated by
QP [p.au]. Vzer = overvoltage peak calculated by RBF [p.u.]. Tesg = overvoltage duration calculated by PSB [s]. Tsp = overvoltage
duration calculated by BP [s]. Togp = overvoltage duration calculated by BDB [s]. Tepgp = overvoltage duration calculated by EBDB [s].
Tprs = overvoltage duration calculated by DRS [s]. Tgp = overvoltage duration calculated by QP [s]. Trer = overvoltage duration
calculated by RBF [s], errory = voltage error [%]. errory = duration time error [%]. Phase = phases that have maximum overvoltages.
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TABLE 5. Some sample testing data and output for transmission line energization

Backpropagation:

v S.A. L.L. S.R. "‘PSB "‘BP errory TPSB TBP errorrp
0.9491 30 375 40 23508 2.3666 0.6721 0.3652 0.3759 2.9233
09127 30 240 40 22769 2.2880 0.4861 0.3107 0.3142 1.1286
0.9973 60 240 55 2.3016 2.2455 2.4369 0.3496 0.3428 1.9329
0.9754 75 195 12 2.3882 2.3960 0.3284 0.4073 0.4213 34270
1.0719 15 315 3 24195 2.4640 1.8389 04217 0.4136 1.9226
1.0592 5 282 45 23725 24165 1.8562 0.3846 0.3802 1.1565
1.0946 45 137 63 2.3596 2.2885 3.0140 0.3378 0.3305 2.1682
1.1123 53 346 10 2.8537 2.9021 1.6970 0.5449 0.5518 1.2622
Delta-bar-delta:

A% S.A. L.L. S.R. "‘PSB errory Tpr TDBD errorr
0.9491 30 375 40 2.3508 2.1076 0.3652 0.3608 1.2015
0.9127 30 240 40 2.2769 1.3537 0.3107 0.3005 3.2761
0.9973 60 240 55 2.3016 3.2060 0.3496 0.3481 0.4367
0.9754 75 195 12 2.3882 0.0040 0.4073 0.3969 2.5570
1.0719 15 315 23 2.4195 1.6186 04217 0.4122 2.2627
1.0592 5 282 45 2.3725 1.4852 0.3846 0.3958 2.9160
1.0946 45 137 3 2.3596 1.6132 0.3378 0.3331 1.3940
1.1123 53 346 10 2.8537 2.6956 0.5449 0.5592 2.6244
Extended delta-bar-delta:

vV S.A. L.L. S.R. VPSB V EDBD errolry TPSB TEDBD errory
0.9491 30 375 40 23508 2.3061 1.9036 0.3652 0.3581 1.9505
09127 30 240 40 22769 2.2194 2.5237 0.3107 0.3191 2.7037
0.9973 60 240 55 23016 2.2595 1.8287 0.3496 0.3534 1.0918
0.9754 75 195 12 2.3882 2.3051 3.4780 0.4073 0.4047 0.6264
1.0719 15 315 3 24195 2.4380 0.7654 04217 0.4267 1.1863
1.0592 5 282 45 23725 2.3813 0.3703 0.3846 0.3818 0.7355
1.0946 45 137 3 2.3596 2.3687 0.3839 0.3378 0.3438

1.1123 53 346 10 2.8537 2.8473 0.2226 0.5449 0.5276

Directed random search:

A% S.A. L.L. S.R. \"PSB V])]{g errolry TPSB T])Rg errory
0.9491 30 375 40 2.3508 2.3841 1.4160 0.3652 0.3789 3.7515
09127 30 240 40 22769 2.3126 1.5693 0.3107 0.3208 3.2584
0.9973 60 240 55 23016 23311 1.2804 0.3496 0.3588 2.6342
0.9754 75 195 12 23882 24520 2.6723 0.4073 0.4143 1.7246
1.0719 15 315 23 2.4195 2.4727 2.1976 04217 0.4344 3.0100
1.0592 5 282 45 2.3725 2.4366 2.7019 0.3846 0.4022 4.5693
1.0946 45 137 3 2.3596 2.4366 3.2650 0.3378 0.3533 45744
1.1123 53 346 10 2.8537 2.9509 3.4046 0.5449 0.5637 34563
Quick propagation:

vV S.A. L.L. S.R. VPSB VQp errolry TPSB TQP errory
0.9491 30 375 40 2.3508 2.3353 0.6603 0.3652 0.3599 1.4406
09127 30 240 40 22769 2.2540 1.0062 0.3107 0.3041 2.1092
0.9973 60 240 55 23016 2.3089 0.3189 0.3496 0.3404 2.6268
0.9754 75 195 12 2.3882 2.4364 2.0167 0.4073 0.3990 2.0424
1.0719 15 315 23 2.4195 2.3616 2.3918 04217 0.4298 1.9313
1.0592 5 282 45 2.3725 24179 1.9131 0.3846 0.3925 2.0425
1.0946 45 137 3 2.3596 2.3244 1.4901 0.3378 0.3439 1.7914
1.1123 53 346 10 2.8537 2.9181 2.2555 0.5449 0.5433 0.2891
Radial basis function:

v S.A. L.L. S.R. V’pgg VRBF errolry TPSB TRBI-' errort
0.9491 30 375 40 23508 2.3297 0.8994 0.3652 0.3528 3.4043
09127 30 240 40 22769 2.2352 1.8313 0.3107 0.3049 1.8626
0.9973 60 240 55 23016 2.2241 3.3692 0.3496 0.3573

0.9754 75 195 12 2.3882 2.4769 3.7151 0.4073 0.4200

1.0719 15 315 3 24195 2.3335 3.5548 04217 0.4402

1.0592 5 282 45 23725 2.3385 1.4334 0.3846 0.3789

1.0946 45 137 3 2.3596 2.3029 2.4033 0.3378 0.3251

1.1123 53 346 10 2.8537 2.8653 0.4048 0.5449 0.5630

V = voltage at sending end of transmission line before switching [p.w.]. S.A. = switching angle [deg.]. L.L. = line length [km]. SR. =
shunt reactor capacity [MVAR], Vpsg = overvoltage peak calculated by PSB [p.u.]. Vee= overvoltage peak calculated by BP [p..]. Voep
= overvoltage peak calculated by BDB [p.u.]. Vepgp = overvoltage peak calculated by EBDB [p.u.]. Vpgs = overvoltage peak calculated
by DRS [p.a]. Vge = overvoltage peak calculated by QP [p.u.]. Vzsr = overvoltage peak calculated by RBF [p.u.]. Tpsg = overvoltage
duration calculated by PSB [s]. Tge = overvoltage duration calculated by BP [s]. Tpsp = overvoltage duration calculated by BDB [s].
Tepep = overvoltage duration calculated by EBDB [s]. Tors = overvoltage duration calculated by DRS [s]. Top = overvoltage duration
calculated by QP [s]. Trer = overvoltage duration calculated by RBF [s]. errory = voltage error [%], errorr = duration time error [%].

Phase = phases that have maximum overvoltages.
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6) Repeat Steps 1 to 5 with various system parameters to learn artificial neural network.
7) Test the artificial neural network with different system parameters.

3.3. Study of transmission lines energization. In most countries, the main step in
the process of power system restoration, following a complete/partial blackout is energiza-
tion of primary restorative transmission lines. Switching overvoltage is primary important
in insulation co-ordination for extra high voltage (EHV) lines. The objective of simulating
switching overvoltage is to help for a proper insulation co-ordination and would lead to
minimize damage and interruption to service as a consequence of steady state, dynamic
and transient overvoltage [30].

