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ABSTRACT. In this paper we explore modules that can analyze binary vectors and matri-
ces and efficiently solve a wide range of problems that involve the computation of Ham-
ming weights or Hamming distances, producing counts and/or comparisons of these, as
well as sorting and searching. A set of designs for such modules is proposed and all the
designs have been evaluated both theoretically and practically. The practical evaluation
involved numerous experiments with hardware implementations using the most recent ex-
tensible processing platform that incorporates reconfigurable logic. The objective was to
achieve high performance within reasonable resources. As a result, novel solutions for
Hamming weight counters/comparators have been identified that have better cost and la-
tency than the best known alternatives. Network-based sorters and searchers with reusable
cores are also discussed and these enable high throughput to be achieved with relatively
modest resources. The paper shows that similar results cannot be obtained using the best
known and most frequently used even-odd merge and bitonic merge networks. Finally, a
complete architecture for an analyzer is presented, part of which (covering the modules
indicated above) has been completely implemented and prototyped in hardware.
Keywords: Combinatorial search, Data/signal/image processing, Hamming weight,
Parallel systems, Performance/resources analysis, Pipeline, Reconfigurable hardware,
Sort/search

1. Introduction. The Hamming weight w(A) of a binary vector A = {aq,...,any_1} is
the number of one bits in the vector, which ranges from 0 to N [1]. The Hamming distance
d(A, B) between two vectors A and B is the number of corresponding elements that differ.
Certain applications that are fundamental to information and computer science require
w(A) and d(A, B) to be calculated and analyzed for either a single vector, or a set of
vectors that are the rows/columns of a binary matrix. Such applications can be found
in digital signal processing [2], image [3] and data processing [4], encoding and error
correction [5], cryptography [6], combinatorial search [7], DNA computing [8] and many
other areas.

For example, w(A) often needs to be compared with a fixed threshold r, or with w(B),
where B = {by,...,bg_1} is another binary vector and ) and N may or may not be
equal. Examples of applications where this can be the case include digital filtering [9,10],
piecewise multivariate linear functions [11], pattern matching/recognition [12,13], prob-
lem solving in Boolean space [14], combinatorial search [15,16], and encoding for data
compression [17]. Many of these require Hamming weight comparators with very high
throughput. Streaming applications that are frequently used receive vectors sequentially,
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and the allowable delay between receiving a vector on inputs and outputting a result is lim-
ited. Thus, increased speed is always a major requirement. Many research (e.g., [18-20])
and application problems (e.g., [21,22]) necessitate not only counting and/or comparing
Hamming weights, but also an analysis of the distribution of weights in a matrix (or in a
stream). We might be interested in answering such questions as: what is the maximum
and/or minimum weight in a set of vectors? how many vectors are there with the same
weight (in succession or in the entire sequence)? what is the sorted set of vectors? Since
any collection of vectors in a stream can be modeled by a binary matrix, we can answer
the questions above by implementing real-time processing of such matrices in a way that
provides for the following:

1. The weight of each incoming vector is: a) determined with the minimal achievable
delay; and b) temporarily stored in memory for further processing.

2. Various types of parallel processing can be applied to the collected weights, such
as the run-time computation of minimum/maximum values, sorting the values, and
counting the frequency of occurrence of items.

3. Since the size of temporary storage is limited, it can be organized as a FIFO (first in
first out). As soon as the memory is full, the vectors are shifted from its inputs to
the outputs. It may be difficult to keep maximum/minimum values in a dedicated
register and to compare them sequentially with each incoming vector. As soon as
vectors are extracted from the FIFO, we need to provide for the rapid update of the
analysis results for data that are currently kept in memory. This task in particular
is important for priority buffers/queues [23].

Let us consider another type of application, from combinatorial search. Many op-
timization algorithms in this context reduce to the covering problem [14]. Let a set
© = {fy,...,0p_1} and its subsets P, ..., Py_q, for which Py U...UPy_; = O be given.
The shortest (minimum) covering for the set O is defined as the smallest number of sub-
sets for which their union is equal to ©. In [14] the set {®y,...,Py_1} is represented by
a binary matrix, the U rows of which correspond to the subsets of the given set and the
E columns to the elements of the set ©. A value 1 in a row u (0 < u < U) and column
e (0 < e < E) indicates that the row u covers the column e. The covering problem is
solved if we can find the minimum number of rows in which there is at least one value 1 in
each column. It is known [16] that this problem involves numerous procedures counting
the Hamming weights in the binary vectors that represent the rows and columns of the
matrix, ordering the rows and columns and applying some task-specific operations. Such
problems are very large and time consuming [24] so acceleration is greatly required.

