International Journal of Innovative
Computing, Information and Control ICIC International (©)2014 ISSN 1349-4198
Volume 10, Number 2, April 2014 pp. 417-436

A CLUSTER-ENHANCED FAULT TOLERANT
PEER-TO-PEER SYSTEM

CIPRIAN DOBRE

Faculty of Automatic Controls and Computers
University Politehnica of Bucharest
Spl. Independentei 313, Bucharest, Romania
ciprian.dobre@cs.pub.ro

Received December 2012; revised April 2013

ABSTRACT. Qver the Internet today, computing and communications environments are
more complex and chaotic than classical distributed systems, lacking any centralized orga-
nization or hierarchical control. Peer-to-Peer network overlays provide a good substrate
for creating large-scale data sharing, content distribution and application-level multicast
applications. We present a fault-tolerant, cluster-enhanced P2P overlay network designed
to share large sets of replicated distributed objects in the context of large-scale highly dy-
namic infrastructures. The system proposes an original design to achieve efficient im-
plementation results for range queries, fault-tolerance, and message routing in terms of
hop-count and throughput, whilst providing an adequate consistency among replicas.
Keywords: Peer-to-peer, Overlay, Fault tolerance, Clustering

1. Introduction. Peer-to-peer (P2P) networks are amongst the fastest growing tech-
nologies in computing. Such networks encapsulate a set of high-availability techniques,
such as data and service replication, load balancing, fault handling, reconfiguration. In the
last years, intense research has been done to overcome scalability problems encountered
with unstructured P2P networks, where data placement and overlay network construction
are essentially random. The interest in peer-to-peer systems is rapidly reaching new ar-
eas, such as live streaming or volunteer computing. The evolution of emerging volunteer
computing systems is placing an ever greater emphasis on the use of a loosely coupled
decentralized architecture, mainly to address concerns of scalability and robustness. This
shift in applicability field introduces new challenges, as the new applications have different
availability requirements than data storage and retrieval.

This is why, lately, intense research has been done to overcome the scaling problems with
unstructured P2P networks, such as Gnutella, where data placement and overlay network
construction are essentially random. A number of groups have proposed structured P2P
designs to solve the problem of scalability. However, such solutions fail to properly support
resiliance requirements. High availability, in particular, refers to the ability of a system
to provide services to the user (when they need them) at a satisfactory quality level,
particularly in the presence of failures. Recent systems (CAN, Chord, Pastry or Tapestry)
enable peer-to-peer lookup overlays robust to intermittent participation and scalable to
many unreliable nodes with fast membership dynamics. Some papers [28] express a hope
that, with extra data redundancy, storage can inherit scalability and robustness from the
underlying lookup procedure. More work still [29] implies this hope by using robust lookup
as a foundation for wide-area storage layers, even though this complicates other desirable
properties (e.g., server selection). However, as [30] shows, trying to achieve all three
things — scalability, storage guarantees, and resilience to highly dynamic membership —

417



418 C. DOBRE

overreaches bandwidth resources likely to be available, regardless of lookup. The authors’
argument is quite simple: simple considerations and current hardware deployment suggest
that idle upstream bandwidth is the limiting resource that volunteers contribute, not idle
disk space. Further, since disk space grows much faster than access point bandwidth,
bandwidth is likely to become even more scarce relative to disk space.

In this paper, we present a solution that combines capabilities of DHT networks with
modern techniques, to enable scalable and fault-tolerant storage and retrieval operations,
with storage guarantees, of shared objects by attribute values. Unlike previous work, our
solution is capable to achieve all these together, in fact, with optimal message routing in
hop-count and throughput. We previously proposed an hierarchical P2P architecture in
[14]. In this paper we extended it with: scalability and fault tolerance are supported by a
distributed segment tree that manages all metadata and range queries; the communication
costs are reduced by a novel routing algorithm that better explores network topology. The
properties of the P2P system are demonstrated in various case studies, and we present
extensive results.

The remainder of this paper is organized as follows. In Section 2 we investigate and dis-
cuss previous work. Section 3 presents the proposed architecture and P2P overlay, which
follows in Section 4 by concrete details behind a pilot implementation and a presentation
of experimental and validation results. We conclude this paper in Section 5.

2. Related Work. Distributed Hash Tables (DHTs) are decentralized solutions that
partition the hash table keys among the participating nodes. They usually form a struc-
tured overlay network in which each communicating node is connected to a small number
of other nodes. The Content Addressable Network (CAN) is a decentralized P2P infras-
tructure that provides hash-table functionality on Internet-like scale [4]. CAN is designed
to be scalable, fault-tolerant, and self-organizing. Unlike other solutions, the routing ta-
ble does not grow with the network size, but the number of routing hops increases faster
than log s /N. CAN requires an additional maintenance protocol to periodically remap the
identifier space onto nodes.

Pastry [5] is a scalable, distributed object location and application-level routing scheme
based on a self-organizing overlay network of nodes connected to the Internet. Fault tol-
erance is accomplished using timeouts and keepalives, with actual data transmissions
doubling as keepalives to minimize traffic. Similar to Pastry, Tapestry [6] employs decen-
tralized randomness to achieve both load distribution and routing locality. The difference
between Pastry and Tapestry is the handling of network locality and data object repli-
cation. Tapestry’s architecture uses a variant of the distributed search technique, with
additional mechanisms to provide availability, scalability, and adaptation in the presence
of failures and attacks. For fault tolerance, the nodes keep secondary links.

The Chord protocol [7] uses consistent hashing to assign keys to its peers. Although
Chord adapts efficiently as nodes join or leave the system, unlike Pastry or Tapestry, it
does not achieve good network locality. Kademlia [8], on the other hand, assigns each
peer a NodelD in the 160-bit key space, and (key, value) pairs are stored on peers with
ID close to the key. One advantage of Kademlia’s architecture is the use of a novel XOR
metric for distance between points in the key space.

Tree-based indexing techniques over DHT's were presented in [9, 10]. In [11] the authors
present a solution based on Chord which supports 1D range queries. Other systems
supporting scalable multi-attribute queries were proposed in [12, 21, 22]. Currently these
and other previously proposed DHTs ([26, 27]) are only limited attempts to efficiently
approach the problem of providing fault-tolerant P2P networks for storing objects. Most
attempts to assure fault-tolerance are based on best-effort approaches, where an arbitrarily



CLUSTER-ENHANCED P2P SYSTEM 419

large fraction of the peers can reach an arbitrarily large fraction of the data items. We
propose a solution which guarantees efficient (in terms of range queries and message
routing) storing of large sets of distributed objects, and fault-tolerance in the presence of
large-scale highly dynamic distributed infrastructures.