During the early stages of restoring high voltage overhead and underground trans-
mission lines, concerns are with three related overvoltages: sustained power frequency
overvoltages, switching transients (surges), and harmonic resonance. In the early stages
of the restoration, the lines are lightly loaded; resonance therefore is lightly damped, which
in turn means the resulting resonance voltages may be very high [1]. In order to reduce
the steady state overvoltage of no load transmission lines, a shunt reactor is connected at
the receiving end of transmission line.

Unlike [15], three-phase transmission lines are studied in this paper. Also, equivalent
parameters of the network are adopted as ANN inputs; therefore there is no need to train
an ANN for every studied system.

In practical system, a number of factors affect the overvoltages factors due to energiza-
tion or reclosing. In this paper following parameters are considered:

e Voltage at the sending-end bus of the transmission line before switching
e Equivalent resistance of the network

e Equivalent inductance of the network

e Equivalent capacitance of the network

e Closing time of the circuit breaker poles

e Line length

e Line capacitance

e Shunt reactor capacity

The steps for transient overvoltages estimation are listed below:

1) Determine the characteristics of transmission line that should be energized.

2) Run PSB simulation.

3) Determine the overvoltage peak and duration.

4) Repeat Steps 1 to 3 with various system parameters to learn artificial neural network.
5) Test the artificial neural network with different system parameters.

4. Case Study. In this section, the proposed algorithm is demonstrated for three case
studies that are a portion of 39-bus New England test system which are shown in Figure
6, and its parameters are listed in [31].

The electrical components of the network are modeled using the MATLAB/Simulink
environment [32,33]. These models should be adapted for the desired frequency range
(here the frequencies up to f = 10f, are considered to be sufficient). The generator
is represented by an ideal voltage source behind the sub-transient inductance in series
with the armature winding resistance that can be as accurate as the Park model [34].
Phase of voltage source is determined by the load flow results. Transmission lines are
described by distributed line models. The circuit breaker is represented by an ideal
switch. The transformer model takes into account the winding resistances (Ry, Ry), the
leakage inductances (Ly, Ly) as well as the magnetizing characteristics of the core, which is
modeled by a resistance, R,,, simulating the core active losses and a saturable inductance,
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TABLE 6. Average of relative and absolute errors for various ANN models

Transformer Energization:
ANN Average of Average of Average of Average of
relative peak absolute peak relative duration absolute duration
model . .
error [%] error [p.u.] time error [%)] time error [s]
BP 1.6865 0.0266 1.6934 0.0069
DBD 1.8883 0.0297 1.7708 0.0064
EDBD 1.3928 0.0231 1.1141 0.0037
DRS 2.8476 0.0478 2.7579 0.0114
QP 1.4176 0.0243 1.2989 0.0055
RBF 2.3779 0.0380 2.2122 0.0087
Shunt Reactor Energization:
ANN Average of Average of Average of Average of
relative peak absolute peak relative duration absolute duration
model . .
error [%] error [p.u.] time error [%] time error [s]
BP 1.6841 0.0321 1.9617 0.0094
DBD 1.8359 0.0359 2.0771 0.0090
EDBD 1.2134 0.0213 1.5923 0.0074
DRS 3.0144 0.0555 2.6923 0.0122
QP 1.5393 0.0261 1.8577 0.0084
RBF 2.1935 0.0397 2.5188 0.0105
Transmission Line Energization:
ANN Average of Average of Average of Average of
relative peak absolute peak relative duration absolute duration
model . .
error [%] error [p.u.] time error [%] time error [s]
BP 1.5412 0.0374 1.9901 0.0077
DBD 1.7605 0.0430 2.0836 0.0083
EDBD 1.4345 0.0338 1.6565 0.0066
DRS 2.3134 0.0567 3.3723 0.0131
QP 1.5066 0.0371 1.7842 0.0066
RBF 2.2014 0.0522 2.9446 0.0117

Lgq;. The shunt reactor model takes into account the leakage inductance as well as the
magnetizing characteristics of the core, which is modeled by a resistance, R,,, simulating
the core active losses and a saturable inductance, L,,;. The saturation characteristic is
specified as a piece-wise linear characteristic [28]. All of the loads are modeled as constant
impedances.