Computing Hamming distances is needed in applications that use Hamming codes (see,
for example, [25,26]). However, since d(A, B) = w(A XOR B) we can find Hamming
distances as the Hamming weights of “XORed” arguments A and B. The Hamming
weight for a general vector (not necessarily binary) is defined as the number of non-zero
elements. Thus, all the methods outlined above can be applied to any type of vector, such
as [8], and the only difference is an initial comparison-based operation that enables the
input to be presented in the form of a binary vector. The next section will discuss this in
detail.

This paper is dedicated to fast parallel application-specific systems that are targeted
to FPGAs (Field-Programmable Gate Arrays) and provide for the following:

1. Finding the Hamming weight of a binary vector, or the Hamming weights of a set of
binary vectors that are the rows/columns of a matrix, faster and cheaper (i.e., with
less resources) than the best known previously published designs. Clearly, Hamming
distances for binary vectors can also be computed easily.
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2. Run-time processing of Hamming weights (such as searching, sorting and determining
the frequency of repetitions) faster and cheaper than the best known previously
published designs.

The remainder of this paper contains 8 sections. Section 2 analyzes the known methods
and designs and suggests ways for improvements. Section 3 is dedicated to identifying
potential practical applications of the results and gives a number of real-world examples
from different areas. Section 4 describes the look-up table based circuits we are proposing.
Section 5 is dedicated to the counting networks that are suggested, which provide minimal
delay in combinational logic for pipelined implementations. Section 6 covers sorting net-
works with reusable cores. Section 7 presents the results of experiments and comparisons.
Section 8 describes the final architecture of the analyzer and potential applications. The
conclusion is given in Section 9.

2. Related Work. The majority of the known methods and designs that are relevant
to this paper are in four main areas: 1) parallel counters (e.g., [1,27,28]); 2) networks for
searching, sorting and counting (e.g., [4,29-35]); 3) highly parallel and eventually pipelined
designs (e.g., [4,31]); and 4) rational combination of sequential and parallel operations
through the reuse of processing cores (e.g., [4,32]). In Section 2 we will analyze the
published results in these areas and suggest the ways for potential improvements.

State-of-the-art Hamming weight comparators (HWC) have been exhaustively studied
in [1]. The charts presented (Figure 8 in [1]) compare the cost (i.e., the number of
gates) and the latency (i.e., the number of gate levels) for three selected methods, those
of Pedroni [9], Piestrak [35] and Parhami [1]. It is argued that the cost of HWC from
[1] is the best for all values of N (N is the size of the given vector) while the latency
up to N = 64 is better for the method [35]. For N > 64 the method [1] again is
claimed to be the best. A thorough analysis of the known HWCs reported in publications
permits us to conclude the following: the existing methods mainly involve parallel counters
(i.e., circuits that execute combinational counting of Hamming weights for given binary
vectors) and sorting networks or their varieties, such as [9,36]. Note that the majority
of HWCs are based mainly on circuits that calculate the Hamming weights of individual
vectors. Clearly, the latter can be organized in matrices for streaming applications. Table
1 presents expressions for cost and latency from [1] for fixed threshold and two-vector
Hamming weight comparators, where & is the threshold, v 4 is the cost of a full-adder (FA)
relative to a gate, dgym, is the delay of an FA, and d.4,ry is the delay of carry propagation
in the FA.

We found that although the results of the comparison [1] are correct for the alternatives
discussed, they are not absolutely justified. For example, the number of gate levels of the
circuit [1] is given by the expression (logy N — 1) X (dsum + Ocarry) + 1, where the last
‘1’ in this expression is the delay of the carry network (Figure 4 in [1]). Any stage of

TABLE 1. Cost and latency expressions for HWCs from [1]

Desi Fixed-threshold HWC Two-vector HW(C'
estgn Cost Latency Cost Latency
Pedroni
19,96] 2x Kk xN N+r—-1 N x (N +1) 2x N
Piestrak N x (log, N)? (logy N + 1) x