3. System Architecture. The main components of the architecture are peers (Agents),
super-peers (RAgents), and lookup services (LUS). The system manages two types of in-
formation: data (the utility objects stored in the name of clients), and metadata (which
is used to logically organize the utility objects and related storing information). For fault
tolerance, all the information is replicated. The Agents are responsible for storing both
data and metadata replicas. They can directly respond to client requests. RAgents are
Agents responsible also for managing a location-based set of Agents. Such a hierarchical
architecture leads to the formation of clusters of peers. The RAgents are interconnected,
forming a complete graph of connections. All control messages are routed between RA-
gents. Thus, the RAgents connect together several connected clusters of Agents.

Such a hierarchical interconnection topology ensures scalability and, as we will describe
later on, an optimal fault-tolerance schema is necessary for modern critical data-intensive
applications. It also reflects the real-world phenomenon of large Internet-scale systems.
As demonstrated in [15], networks as diverse as the Internet tend to organize themselves
so that most peers have few links (Agents) while a small number of peers have a large
number of links (RAgents).

The grouping of Agents into clusters is based on their geographic positions, as well as
a set of condition metrics. The idea was previously validated in [16], where we proposed
an algorithm to assist the EVO P2P videoconferencing system. In this approach peers
dynamically detect the best candidates to which to connect. They are chosen based
on geographic location and network connectivity properties (we use attributes such as
Network domain, AS domain, Country, Continent), as well as load values, number of
connected clients, network traffic. When an Agent joins the network, it retrieves the
list of RAgents from the lookup services, and it estimates the best RAgent candidates
to which to connect. Then the specific RAgent is chosen based on the network loads,
geographic position and the number of other Agents connected to the RAgents.

The management of data inside this system relies on the use of metadata. The metadata
is distributed to all Agents, using a distributed segment tree for each attribute separately.
Such a structure is described in [9]. Because a distributed tree structure cannot consider
node clustering, it requires the use of a DHT and of an additional logical level for metadata
information retrieval. Thus, peers are connected in a Chord based topology, having
identifiers distributed on a logical ring. Maintaining an additional layer introduces a
communication overhead that challenges efficient information retrieval. Hence, we had to
propose a new routing protocol, analyzed in a subsequent section.

The clusters are organized using an approach similar to Calendar Queues [17]. RAgents
mantain the equivalent of buckets, connecting several Agents (having a length of the
bucket or bucket-width). The Agents connected to a RAgent, as well as the RAgents
existing in the system, can dynamically update their links. If the number of Agents
becomes too high compared with the number of RAgents, the dynamic metadata catalogue
(segment tree) could grow too big, and so the operations done on it would require longer
time to complete. On the other hand, if the number of Agents is too low compared to the
number of RAgents, the number of control messages required to access information from
the system becomes much higher.



420 C. DOBRE

To mediate such problems, the number of RAgents increases and decreases as the
number of Agents grows (new Agents join the system) and shrinks (Agents leave the
system). Whenever the number of Agents connected to one RAgent becomes too high, a
new RAgent is promoted from Agents (based on a voting algorithm), and the cluster is
divided in two, by splitting the remaining Agents between the two RAgents. Whenever
the number of Agents connected to a RAgent is too low, the cluster is destroyed by joining
the Agents with the ones from an adjacent cluster. The metadata and lookup information
is updated accordingly. The two operations involve exchange of several control messages
to update the current status of clusters, as well as the possible reconnection of several
Agents to new RAgents, and RAgents with other RAgents. In order to minimize the
number of costly operations, we started from the threshold values for the splitting and
joining operations observed in [17]. However, these values are also dynamically adjusted
accordingly at runtime. The system dynamics are further detailed in the next sections.

3.1. Distributed segment tree. This architecture is introduced and analyzed in [9]. It
supports range search operations, while providing scalability and avoiding overload. We
shortly describe here some properties of this structure, further referred in the paper.
The basic structure is the segment tree. Thus, an interval [1, L], where L is the length
of the interval, is represented by a binary tree of intervals. If a node [a,b] is not a leaf,
then the child nodes are [a, m] and [m + 1, b], where m = (a + b)/2.
It is guaranteed that the segment tree structure obeys the following rule [8].

Lemma 3.1. Any interval I = [a,b] can be represented by a collection C of at most log oL
disjoint intervals in the tree, and the union of those intervals is I. For example, the two
nodes marked in Figure 1 represent one possible decomposition of the interval I = [3,6].

o
‘[1,81\;
A
/’/ h
e
N o
(1a41) \[ )
N A N

,/'“/ @ @ \

\,21)

\[7L ‘ 7 8]
AN —~( N ?"\ /”\’,‘ ?'\
() (e (s 6.41\ (5.51) (w.61) (.71) (18,81
N N N AN N RN N

FIGURE 1. Segment tree for the interval [1, §]

The above lemma has a direct algorithmic interpretation (where lo and hi are the
endpoints of interval I, and left and right are the endpoints of the current interval) [9]:

SPLITSEGMENT(lo, hi, le ft, right, collection)
if lo <left and hi < right
then
collection.add([left, right])
return
med = (left + right) > 1
if lo < med
then
SplitSegment(lo, hi, le ft, med, collection)
if ht > med
then
SplitSegment(lo, hi,med + 1, right, collection)

—_

— O © 00 O Ok Wi

—_ =



CLUSTER-ENHANCED P2P SYSTEM 421

The segment tree nodes are distributed according to a DHT network. A hash function
is applied to the interval [a,b] represented by a tree node. This mechanism allows for
efficient node retrieval using look-up services.

The insertion operation is performed as follows: a key k € [1, L] is inserted in the inter-
val [k, k| and all its ancestor intervals in the tree. Unfortunately, the insertion mechanism
can lead to overload the nodes that store large intervals. For example, node [1, L] will
have all existing keys in the tree. As this situation is undesirable, in our implementation
we follow the idea from [9]:

(1) Each node decides locally whether a key is inserted into the parent interval or not.
(2) Each node x has a C, counter, increased by each insertion of a key. When C, exceeds
a certain threshold, the key will not be inserted upper in the tree.