Figure 6(a) shows a one-line diagram of a portion of 39-bus New England test system
which is in restorative state. The generator at bus 35 is a black-start unit. The load 19
shows cranking power of the later generator that must be restored by the transformer
of bus 19. When the transformer is energized, harmonic overvoltages can be produced
because the transformer is lightly loaded. The equivalent circuit of this system that seen
behind bus 16 is determined and values of equivalent resistance, equivalent inductance,
and equivalent capacitance are calculated. In other words, the case study system is con-
verted to equivalent system of Figure 3(a). Values of equivalent resistance, equivalent
inductance and equivalent capacitance are 0.00326 p.u., 0.02793 and 1.8561 p.u., respec-
tively. For testing trained ANN, values of voltage at transformer bus (bus 19) and line
length are varied and overvoltage peak and duration are calculated using developed ANN.
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FIGURE 6. Portions of 39-bus New England test system. (a) Transformer
energization, (b) shunt reactor energization, and (c) transmission line ener-
gization.

Table 3 contains the some sample result of test data of transformer energization for BP,
DBD, EDBD, DRS, QP and RBF.

As another example, the system in Figure 6(b) is examined. In the next step of the
restoration, unit at bus 6 must be restarted. In order to reduce the steady state overvoltage
of no load transmission lines, the reactor at bus 6 should be energized. In this condition,
harmonic overvoltages can be produced. After calculating equivalent circuit seen from bus
5, various cases of shunt reactor energization are taken into account and corresponding
overvoltages peak and duration are computed from PSB program and trained ANN. In this
case, values of equivalent resistance, equivalent inductance and equivalent capacitance are
0.00577 p.u., 0.02069, and 0.99 p.u., respectively. Summary of a few results is presented
in Table 4 for BP, DBD, EDBD, DRS, QP and RBF.

For testing developed ANN for transmission lines energization study, the system in
Figure 6(c) is examined that is another portion of 39-bus New England test system. In the
next step of the restoration, line 26_29 must be restarted. As mentioned before, first this
system is converted to equivalent circuit of Figure 3(c). In this case, values of equivalent
resistance, equivalent inductance and equivalent capacitance are 0.00792 p.u., 0.0247, and
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1.1594 p.u., respectively. For testing developed ANN, various cases of transmission line
energization are taken into account and corresponding peak and duration of overvoltages

are computed from PSB program and trained ANN. Summary of a few results is presented
in Table 5 for BP, DBD, EDBD, DRS, QP and RBF.

5. Discussion. In this paper, switching overvoltages are evaluated using BP, DBD,
EDBD, DRS, QP and RBF. As can be seen in Tables 3-5, all trained ANNs can esti-
mate overvoltages peak and duration with proper accuracy. To select best approach for
overvoltages evaluation, a comparison has been made. Table 6 presents a comparison
between these methods based on average of relative and absolute errors. BP and RBF
are the most common structures to train ANNSs in the literature. However, it can be seen
from Table 6 that EDBD algorithm has better performance (smaller relative and absolute
errors) to evaluate switching overvoltages in the power system restoration studies.

6. Conclusion. The study has successfully presented a novel approach based on ANN
to evaluate and control the switching overvoltages. Six ANN models including backprop-
agation, delta-bar-delta, extended delta-bar-delta, directed random search, quick propa-
gation, and radial basis function are adopted to train ANN. ANN Training is performed
using equivalent circuit parameters of the network to achieve good generalization capa-
bility for developed ANN. The results from this scheme are close to results from the
conventional method and can assist prediction of the overvoltage of other case studies
within the range of training set. Proposed method for transformer and shunt reactor en-
ergization study, omits time-consuming time-domain simulations and it is suitable for real
time applications during system restoration. The developed ANN approach is tested on
a partial 39-bus New England test system for transformer, shunt reactor, and transmis-
sion line energization and results show that EDBD algorithm presents best performance.
This approach is recommended as an operator-training tool for estimation of switching
overvoltages during power system restoration.