2

[35] N x (logy N)?/2 |logy N(logy, N +1)/2 +N +log, N (logy N +1)/2

Parhami| (N —log, N — 1)x (log, N —1)x% 2x (N —logy N —1)x| (logs N —1)x
[1] YFA + 10g2 N (6sum + 6carry) +1 YFA + 4 x 10g2 N (6sum + 6carry) +1
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this network includes 3 gate levels and the carry signal has to propagate through all the
stages sequentially. Thus, the delay ‘1’ is questionable. There are also doubts about
the cost. It is assumed in [1] that a standard full-adder (FA) needs 9 gates, which is
correct, for ASICs. However, if we are talking about ASICs, then perhaps any gate is
NAND. Thus, other components of the circuits, such as OR and AND (including the
carry network) have to be counted in NAND too, which was not done. An analysis of
recent publications clearly demonstrates that the most frequently exploited devices for
Hamming weight /distance computation and comparison and the reordering of these are
FPGAs. However, if we are using FPGAs, what is the significance of the minimum gate
count? Indeed, the criteria for design quality are quite different. This paper suggests
two new designs for Hamming weight/distance computation and comparison. The first
design is based on look-up tables (LUTSs) and it provides better cost and latency than
the best previously published alternatives (see Table 1). The second design involves the
proposed counting networks that are very regular, easily scalable and can be pipelined
with negligible delays between pipeline registers. They also fit well to embedded blocks
such as digital signal processing (DSP) slices that are widely available in recent FPGAs.

The second problem that is described in this paper is sorting, searching and item fre-
quency computation of previously calculated and saved Hamming weights. Once again
performance is a very important feature. The fastest known parallel sorting methods are
based on the even-odd merge and bitonic merge networks [17,29-32]. The depth D(N)
of a network, that sorts N data items, is the minimal number of data dependent steps
S0, -+ Sky - Sp(v)—1 that have to be executed sequentially. This characteristic is im-
portant for both pure combinational and sequential implementations. In the first case,
circuits operating at any step k use the results of circuits from the previous step k—1; i.e.,
there exists a data dependency for step k on step k—1. If we assume that the propagation
delays of all steps are equal, then the total delay is proportional to D(N). For sequential
implementations, D(NN) determines the number of consecutively executed steps (clock cy-
cles) and ultimately the throughput of the network. If NV is a power p of 2 (i.e., N = 27)
then D(N = 2P) = p x (p + 1)/2 [17,29,31] for both types of networks indicated above.
Thus, these networks are very fast. Indeed, sorting 134 million data items (N = 2%7) can
be done with just 378 steps (D(N = 227) = 378). However, there is another problem. The
hardware resources required are enormous. Let us analyze the even-odd merging network
(which is less resource consuming than the bitonic merging network). The number of
comparators for this network is C(N = 2°) = (p* —p+4) x 2°72 — 1 [17,29,31] (for the
bitonic network the number of comparators is a bit larger: C(N = 2?) = (p? +p) x 2P 2).
Thus, sorting 134 million items requires 23 689 428 991 comparators. We target our
results to FPGA because they can be seen more and more as a universal platform in-
corporating many complex components that were used autonomously not so long ago.
For example, the extensible processing platform (EPP) Xilinx Zyng [37] includes dual
ARM® Cortex™_A9 MPCore™ and Artix/Kintex FPGA on the same microchip. A
similar platform was introduced by Altera. We found that one comparator for 32-bit data
items (M = 32) consumes between 17 and 55 Xilinx FPGA slices. To our knowledge the
largest existing FPGA XC7V2000T (with 6.8 billion transistors) contains 305 400 slices.
Hence, to implement a combinational network-based sorter for 134 million items, we would
need about 2.7 million of the most advanced FPGAs. Similar problems arise with other
types of implementations, such as those using graphics processing units (GPUs) [30]. Par-
tially sequential implementations permit hardware resources to be reduced but cause a
new problem: the number of memory transactions becomes very large [30]. So, 378 steps
is a good characteristic but either it is not realizable in practice, or each step becomes
very time consuming due to the necessity to split it into numerous sub-steps that require
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an excessive number of memory transactions. We suggest in this paper a good compro-
mise between pure combinational parallel operations and stages that sequentially reuse
the parallel operations. The emphasis is on circuits that are as regular as possible and
thus easily scalable, avoiding redirecting data streams based on multiplexing operations.
This is because any multiplexer involves additional propagation delays and complicates
interconnections and the latter may cause further additional propagation delays.