The disadvantage is that insertion of a key cannot be performed in parallel in all the
ranges containing it. Instead, a key has to be sequentially inserted following the path
from leaf to the root. Still, we assume the following relation to be true.

Proposition 3.1. Assume M the maximum value of counter, x an internal node of the
tree, and y, z the two children of x. Then, we assume the following:

C, = min{M, C, + C.} (1)

With this, range queries are performed as follows. Let I = [s,t] be the search interval,
and suppose we want to retrieve all the keys contained in I. First, the SplitSegment
algorithm is applied to obtain a collection C' of intervals in the tree. Then the requests
for retrieving keys in each determined interval are processed in parallel.

When node x receives a request, it first checks whether C, > M. If this is not the case,
all keys are stored on the node. It will therefore respond directly to the query. On the
other hand, if C;, = M and the node is internal, it will send a query to its child nodes.
From their answers, the node x will compose the answer to the request.

A key removal is performed similarly to an insertion. The key will be removed from
the interval [k, k] and from its ancestors, advancing towards the root. The counters will
be decremented after the removal, which means that some nodes = (with C,, = M before
removal) may have to request keys from their child nodes.

From the design phase, for each interval there must be a node in the system to store
it. Because a segment tree has 2L — 1 nodes, the system can become overloaded. For
efficiency, a node will only exist if it stores at least one key. Obviously, this mechanism
makes it impossible to detect the disappearance of a valid node. However, it greatly
optimizes memory consumption.

3.2. The logical ring. To maintain a DHT in the system we introduced an additional
logical level. The idea is similar to the Chord architecture [7]. In this approach only peers
contribute to the logical ring (not the super peers). Each peer is associated with a globally
unique 160 — bit identifier. This identifier is obtained by applying the SHA-1 algorithm to
the peer’s IP address and listening port (we assume that all peers have public IPs). Peers
are “positioned” on the logical ring in ascending order of these identifiers, clockwise.

Any object or information stored in the system also has an identifier. Objects are stored
on the peer having the highest ID, smaller than the object ID (from now on, we will use
the term “predecessor” for that peer); when determining predecessors, we must keep in
mind that the identifier space is circular. A representation of a possible situation is given
in Figure 2. We see that objects with identifiers 1 and 2 are stored on the peer having ID
0, whereas the interval [5, 7] will be stored on the peer having identifier 3.

When inserting an object into the system, the message containing the object is routed
according to the protocol described in the next section. The object is then stored on the



422 C. DOBRE

o)
. 13 |
:I 5 .

/

\\\\ > 9 ././ [3.4]

e

FIGURE 2. Peers arrangement and data distribution

predecessor peer. All look-up calls must contain the object identifier in order to find it.
Thus, keys stored in the segment tree have also assigned associated identifiers.

When inserting a peer in the system, some items have to be relocated. The new peer’s
predecessor has to transfer the corresponding items. Similarly, when a peer leaves the
system, the objects it owned must be transferred to its predecessor.

It is therefore natural to consider the problem of overloading a peer at a given time.
The efficiency of the proposed method is shown in Theorem 3.1 (proven in [18]), that
states the following:

Theorem 3.1. Assume there are N peers and K keys. Then, there exists a hash function
h, so that the K keys are distributed to the N peers with high probability in the following
manner:

(1) Each peer handles at most (1 4 logoN) * K/N keys.
(2) If a peer P joins or leaves the system, then at most O(K/N) keys are relocated (to or
from peer P).

However, the theorem assumes a hash function that uniformly distributes random keys.
This requirement is not guaranteed by SHA-1, but experimentally, it has been found that
this condition is respected [19].

Different replicas of the same object will be associated with different hash functions,
to provide storage on different nodes. Currently, each object has a master copy and one
replica. The object’s identifier is calculated by SHA-1; the replica’s identifier is obtained
by complementing the most significant bit of the first identifier. Formally,

Idy = Id; XOR2™ 1 (2)

This operation is equivalent to a half-circle trip, so the replica ID is diametrically op-
posed to the master copy. Identifier distribution remains pseudorandom, and the chances
that the replica would be stored on a different peer are maximal.



CLUSTER-ENHANCED P2P SYSTEM 423

Note that although we connect peers on the logical ring, we also preserve peer clustering.
A peer position on the ring depends only on the assigned identifier and it is independent
of the cluster membership.

3.3. The routing protocol. The object lookup operations use a routing protocol that
efficiently maps onto the proposed architecture. The Chord routing protocol [7] demands
log o N links to connect each peer with peers at distances powers of 2 on the ring. To
avoid the fulfillment of this difficult requirement, we propose another solution. From
construction, the nodes are grouped into clusters, and the super-peer has a connection
with each peer in its cluster. We can use this to our advantage; a super-peer can send a
message, based on the peer ID, to the closest predecessor in the same cluster. Based on
this observation, we considered the following algorithm.
Let k£ be the number of clusters in the system and C7,Cs € N such that

C.Cy >k (3)

Each peer is linked to 5 immediate predecessors and C; immediate successors on the
ring. For every peer y in the system, the procedure y.predecessor(z) returns the neighbor
of y with the highest ID less than or equal to x. Then the message routing algorithm is
as follows:

ROUTE(m)

1 > Peer P routes the message m
2 if m.stage = ToSuper

3 then

4 > P is a peer on the ring

5 m.stage = T'oRing

6 sendMessage(m, super_p(p))

7 else

8 if m.stage == OnRing

9 then
10 m.stage = ToSuper
11 else
12 m.stage = OnRing
13 sendMessage(m, pred(m.getID()))

Messages are then routed in 3 steps. Each message m is assigned an indicator, m.stage €
ToSuper, ToRing, OnRing that shows the current step. At each stage, the message having
as destination the peer z, is routed:

(1) from the current peer y to its super-peer (T'oSuper),
(2) from the super-peer of y to peer z, so that peers z and y are in the same cluster and
peer y is the closest on the ring to peer x (ToRing),

(3) from peer z to its neighbour on the ring (that minimizes the distance to peer x)
(OnRing).

A routing example is presented in Figure 3. The performance of this protocol is given
by the following lemma.

Lemma 3.2. If the number of clusters is k and the nodes are uniformly distributed in
clusters, then, with a probability of at least 1 — 1/k, the message will touch no more than
3C) Ink+4 peers from the initial source to the destination (C is the number of considered
SUCCESSOTS).