REFERENCES

[1] M. M. Adibi, R. W. Alexander and B. Avramovic, Overvoltage control during restoration, IEEE
Trans. on Power Syst., vol.7, no.4, pp.1464-1470, 1992.

[2] A. Ketabi, A. M. Ranjbar and R. Feuillet, Analysis and control of temporary overvoltages for auto-
mated restoration planning, IEEE Trans. on Power Delivery, vol.17, no.4, pp.1121-1127, 2002.

[3] I. Sadeghkhani and A. Ketabi, Switching Overvoltages During Restoration: Evaluation and Conirol
Using ANN, Lambert Academic Publishing, 2012.

[4] T. Hayashi et al., Modeling and simulation of black start and restoration of an electric power system.
Results of a questionnaire, Electra, no.131, pp.157-169, 1990.

[5] S. A. Taher and I. Sadeghkhani, Estimation of magnitude and time duration of temporary over-
voltages using ANN in transmission lines during power system restoration, Simulation Modelling
Practice and Theory, vol.18, no.6, pp.787-805, 2010.

[6] X. Liu, X. Cui and L. Qi, Calculation of lightning-induced overvoltages on overhead lines based on
DEPACT Macromodel using circuit simulation software, IEEE Trans. on Electromagnetic Compat-
1bility, vol.54, no.4, pp.837-849, 2012.

[7] B. Gustavsen, Study of transformer resonant overvoltages caused by cable-transformer high-
frequency interaction, IEEE Trans. on Power Delivery, vol.25, no.2, pp.770-779, 2010.

[8] G. Morin, Service restoration following a major failure on the hydroquebec power system, IEEE
Trans. on Power Delivery, vol.2, no.2, pp.454-463, 1987.

[9] A. Ketabi, I. Sadeghkhani and R. Feuillet, Using artificial neural network to analyze harmonic
overvoltages during power system restoration, Furopean Trans. on Electrical Power, vol.21, no.7,
pp.1941-1953, 2011.

[10] V. Jankov, Estimation of the maximal voltage induced on an overhead line due to the nearby
lightning, IEEE Trans. on Power Delivery, vol.12, no.1, pp.315-324, 1997.



1808 I. SADEGHKHANI, A. KETABI AND R. FEUILLET

[11] V. Cooray, Calculating lightning-induced overvoltages in power lines. A comparison of two coupling
models, IEEE Trans. on Electromagnetic Compatibility, vol.36, no.3, pp.179-182, 1994.

[12] S. Yanabu, H. Murase, H. Aoyagi, H. Okubo and Y. Kawaguchi, Estimation of fast transient over-
voltage in gas-insulated substation, IEEE Trans. on Power Delivery, vol.5, no.4, pp.1875-1882, 1990.

[13] L. M. Wedepohl and D. J. Wilcox, Estimation of transient sheath overvoltages in power-cable trans-
mission systems, Proc. of Inst. Elect. Eng., vol.120, no.8, pp.877-882, 1973.

[14] M. Shafiee, B. Vahidi, S. H. Hosseinian and S. Jazebi, Using artificial neural network to estimate
maximum overvoltage on cables with considering forward and backward waves, The 43rd Interna-
tional Universities Power Engineering Conference — UPEC, 2008.

[15] D. Thukaram, H. P. Khincha and S. Khandelwal, Estimation of switching transient peak overvoltages
during transmission line energization using artificial neural network, Electric Power System Research,
vol.76, no.4, pp.259-269, 2006.

[16] I. Sadeghkhani and A. Mortazavian, Analysis of transformer harmonic overvoltages during power
system restoration, Advances in Electrical Engineering Systems, vol.1, no.1, pp.49-53, 2012.