Thus, two ways that allow the known results to be improved are going to be ex-
plored: 1) discovering regular, easily scalable and simply pipelined designs for Hamming
weight /distance counters/comparators based on look-up tables and the counting networks
that are proposed; 2) combining network-based reusable combinational and feedback se-
quential operations with the primary objective of achieving the minimum gate level delays
in sorters and searchers. We mentioned that a Hamming distance counter/comparator
can be built as a Hamming weight counter/comparator of “XORed” vectors A and B.
Thus except for a set of XOR gates, no additional logic is required.

All the proposed designs will be evaluated and compared with the existing alternatives
both theoretically and through FPGA prototyping. The experiments will be conducted
using the ZedBoard [37] with the Xilinx Zynq z¢72020 microchip incorporating the most
recent 7 series FPGA.

3. Practical Applications. Let us now discuss systems for which high throughput is
very important. Many electronic, environmental, medical, and biological applications need
to process data streams produced by sensors and measure external parameters within given
upper and lower bounds (thresholds). Examples of such measurements include monitoring
thermal radiation from volcanic products [38] and digital filtering [2]. Let us describe the
problem in the manner shown in Figure 1(a), where sensors Sp,...,Sy_1 (the value N
can be thousands) measure and output data.

A set of data values (SDV) collected at the same time is presented in the form of
subsets that include: 1) values that are below the lower bound (SDV), 2) values that are
between the upper and the lower bounds (SDV,), and 3) values that are above the upper
bound (SDV4). The number of subsets can be just two (i.e., above the given threshold
SDV; and below the given threshold SDV ) or more than three (i.e., there are more than
three intervals in which we would like to analyze the data values produced by the sensors).

) o Timing slot a'
a Ly Timing slot b
I ) _sov SDV SDV
A ' L Subset SDV :
| E = Upper bound E
1 : !
! a3l 3 E ] B = = = : B
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FIGURE 1. Data streams formed by sensors for different types of measure-
ments (a), potential way to digitize and analyze the measured values (b)
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Depending on the application, SDVs may be generated with frequencies that are very high
(measured in megahertz). Thus, processing such SDVs has to be very fast and high-speed
accelerators are essential. Let us look at the model depicted in Figure 1(b), where the
entire interval of potential values is digitized. If a measured value falls within a predefined
discrete interval, a flag ‘1’ is recorded in the corresponding N-bit binary vector, which
contains only zeros initially (see Figure 1(b)). Thus, for the three subsets exemplified
above (SDV|, SDV, and SDVy), three binary vectors (BV,, BV, and BV;) are built.
Sequentially generated SDVs are SDV streams and in our model they are represented by
three binary matrices (BM, BM,, and BM;) composed of the vectors BV, BV, and BV
respectively. As we noted above, there can be more or less than three of such matrices.

In many practical cases we would like to analyze the distribution of potential values
between different matrices (see Figure 1(b)). For example, we may want to know how
often volcanic activity [38] falls to a set of critical values (such as BMj), or how the
results of measurements in different environmental, medical, or biological experiments are
distributed, or how signals can be filtered in digital and signal processing, and so on.
Thus, we need to know how many measured values fall within pre-selected bounds (i.e.,
what is the Hamming weight of binary matrices such as BM|, BM,, and BM;).

The Hamming weight of each matrix in Figure 1(b) (which is the Hamming weight
of all elements in the matrix) indicates its power (the intensity of the relevant signals).
Generally, the greater the intensity, the more critical the subset is. The more subsets
there are that have critical values, the higher the probability of an event which might
happen. Analyzing the Hamming weights in subsequent time slots or in the associated
sub-matrices permits the determination of when or where an activity of the measured
values is higher or lower. Measuring Hamming distances enables us to check the number
of repetitions of activities within chosen subsequent time slots or within certain times.
By discovering the maximum and minimum values you can determine when the activity
is the highest or the lowest. Sorting the values enables charts showing activities during a
chosen time period to be built.

Filtering is the kind of processing shown in Figure 2. Suppose that we are only interested
in SDVs with Hamming weights above (or alternatively below) a given threshold x and
we would like to choose just these values for further processing. In this case we need the
digital filter shown in Figure 2.

The processing described above (see Figures 1 and 2) requires high performance com-
putations. Indeed, the Hamming weights of very long binary vectors have to be found as
fast as possible. Thus, to achieve this, multiple segments and different bits of a vector
need to be processed in parallel.
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FIGURE 2. An example of digital filtering
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Let us explore some other examples where Hamming weight and distance analyzers for
binary vectors and matrices can be used efficiently.