424 C. DOBRE

Super-peerl Super-peer2

Desﬁnaﬁonf

FIGURE 3. A message routing example

Proof: For a peer p, we denote by super_p(p) the super-peer of p’s cluster. We assume
that p routes a message m with identifier ID, and its predecessor peer on the ring is d.
We denote by X the random variable that represents the number of different super-peers
super_p(d) that route the message m. Then, the number of nodes (including super-peers)
that the message reaches until the destination, is no more than 3X + 1. Then, the first
3(X —1) nodes are parts of clusters that do not have members among the Cy predecessors
of d, otherwise the message would have reached the destination in one step. Also, these
nodes are parts of pairwise distinct clusters.

oz = (M) (1) (-5)
(o) ()

< o—iC2/k

Choosing i = Cy Ink from (3) results that:

PX>Cilnk+1] < (4)
So, with probability of at most 1/k, the message reaches more than 3C; In k + 4 nodes.
Choosing C} = Cy = k'/2, we find that a message is routed in O(k'/?In k) steps. On the

other hand, a greater number of links decreases the routing time, while a smaller number

of links increases scalability, but also requires more routing steps. The parameters C; and

C5 should be chosen depending on the application.

=

3.4. Integration of system elements. The system elements described in the previous
sections are integrated as follows.

A super-peer is responsible with keeping the necessary routing information. It main-
tains the list of peers in the corresponding cluster, and for each such peer, the associ-
ated identifier. Identifiers are stored in a structure that allows predecessor and successor
queries in logarithmic time, using a balanced tree. In fact, the search time can be re-
duced to log, 160 ~ 7.32 steps using van Emde Boas trees, but this greatly increases the
implementation complexity of our proposed system and is out of the scope of this paper.

Peers store data objects and segment tree nodes (containing metadata). It is possible
that several nodes are stored on the same peer. Each peer maintains a structure of its
neighbors, which allows predecessor or successor calls in logarithmic time.



CLUSTER-ENHANCED P2P SYSTEM 425

Each peer/super-peer runs a routing procedure for messages that are not destined to
it, or whose destination is not known (i.e., not among its neighbors). Messages whose
destination was already established are routed directly to the destination via TCP/IP.

Since super-peers do not maintain metadata, a client request can be processed directly
by the peer that receives the request.

There can be one distributed segment tree for each attribute. The values of an attribute
are mapped into a finite range of consecutive integers starting from 1. The mapping
scheme is left to the responsibility of higher-level applications. It is necessary, however,
that the size and interval mapping algorithm results are available in the code running on
each peer. By default, the attribute types are predefined (but of course the system can
be extended with new types).

Segment tree nodes are created in a “lazy” manner; nodes are created only for intervals
that contain at least one key. Initially, there will be no tree node in the system.

We mentioned previously that whenever a cluster becomes too large it splits in two
other clusters. However, for this to work, we must first meet most of the requirements of
Lemma 3.2. In particular, the division has to be done uniformly random (each node will
be part of a cluster with probability of 1/2). Thus, the resulting clusters will not have
exactly half of the initial cluster size M, but the average size will be M /2; and according to
Chernoff bounds [20], the actual size will be closer to the average with exponentially large
probability. Let us note however that in this way we do not obtain a uniform distribution
of nodes in clusters.

3.5. System dynamics. The system architecture requires the design of appropriate pro-
tocols for peers joining or leaving the system. When a new peer P enters the system, the
following steps are performed:

(1) Peer P contacts lookup services and receives a list with all the super-peers in the
system. Peer P then selects a super-peer S and sends a message containing its address
and assigned ID. This message will be routed to V', the logical immediate predecessor
of P.

(2) V sends P the lists of C successors and Cy predecessors (adding itself) and the list
of objects that will now be stored on P. V adds P to the neighbors list.

(3) P contacts its Cy predecessors and C successors to announce its entry. Each neighbor
will confirm the announcement and will add the node to its own list.

(4) P informs S that it has completed its initialization and it is part of the cluster.

As shown, only P’s predecessors have to establish new links, not its successors (other-
wise some connections would be duplicated).
When a peer P is planning to leave the system, the following steps are taken:

(1) Peer P sends a closing message on every open connection. Starting from this moment,
almost all messages that reach P will be stored unopened (without being analyzed
and routed).

(2) Peer P receives confirmation messages. Each peer V' predecessor of P, will try choos-
ing a new successor, in order to maintain the required number of neighbors.

(3) P sends its immediate predecessor a message, containing its stored objects, metadata
and messages.

(4) P shuts down.

Based on the protocols above, the number of messages generated by each operation can
be determined as:

Lemma 3.3. The required number of messages for each operation is as follows:

(1) A peer joining the system requires no more than 4Cy + 3 messages.



426 C. DOBRE

(2) The announced departure of a peer P of the system requires no more than 2q+1+4Cs
messages, where q is the number of active connections of P.

(3) Splitting a cluster by choosing a peer P and a set of nodes S requires no more than
2q + 14 4C5 + 3|S| messages (where q is the number of active connections of P).

Proof: When a peer P joins the system, it has at most 2C5 neighbors. It takes two
messages to find out successors and predecessors. In at most 4C5 messages it establishes
connections, and another message to announce its super-peer in the end of the initializa-
tion. Thus, we obtain a total of 4Cy + 3 messages.

When a peer P with ¢ active connections announces its leave, it closes all connections
(2g messages). In another message it moves objects on its predecessor. Each predecessor
of P finds a new neighbor, and results in a total of no more than 2g + 1 + 4C5 messages.

Finally, when splitting a cluster, let us assume peer P becomes the new super-peer.
Leaving the ring requires at most 2q + 1 + 4C'y messages, where ¢ is the number of active
links of P. Every peer in S, the set of nodes that will form the new cluster, must close
the connection to the old super-peer and open a new connection to P. This operation
requires 3 * |.S| messages, resulting in a total of 2¢ + 4Cy + 3|S| + 1 messages.

3.6. Data objects storage and retrieval protocol. Storing an object o in the system
requires both replicas and metadata generation. Object storage is performed according
to the following steps:

(1) Create replica(s) of o and store them (and o).

(2) For each attribute A of o, having the value v, generate metadata ((A, [v,v]),0). Store
the metadata in a leaf node of the corresponding segment tree. Replicate the meta-
data.

(3) Propagate metadata up in the tree (see Section 3.1).