[17] C. Yildiz, S. Gultekin, K. Guney and S. Sagiroglu, Neural models for the resonant frequency of
electrically thin and thick circular microstrip antennas and the characteristic parameters of asym-
metric coplanar waveguides backed with a conductor, AEU - International Journal of Electronics
and Communications, vol.56, no.6, pp.396-406, 2002.

[18] S. Haykin, Neural Network: A Comprehensive Foundation, 2nd Edtition, Prentice Hall, 1998.

[19] R. Bayindir, S. Sagiroglu and I. Colak, An intelligent power factor corrector for power system using
artificial neural networks, FElectric Power Systems Research, vol.79, no.1, pp.152-160, 2009.

[20] S. Bunjongjit and A. Ngaopitakkul, Selection of proper artificial neural networks for fault classifica-
tion on single circuit transmission line, International Journal of Innovative Computing, Information
and Control, vol.8, no.1(A), pp.361-374, 2012.

[21] I.-T. Chen, J.-T. Tsai, C.-F. Wen and W.-H. Ho, Artificial neural network with hybrid Taguchi-
Genetic algorithm for nonlinear MIMO model of machining processes, International Journal of In-
novative Computing, Information and Control, vol.9, no.4, pp.1455-1475, 2013.

[22] R. A. Jacobs, Increased rate of convergence through learning rate adaptation, Neural Networks,
vol.1, no.4, pp.295-307, 1988.

[23] A. Minai and R. D. Williams, Acceleration of backpropagation through learning rate and momentum
adaptation, Proc. of International Joint Conference on Neural Networks, pp.676-679, 1990.

[24] J. Matyas, Random optimization, Automation and Remote Control, vol.26, no.2, pp.246-253, 1965.

[25] S. E. Fahlman, Fast learning variations on back propagation: An empirical study, Proc. of the 1988
Connectionist Models Summer School, pp.38-51, 1988.

[26] A. Karamiand M. S. Mohammadi, Radial basis function neural network for power system load-flow,
International Journal of Electrical Power & Energy Systems, vol.30, no.1, pp.60-66, 2008.

[27] P. K. Dash, A. K. Pradhan and G. Panda, Application of minimal radial basis function neural
network to distance protection, IEEE Trans. on Power Deliv., vol.16, no.1, pp.68-74, 2001.

[28] G. Sybille, M. M. Gavrilovic, J. Belanger and V. Q. Do, Transformer saturation effects on EHV
system overvoltages, IEEE Trans. on Power App. Syst., vol.PAS-104, no.3, pp.671-680, 1985.

[29] L. Prikler, G. Ban and G. Banfai, EMTP models for simulation of shunt reactor switching transients,
International Journal of Electrical Power & Energy Systems, vol.19, no.4, pp.235-240, 1997.

[30] T. Keokhoungning, S. Premrudeepreechacharn and K. Ngamsanroaj, Evaluation of switching over-
voltage in 500 kV transmission line interconnection Nam Theun 2 power plant to Roi Et 2 substation,
Proc. of Asia Pacific Power and Energy Engineering Conference, pp.1-4, 2009.

[31] S. Wunderlich, M. M. Adibi, R. Fischl and C. O. D. Nwankpa, An approach to standing phase angle
reduction, IEEE Trans. on Power Syst., vol.9, no.1, pp.470-478, 1994.

[32] A. Ketabi and I. Sadeghkhani, Electric Power Systems Simulation Using MATLAB, 2nd Edition,
Morsal Publications, 2012 (in Persian).

[33] G. Sybille, P. Brunelle, L. Hoang, L. A. Dessaint and K. Al-Haddad, Theory and applications of
power system blockset, a MATLAB/Simulink-based simulation tool for power systems, Proc. of
IEEFE Power Eng. Soc. Winter Meeting, vol.1, pp.774-779, 2000.

[34] M. M. Duro, Damping modelling in transformer energization studies for system restoration: Some
standard models compared to field measurements, Proc. of IEEE Bucharest Power Tech Conference,
Bucharest, Romania, 2009.