Example 3.1. Suppose there are a number of multiple-valued data items from which we
have to choose items with a pre-selected value or, alternatively, we would like to know
how many items fall into a pre-selected range of values. For instance, many problems can
be solved over ternary vectors that include 3-valued elements: ‘1°, ‘0’ and ‘do not care’.
The elements are coded somehow by 2-bit binary vectors [39], for example ‘0’ as 00, ‘1’
as 11, and ‘do not care’ as 01 or 10. In this case the vector 0-1-10, where - 1s a ‘do
not care’ value, s coded as 00 01 11 10 11 00 and the pairs 01 and 10 shown in bold
font correspond to ‘do not care’. If we need to know the number of ‘do not care’ values
we will use XOR gates for the 2-bit binary vectors and the elements from large vectors
can be processed in parallel. The XOR operation applied to the bits in element values
01 and 10 gives 1 so this indicates that the relevant element is ‘do not care’; XORing
the bits in 00 or 11 results in 0. The number of 1s in the resulting vector is equal to
the number of ‘do not care’ values in the associated ternary vector. Thus the Hamming
weight for the resulting vector gives the number of ‘do not care’ values in the corresponding
ternary vector. Similar operations can be applied to binary vectors with elements that are
associated with data items falling into a pre-selected interval. Thus, we need Hamming
weight computations. The algorithms [14-16,2/,39,40] involve such operations over sets
of vectors (i.e., over matrices). We will additionally discuss this problem in Section 6
below.

Example 3.2. Suppose there are pre-defined values oy, . .., az and we would like to dis-
cover how many values a, € {a,...,az} can be found in a given set. Suppose we have
a set of data items Iy,...,In. The result R(a,) of comparing o, € {ay,...,az} with all
the items Iy, . .., Iy is a binary vector. The Hamming weight of the vector R(«,) is equal
to the number of items with the value a,. Sorting the results R(ay),. .., R(az) gives the
distribution of data items with the values from {cq,...,az} in the set Iy, ..., In. Such
a problem appears in pattern recognition, image and signal processing. Thus, we need
Hamming weight computations and sorting of the resulting weights. In many practical
tasks sorting is not required, but instead we would like to find out the minimum and the
mazximum values. Thus, Hamming weight comparators are involved and, composition of
different methods described above is helpful.

Example 3.3. Suppose we would like to scan and to compare different black and white
pictures Py, ..., Px with black and white encoded as ‘0’ and ‘1’ respectively. Thus, any
scanned picture is a binary matriz. The Hamming distance d(P;, P;) between two binary
matrices P, € {Py,...,Px} and P; € {Py,..., Px} indicates the number of mismatched
pizels. The distance d(P;, P;) is the sum of the distances between corresponding lines of
P; and P;. The distance with the minimum value indicates two pictures from Py, ..., Px
that are the closest match. A similar task needs to be solved to analyze colors in different
pictures. In particular, computing the frequency of occurrence of item values permits
the dominant color to be identified. As you can see, Hamming distance comparators are
involved and the results need to be analyzed by applying operations for discovering the
minimum/mazimum values and determining how often a given item occurs.

Example 3.4. The address-based sort [22] applies to non-repeated integers. The idea is
to allocate memory with 2M zero filled one-bit words, where M is the size of the data.
A new item I is recorded by writing the value 1 at the address I. As soon as all data
items are processed they are sorted and the next task is to extract the sorted data from the
memory. Computation of the Hamming weight for the binary vector BV (I, I,) beginning
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from the address I, and ending with the address I, gives the number of integers in the
interval {Iy,...,I.}. Further, if the Hamming weight of the vector BV (I, I.) is known,
it gives the number of sorted data that have to be extracted which consequently permits
the required hardware circuits to be simplified. Many additional problems discussed in [22]
can also be solved. If the size of the vector BV (I, I,) is large, it can be split into a set of
vectors and presented in the form of a binary matrixz that is further processed using the
proposed methods.

4. Hamming Weight Counters and Comparators Based on Look-Up Tables. A
look-up table LUT(n, m) can be used to rapidly implement arbitrary Boolean functions
fos -+ fm—1 of n variables xq, ..., z,_1. In recent FPGAs (e.g., the 7 series from Xilinx
and the Stratix V' family from Altera), most often n is 6 and m is either 1 or 2. If
we consider the FPGA generations during the last decade, we can see that these values
(n, in particular) have been periodically increased. Clearly, h elements LUT(n, m) can
be configured to calculate the Hamming weight w(A) of A = {aq,...,any_1}, where h =
[(logy(n + 1))/m]. The idea is to build a network from LUTs(n,m) that can find the
Hamming weight for an arbitrary vector A of size /N and then to compare this weight with
either a fixed threshold &, or with the Hamming weight w(B) of another binary vector B
to be found similarly.