Retrieval of all objects having the value of the attribute A inside the interval I = [u, v],
is performed according to the following algorithm:

(1) Call SplitSegment procedure to generate a collection C' of disjoint intervals in the tree,
having the union /.

(2) For each interval I € C send a request to the appropriate tree node.

(3) The peer storing the tree node in question may in turn generate requests to retrieve
objects having the attribute A inside the interval I.

(4) Assemble responses to form final response.

(5) If a tree node or object is not found, search for a replica. The lost object will be
created from the replica and re-stored on the appropriate peer (to preserve a constant
number of replicas).

The number of messages generated by each operation is more difficult to estimate.
Nevertheless, we have the following lemma:

Lemma 3.4. Suppose that each element has p replicas and each object has d attributes.
And let L be the mazximum length of an attribute’s range of values. Then, the number of
messages for the storage operation is at most p(1 + d(logsL + 1)).

Proof: The statement is obvious, as the height of a segment tree is at most logoL + 1,
and both objects and metadata have p replicas.

3.7. Fault tolerance. In the described architecture, Agents and RAgents periodically
exchange heartbeat messages between them, to detect when a peer fails. The period
between these messages is chosen such as to be high enough not to introduce much com-
munication overhead in the system. Failures are then detected using an accrual failure



CLUSTER-ENHANCED P2P SYSTEM 427

detector which we previously proposed in [24], that also uses a gossip strategy to minimize
detection time and remove wrong suspicions.

For failure detection, the arrival times of heartbeat messages are sampled and used to
estimate the time when the next heartbeat is expected to arrive. The estimation function
relies on a modified version of the exponential moving average (EMA) method named
KAMA (Kaufman’s adaptive moving average). This method ensures a dynamic smooth
factor based on the most recent timestamps. The predicted value is used to estimate the
level of suspicion in the process being failed. The contribution of a heartbeat H increases
from 0, meaning that H is not expected as failed, to 1, meaning that H is considered
to be lost. Unlike other implementations of accrual detectors, the suspicious level in this
case is not computed based only on local heartbeat contributions, but also considering
the contributions received from other failure detectors.

In fact, it is difficult to determine the nature of an error that affects a certain process.
In an unstable network, with frequent losses of messages or high process failure rate,
any detection algorithm is almost irrelevant; e.g., it cannot distinguish between failures
of the peers and the failing of network links. This is why the failure detector uses a
gossiping algorithm whose role is to increase the confidence of an agent in the failure of
a peer. The gossiping schema aims to eliminate false negatives (wrong suspicions) and
false positives (peers are considered to be alive, even though they have failed). For this
peers monitor each other and periodically exchange information about the status of known
peers (messages are sent between Agents and RAgents, and between each Agent and its
predecessor and successor Agents).

The suspicion level represents the degree of confidence in the failure of a certain process,
and it takes values in the [0, 1] interval. Each failure detector maintains a local suspicion
level value slg,(t) for every monitored process computed according to:

6c«(t—l)

tnow
qp(t) = m, Wheret = red (5)

sl

The contribution function limits the suspicion values to the [0, 1] interval, maintaining
a relatively quick evolution in the [0, 0.8] interval and a very slow one in the [0.8, 1]
interval. For a certain threshold the probability of failure is very high. When a peer
fails, it does not receive alive requests. This leads to an increase in the suspicion level
associated to that particular peer, up to a value closer to 1. Therefore, every heartbeat
message that is not received leads to a higher suspicion level, and therefore to a high
probability of failure. On each alive request the monitoring Agent updates the suspicion
level of the queried process based on the current time and the last prediction. If no answer
is received the last updates the predicted value is not changed. As the message is delayed
the difference between current time and the last prediction increases and becomes and
the suspicion value gets closer to 1.

The gossiping protocol is next responsible with the exchange of information between
peers. The gossip protocol is based on a probabilistic model in which peers randomly
choose partners (from known peers) with whom they exchange information. To under-
stand how gossiping works we consider a simple example. Let us assume a peer monitors
another peer, and, for various reasons, it loses touch with it and suspects it of failing.
Then it receives a gossip message from another peer revealing that the suspected Agent
is still functional. The suspicion level is updated according to the received rumor and the
monitored Agent is no longer suspected. Until the transient failure disappears, the above
process is likely to be repeated several times, but at some point the suspicion level will
redress and indicate a functional peer.



428 C. DOBRE

We now present the various operations performed when nodes/services fail. First, a
LUS can fail. In our implementation we use a network of JINI Lookup Discovery Services
(LUS) that provides dynamic registration and discovery for all agents. For example, the
RAgents are able to discover each other in the distributed environment and be discovered
by the interested clients. The LUSs synchronize between themselves using multicast
messages. The registration uses a lease mechanism. If an Agent fails to renew its lease,
it is removed from the LUSs and a notification is sent to all the peers that subscribed for
such events. Remote event notification is used in this way to get a real overview of this
dynamic system.

Next, for each RAgent we assume a secondary replicated RAgent (another Agent in
the same cluster that can readily takes its place). Since the list of data maintained by
the RAgent is registered in the LUS, when the RAgent fails the secondary RAgent can
quickly take its place and recover all corresponding entries from the lookup service. In
this case, the new RAgent connects to the Agents in the local cluster, and it becomes the
new RAgent in charge of the cluster. From all remaining Agents one is selected (based
on a voting procedure) and becomes the new RAgent replica. The voting procedure is
consistent, such that if two agents observe the disappearing of the same RAgent, they
both initiate the voting procedure, but in the end both voting procedures lead to the
same Agent being selected to be the new RAgent replica.

Next, an Agent P can fail. In this case the system peforms the following operation.
Each peer V', one of the C'; predecessors of P, will try choosing a new immediate successor,
in order to maintain the required number of neighbors. V' will obtain a list of immediate
successors of his successor, then establish a connection with the first node in the circular
list (if any) that it is not already for its successor. With this, we have the following lemma.

Lemma 3.5. Failure of a peer requires at most 4Cy messages in order to restore the
network structure.

Proof: If a peer P fails, then each predecessor of P will try to find a new neighbor.
There are no more than C5 predecessors of P. Determining of a new neighbor requires no
more than 4 messages: 2 for finding a neighbor and 2 to establish the connection. This
generates no more than 4C5 messages.

Also, if a tree node or object is not found, the data objects storage and retrieval protocol
(see above) assume the search for a replica. The lost object will then be created from
the replica and re-stored on another appropriate peer (to preserve a constant number of
replicas in the system).

Different replicas of the same object will be associated with different hash functions,
to provide storage on different nodes. Currently, each object has a master copy and one
replica. The object’s identifier is calculated by SHA-1; the replica’s identifier is obtained
by complementing the most significant bit of the first identifier. The operation required to
compute the replica’s identifier is equivalent to a half-circle trip (see 2, so the replica ID is
diametrically opposed to the master copy. Identifier distribution remains pseudorandom,
and the chances that the replica would be stored on a different peer are maximal.

For the routing protocol, fault tolerance is ensured by the object and metadata repli-
cation, according to the two hash functions and the number of links between peers. The
proposed message routing protocol enables messages to reach any peer, as long as every
peer can connect to one of its immediate successors. For example, if each peer has p suc-
cessors, and a peer fails with a probability of 1/2, there is a (%)p chance for that peer to
remain without successors. With p = 10, the probability of this to happen is substantially
low.



CLUSTER-ENHANCED P2P SYSTEM 429

4. Experimental Results. The system was implemented using Java technology. Its
design follows a modular approach, where each module corresponds to the different layers
of the system.

The network module was implemented using Java NIO. The server runs in a separate
thread and uses select operations. Optimizations at this level include implementation of
resizable NIO buffers and streaming the read and write operations.

We first evaluated the system using a cluster of Intel Xeon E5405 quad-core stations
(each station is equipped with 8 cores, at 2 Ghz, has 16 GB RAM memory, and 6Mb
cache memory), connected through Gigabit Ethernet (1 Gbps between chases, each chases
grouping together 8 stations connected at 100 Gbps). These experiments evaluated the
influence of various parameters on the overall performance of the system. For example,
we evaluated how the number of objects replicated on each Agent can influence the per-
formance (e.g., if the number is very high, the fault recovery process could take a longer
time). Another result of interest is the number of messages exchanged for the internal
management of the system. And another one is the time needed for clusters to re-balance
in case of Agents entering and exiting the system. For these experiments we used 9 Agents
(each one running on another station), and 13 objects. Each object has 2 replicas (for a
total of 26 objects). Figure 4 (top) presents the distribution of objects on the Agents. At
some point we simulated the crash of an Agents in the system. Figure 4 (bottom) presents
the evolution of the objects after such a crash. As presented, the system automatically
re-balances and replicates the objects, such that is able to continuously preserve the two
replicas of each object (the master copy and an additional replica).

After evaluating the capability of the system to cope with the crash of an Agent, we
evaluated its performances. We executed several experiments considering the behavior of
the system in the presence of different events (such as changes in the topology or faults in
various network links). We logged the processing loads and throughput on the networks
connecting the Agents (as a measure of the balance of activities between Agents). For
these experiments we also varied the number of Agents (such that to also experiment
with clusters dividing and joining together). Figure 5 shows the load of one of the testing
machine. If the system would consume too much processing power, the station would
become unavailable for the execution of other applications. Still, as the results show,
the average load was between 0.14 — 0.15, which means the proposed algorithms are not
computational intensive. Also, the topology changes (joining and dividing clusters) affect
the system. However, as presented, these changes last for little time and the system is able
to quickly stabilize. In this case, the maximum load reaches 0.5, which is not very high
and does not affect possibly other concurrent applications running on the same station.

The CPU usage (see Figure 5) was approximately 8%. The spikes appeared because of
the event of the exit of an Agent (due to a failure), followed by immediate cluster division.
As seen, the joining operation does not affect to a vast extend the CPU usage.

These experiments demonstrate the performance of the presented system. As presented,
the system is capable of quickly adapting to failures or Agents dynamically entering or
exiting.

4.1. Object distribution. For the next experiments we used 100 objects, and each has
2 attributes (to evaluate the management of different attributes). The attributes have
values in the interval [1,100]. For each Object(i), the attribute tuple is (i + 1,100 — i),
where 0 < i < 99. For these experiments we evaluated the management of objects stored
on each peer, the numbers of messages per operation, and the evolution of the system
when varying different parameters.



430 C. DOBRE

4.5 T T T T T T T T
: : : : : : : No. Objects

N S
ST BN B
S N e
W N N
A B B
. ; j ;

4.3 ! ! ! ! ! !

D ; |

AgentID

FIGURE 4. The distribution of replicated objects before (top) and after
(bottom) the crash

In the first experiment we evaluated peer load balancing for a fixed number of objects
and a varying number of peers. For this experiment we used all 100 data objects. Each
object was replicated exactly once (100 more objects — the replicas), and for each attribute
we constructed a metadata segment tree (approximately 200 nodes in each segment tree).
In total, we had 600 objects (100 data objects, 100 data object replicas, 2 - 199 segment
tree nodes).

First, we added 1 peer, then all the objects (100 data objects — 600 system objects). We
kept adding peers, until we reached 100 (using consecutive IPs, and the same listening
port). Figure 6 presents the distribution of objects when using 10 (top), 20 (middle),
and respectively 40 (bottom) peers. As seen, because of the two hash functions (the two
attributes of each object), in every case several nodes become more overloaded than the
others.



CLUSTER-ENHANCED P2P

SYSTEM

0.6 7 T T T T T T T
| Load1 —+— H H H H
| Load5 —»—
{Load 15 —#— :
05k RAgent starting ; : : i
-ﬁ Cluster splitting Merging of clusters
I t
|'| | : I
: : : o | 1
0 b e |||1 RN ORRUOSE SO A B N
: : : S | I
Il |\ I
C L { ; o
1 [ 1 Agentstarting ] C
hs] B B B B | B : : :
] PN SRR UUUP FOUPRSPUTPURRUPPRT S ST USRI S SUUTRRDY | RSP SUURUSTUPRTRUNTELT! | FONSPUUSUURUT SRR NUN B SOPROR O PRO P SOPSPRN
3 f
)
0.2 f
R S
0
00:12:00 00:15:00 00:18:00 00:21:00 00:24:00 00:27:00 00:30:00 00:33:00 00:36:00 00:39:00
Time [hh:mm:ss]
60 T T T T T T T T
Cpu Usage —+— | :
Cpu Sys :
50 .
Cluster spllttmg
‘| i i i
40 - ] | : T
|| : ; :
[ : : :
[ i i i
I ; ; ;
Agent suffering a failure || | : : :
20
ol f\;\/\, 2 .\. ”f
. j \f \
&
0 i i i I i i i i I i i
00:14:00  00:16:00  00:18:00  00:20:00  00:22:00  00:24:00  00:26:00  00:28:00  00:30:00  00:32:00  00:34:00

Time [hh:mm:ss]

F1GURE 5. The load and CPU usage on a test machine

431

4.2. Bandwidth consumption. We next evaluated the network throughput involved
by the system. The evaluated consists of the following scenario:

(1) First add 10 peers into the system.