An analysis of practical applications (some of which were described above) shows that
the majority require Hamming weight count/comparison for values of N that are divisible
by either 8, 32 or 36. Initially we suggest two optimized LUT-based designs that permit
the Hamming weight to be found for N = 8 (Figure 3(a)) and N = 36 (Figure 3(b)). For
N = 32 either four bits in Figure 3(b) can be assigned to 0 or the results of Figure 3(a) can
be incrementally added in a tree-based structure that is composed of the design in Figure
3(a) together with adders, as shown in Figure 4. The Hamming weight for N > 36 can
be found in a similar tree-based structure (see Figure 4). We also suggest another way to
design LUT-based Hamming weight counters/comparators (HWCCs) for N > 36. All the
designs we are proposing will be evaluated and compared with the existing alternatives
both theoretically, and through FPGA-based prototyping.

There are two layers in Figure 3(a) with LUTs(6,3) and LUTs(5,4). The first layer
counts W(al, ..., al) and the second layer takes the results of the first layer and deter-
mines the 4-bit weight W (al,...,at). The delay from the inputs to the outputs (let us
designate it Ayyyers) is equal to just 2 LUT delays, which is equivalent to 2 gate delays
(i.e., Ajgyers = 2). The y/ symbols near the layers of LUTSs in Figure 3 designate places
where such delays arise. There are also two layers in Figure 3(b) with LUTs(6, 3) and two
combinational adders. The first layer is composed of 6 LUTs(6,3) and outputs 6 Ham-
ming weights Wy, ..., Wy for 6 sub-vectors Ay, ..., Ag of the input vector. The second layer
contains 3 LUTs(6, 3) and outputs Hamming weights ajasas, 816203, x1x2X3 of the most
signiﬁcant bits (MSB) in WI, .. .,Wg (Oélagag), the middle bits in Wl, .. .,WG (6162B3)
and the least significant bits (LSB) in Wy, ..., Ws (x1x2X3). The final result is computed
by two combinational adders, as shown in Figure 3(b). Why are conversions similar to the
layers 1, 2 not continued after layer 27 We found that any layer with an index greater than
[log, N is not cost-effective because either the size of output weights will be increased
compared with the previous layers, or the LUTs will not be used efficiently. For example,
the Hamming weights can be counted for sub-vectors a1 x1, asfBax2, a3f3x3 much like
before. In this case we need three additional LUTs(3,2) and the same LUTs are required
for a 1-bit full-adder (FA) [1]. Because carry signals are optimized for arithmetic circuits
in FPGAs, from this step on FAs become better than LUT-based converters.
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FIGURE 3. Hamming weight counters for N = 8 (a) and N = 36 (b)

Another possibility is to count the weights of signals from different groups, such as
a11X102B2X2. This can be done, but the number of LUT outputs is increased compared
with the previous layers. The results of analysis and experiments demonstrate that the
architecture combining LUTs and adders (see Figure 3(b)) exhibits better cost and latency.
Note that all the LUTSs in Figure 3(b) are configured identically (see the INIT statements
defined for the Xilinx ISE in Figure 3(b) for 3 outputs: J_0 — the top outputs of LUT
blocks; J_1 — the middle outputs; J_2 — the bottom outputs). The circuit in Figure 3(b)
without the output block contains [(log,(n+1))/m] x ([N/n]+[(N/2)/n]) LUTs(n, m).
Even for m = 1 (the worst case) we need only 27 LUTs. This is negligible, because, for
example, the chosen microchip Zynq zc72020 of Xilinx contains 13 300 slices and each
slice includes 4 LUTs(6, 1). We found that the adders in Figure 3(b) can be implemented
in two LUTs(5,4) with A, = 2 gate level delays. Thus, the total delay A for a Hamming
weight counter with N = 36 is A = Ajyyers + A, = 4 LUT (gate) delays. For the device
[37] LUT(5,4) is built from 2 physically available LUTs(5,2) (with the total minimum
delay 1.382 ns). The available library adders occupy a bit more resources (7 physical LUTs
with the total minimum delay 1.795 ns). For the design from [1], the number of FAs is
via = N —logy, N —1 > 29 (see Table 1) and the minimal delay is log, N — 1 >5 where
each unit (from the indicated 5 units) is an FA delay plus the carry signal propagation
(this is greater than a LUT (gate) delay). Thus, the proposed design is clearly faster. In
further experiments we will show that it is also more economical. The HWCC from [35]
has the delay log, N x (logy N 4+ 1)/2 > 15 (see Table 1) and requires significantly more
hardware resources.