(2) Store 3 (2 at the same time, 1 later) data objects. These data objects lead to the
insertion of other objects: replicas and nodes of the segment tree. The first object
leads to the insertion of 14(2log,100) objects: segment tree nodes and one replica.
Each of the other two inserts at least 3 extra objects (one replica +2 segment tree

nodes).

(3) Range search for all the objects having the first attribute inside the interval [1, 100].

(4) Store one object.



432 C. DOBRE

120 -
No. Objects I

100
80
NN O B —
w0l N - ;

20

AgentID

120

No. Objects .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
AgentID

a0 T T
No. Objects HE

70

60

50

40

30

20

10

123 4 56 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 30 40
AgentID

FIGURE 6. Objects distribution for 10, 20 and 40 peers



CLUSTER-ENHANCED P2P SYSTEM 433

0.25 T T T T T T T T T T T T T T T T T T T
Bandwidth —+— ; ; ; ; ; : : : :

=]

-

w
T
1

Bandwidth [Kbps]

: S : : : iy : \i/ A P S

; ; ; ; ; " ; \ / \ A A

/:/ N B N N :II N :'\ N |" N |'ll N "'l |
+ L i L i I L I L { L i L i L T e it A i A

11:59:20 11:59:30 11:59:40 11:59:50 12:00:00 12:00:10 12:00:20 12:00:30 12:00:40 12:00:50 12:01:00

Time [hh:mm:ss]

FIGURE 7. Aggregated bandwidth consumption

(5) Range search for all objects with attributes in [1, 1].

For the aggregated bandwidth consumption of all the peers in the system, we obtained
the graph in Figure 7. The first peak, 0.4 - 10~* Mbps (seconds 10 — 15) is caused by
peers joining the system. At second 25 all 10 peers enter the system. At second 50 we
start inserting 2 objects. At second 70 we insert another object. At second 80 we initiate
a range search query for the first attribute, inside [1,100]. In the end, as presented, the
bandwidth consumption is low (less than 0.1-10~* Mbps).

We can see that object insertion is the operation that consumes the most bandwidth
(peaks at 0.7 - 107* Mbps) and the range search operation is quite bandwidth efficient.
(These results are also confirmed by the number of messages test.)

As shown in [30], balancing scalability, storage guarantees, and resilience to highly
dynamic membership and bandwidth consumption is a challenging requirement. In fact,
our results show superior capabilities (lower bandwidth consumption compared with other
papers. We obtained an average bandwidth consumption below 0.05 Kbps, compared with
results shown by some other well-known solutions with shown bandwidth consumption
results in the range of over 100 Kbps in [31, 32].

4.3. Number of generated messages. In order to measure the number of transmitted
messages, we considered a system consisting of 18 peers. A segment tree node can store
up to 10 keys; €} = Cy = 3 (number of neighbors is 6). In this case we executed the
following experiments:

(1) We stored 100 data objects. As previously described, these 100 data objects create
598 objects. The number of messages in this case was 3128, which corresponds to the
3400 estimated by Lemma 3.4.

(2) We searched for a stored object — 3 messages.

(3) We initiated a range query for the first attribute, inside [1, 100]. We obtained all the
100 objects. This resulted in 215 messages (2.15 messages per object).



434 C. DOBRE

(4) We initiated a range search query for the second attribute, inside the interval [50, 50].
We obtained a single object. The total number of messages was 3.

(5) We simulated a peer failure. In order to restore the system, 12 messages were gener-
ated. This value is within the limits predicted in Lemma 3.5.

We observe that all the experiments leaded to results are similar to the ones predicted
by the theoretical results presented in the previous sections. And, as noticed in [23]
(analyzing Grids) and [25] (within an analyze of Cloud-related energy problems), there
is a direct link between the number of messages exchanged in the system, the local load
induced on the running stations, and the energy consumption required when running the
system in a production environment. In our case, as presented, the report is kept in the
limits, as the proposed algorithms require few execution steps, converge to a solution (such
as the choice of the peer on which an object is stored) rapidly, and require few messages
exchanged for searching an objecting, or for mitigating the different occurring failures.
For all this we provided theoretical boundaries (refining the ones previously obtained by
similar systems [22]), which concur with all results observed in our experiments.

5. Conclusions and Future Work. In this paper we presented a scalable peer-to-peer
solution that can be employed for storing objects and for performing range queries on the
objects’ attributes. The architecture consists of a Chord ring, enhanced with a cluster
overlay. The cluster overlay separates the nodes into clusters based on proximity metrics.
Request routing is performed by considering both the cluster overlay and the Chord
ring. Range queries are supported by using a distributed segment tree. The information
corresponding to each node of the segment tree (metadata) is stored as an object in our
architecture. The system includes fault tolerance and orchestration mechanisms necessary
to provide reliability in an autonomic manner. Experimental results have shown that an
implementation of the proposed system leads to results similar to the one predicted in
our theoretical analysis. As future work, we plan to integrate the system into large
scale distributed systems, and perform further experiments to tune the implementation
accordingly.

Acknowledgment. The research presented in this paper is supported by project “ERRI
C — Empowering Romanian Research on Intelligent Information Technologies/FP7-REGP
OT-2010-17, ID: 264207. The work has been co-funded by the Sectoral Operational Pro-
gramme Human Resources Development 2007-2013 of the Romanian Ministry of Labour,
Family and Social Protection through the Financial Agreement POSDRU/89/1.5/S/6255
7.

REFERENCES

[1] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa and S. Jiang, Current practice and a direction forward
in checkpoint/restart implementations for fault tolerance, Proc. of the 19th IEEE International
Parallel and Distributed Processing Symposium, vol.19; 2005.

[2] K. Lua, J. Crowcroft, M. Pias, J. Sharma and S. Lim, A survey and comparison of peer-to-peer
overlay network schemes, IEEE Communications Surveys & Tutorials, vol.7, no.2, pp.72-93, 2005.

[3] R. Ranjan, L. Chan, A. Harwood, S. Karunasekera and R. Buyya, Decentralised resource discovery
service for large scale federated grids, Proc. of the 3rd IEEE International Conference on E-Science
and Grid Computing, pp.379-387, 2007.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, A scalable content-addressable
network, Proc. of the 2001 Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM’01), San Diego, CA, USA, pp.161-172, 2001.

[5] A. Rowstron and P. Druschel, Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems, Proc. of IFIP/ACM Intl. Conf. on Distributed Systems Platforms (Mid-
dleware’01), London, UK, pp.329-350, 2001.



(6]

CLUSTER-ENHANCED P2P SYSTEM 435

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph and J. D. Kubiatowicz, Tapestry: A
resilient global-scale overlay for service deployment, IEEE Journal on Selected Areas in Communi-
cations, vol.22, no.1, pp.41-53, 2004.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, Chord: A scalable peer-
to-peer lookup protocol for Internet applications, IEEE/ACM Transactions on Networking, vol.11,
no.1l, pp.17-32, 2003.

P. Maymounkov and D. Mazieres, Kademlia: A peer-to-peer information system based on the XOR
metric, The 1st International Workshop on Peer-to-Peer Systems, Lecture Notes in Computer Sci-
ence, vol.2429, pp.53-65, 2002.

C. Zheng, G. Shen, S. Li and S. Shenker, Distributed segment tree: Support range query and cover
query over DHT, Proc. of the Intl. W.-Shop on P2P Syst., Santa Barbara, CA, USA, 2006.

N. Lopes and C. Baquero, Implementing range queries with a decentralized balanced tree over
distributed hash tables, Lect. Notes in Comp. Sci., vol.4658, pp.197-206, 2007.

M. Abdallah and E. Buyukkaya, Efficient routing in non-uniform DHTs for range query support,
Proc. of the Intl. Conf. on Par. and Dist. Comp. and Syst., Dallas, TX, USA, pp.239-246, 2006.
M. Hauswirth and R. Schmidt, An overlay network for resource discovery in grids, Proc. of the Intl.
W.-Shop on Database and Expert Systems App., Copenhagen, Denmark, pp.343-348, 2005.

M. Ripeanu, I. Foster and A. Iamnitchi, Mapping the Gnutella network: Properties of large-scale
peer-to-peer systems and implications for system design, IEEFE Internet Computing Journal, vol.6,
no.1, 2002.

C. Dobre, F. Pop and V. Cristea, A fault-tolerant approach to storing objects in distributed sys-
tems, Proc. of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
Fukuoka, Japan, pp.1-8, 2010.

A. Barabasi, R. Albert, H. Jeong and G. Bianconi, Power-law distribution of the world wide web,
Science, vol.287, 2000.

C. Dobre, R. Voicu, A. Muraru and I. C. Legrand, A distributed agent based system to control and
coordinate large scale data transfers, Proc. of the 16th International Conference on Control Systems
and Computer Science, Bucharest, Romania, 2007.

R. Brown, Calendar queues: A fast O(1) priority queue implementation for the simulation event set
problem, Communications of the ACM, vol.31, no.10, pp.1220-1227, 1988.

D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin and R. Panigrahy, Consistent hashing and
random trees: Distributed caching protocols for relieving hot spots on the world wide web, Proc. of
the 29th Annual ACM Symposium on Theory of Computing, New York, USA, pp.654-663, 1997.

B. Mulvey, Hash Functions. Evaluation of SHA-1 for Hash Tables, http://home.comcast.net/br
etm/hash/9.html, 2012.

T. Hagerup and C. Rub, A guided tour of Chernoff bounds, Information Processing Letters, vol.33,
no.6, pp.305-308, 1990.

H. Liu, P. Luo and Z. Zeng, A structured hierarchical P2P model based on a rigorous binary tree
code algorithm, Future Generation Computer Systems, vol.23, no.2, pp.201-208, 2007.

S. Sotiriadis, N. Bessis and N. Antonopoulos, Using self-led critical friend topology based on P2P
chord algorithm for node localization within cloud communities, Proc. of Intern. Conf. on Complerz,
Intelligent, and Software Intensive Systems, Seoul, Korea, pp.490-495, 2011.

Y. Huang, N. Bessis, S. Sotiriadis, A. Brocco, M. Courant, P. Kuonen and B. Hirsbrunner, To-
wards an integrated vision across inter-cooperative grid virtual organizations, in Future Generation
Information Technology, Y. Lee, T. Kim, W. Fang and D. Slezak (eds.), Springer, 2009.

A. Lavinia, C. Dobre, F. Pop and V. Cristea, A failure detection system for large scale distributed
systems, IJDST, vol.2, no.3, pp.64-87, 2011.

Z. Xue, X. Dong, L. Hu and J. Li, A performance and energy optimization mechanism for
cooperation-oriented multiple server clusters, Future Generation Computer Systems, Special Sec-
tion: Energy Efficiency in Large-Scale Distributed Systems, vol.18, no.5, pp.801-810, 2012.

W. K. Lai, M.-L. Weng, S.-H. Lo and C.-S. Shieh, KAdHoc: A DHT substrate for MANET based
on the XOR metric, ICIC' Express Letters, vol.3, no.4(A), pp.909-914, 2009.

C. Lee and T. Jeong, Multi-level mechanism for distributed P2P mobile streaming services, ICIC
Ezxpress Letters, vol.6, no.7, pp.1803-1808, 2012.

H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, Looking up data in P2P
systems, Communications of the ACM, vol.46, no.2, pp.43-48, 2003.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, Wide-area cooperative storage with
CFS, ACM SIGOPS Operating Systems Review, vol.35, no.5, pp.202-215, 2001.



436 C. DOBRE

[30] C. Blake and R. Rodrigues, High availability, scalable storage, dynamic peer networks: Pick two,
The 9th Workshop on Hot Topics in Operating Systems, Lihue, HI, USA; vol.18, 2003.

[31] R. Rodrigues and B. Liskov, High availability in DHTs: Erasure coding vs. replication, Peer-to-Peer
Systems IV, pp.226-239, 2005.

[32] B. B. Yang and H. Garcia-Molina, Designing a super-peer network, Proc. of the 19th International
Conference on Data Engineering, pp.49-60, 2003.