The comparison of Hamming weights can be done by the carry network (CN) from
[1] (see CN for 7 bits in Figure 4(b)) which adds a weight to the 2’s-complement of &
(representing ‘-x’). Thus, the result of the comparison, ¢, is 1, if and only if & is less
than w(A). The value k can be taken as a fixed threshold or as a weight w(B) of another
vector B.

If N > 36 then HWCCs can be built from several blocks, as shown in Figure 4(a). For
example, if N = 50 then the design includes one block from Figure 3(b) and two blocks
from Figure 3(a), and two unused binary inputs are assigned to 0. If N = n”* (L = 3,4,...)
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an HWCC can be built similarly to Figure 3(b) for N = n?, i.e., the initially given N-
bit vector A is decomposed into 1); = N/n sub-vectors of n-bits. For each sub-vector
the Hamming weight is found using LUTs that are organized at the first layer. Similar
decomposition is applied to N/2 outputs of layer 1 and then to N/4 outputs of layer 2.
Finally the outputs of the last layer are added, much like in Figure 3(b). Thus, if n = 6,
L = 3 we build an HWCC for N = 216 and then a more complicated HWCC can be
constructed from the pre-designed blocks with N =8, N =36 and N = 216 using a tree
of adders as shown in Figure 4(a).

Let us compare now the proposed HWCC with the existing alternatives [1,9,27,28,35,36].
If N = n’ then the number C(N) = C(n") of LUTS in our design is C(N) ( Zle [(1; X ©)
/m]) + 1, where L = log, N, ¢y = N/n and for j >1, ¢ = (¢¥;_1 x ¢)/n, where
¢ = [logy(n+1)] is the size of each weight on the outputs of any LUT block (we assume
that all such blocks are identical), v, is the number of LUTs for the final block of adders.
The depth D(N) = D(n') of the circuit is L + D,, where D, is the depth of the final
block of adders.

To find the cost and delays for the designs from [1] we need to know the coefficients
YFA, Osum, Ocarry fOr the expressions in Table 1. In [1] it was assumed that ypy = 9,
Osum = Ocarry = 2. If we take these values (9 and 2) to count the LUTs used in FPGA it is
undoubtedly not correct (for example, clearly, yp4 <<9). Thus, we decided to obtain all
such values experimentally later on. Initially, and just for the theoretical comparison, the
values Ypa = 1, Osum = Ocarry = 1 are taken and clearly they represent the best case for
[1]. We found that the actual values for the designs from [1] are worse. For the evaluation
of the design [35], we used expressions for sorting networks from [17,29,31], which give
a better gate count for [35] and are more precise than the expressions from [1]. Values
1, for our design are exact because they were taken from the results of synthesis (from
Xilinx ISE 14.4). Values D, are also taken from the synthesis tools. Figure 5 shows the
cost/latency comparison in a graphical format.
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An analysis of Figure 5 shows that the proposed designs are better for all values of N.
The methods [9,36] are the worst (a similar conclusion is reported in [1]). One advantage
of our proposed designs and also the designs from [35] is the ease of pipelining (eventual
pipelines for sorting networks were implemented and evaluated in [31]). Pipeline registers
(PLR) can be accommodated in Figure 3(b) and Figure 4 in the places indicated by PLR.

5. Hamming Weight Counters and Comparators Based on Counting Networks.
Unlike the existing sorting networks (e.g., [17,29-31]), our proposed counting networks do
not contain comparators. Instead, the basic components are the circuits shown in Figure
6 (i.e., either a half-adder or an XOR gate). Figure 6 depicts a complete counting network
for N = 64. The network is composed of 21 segments (each including data independent
vertical lines) and 6 levels. The levels calculate the Hamming weight of a 2-bit binary
vector (level 1), a 4-bit binary vector (level 2), and so on. Thus, the circuit functions
like a parallel counter in [1]. However, in contrast to [1], all operations in any segment
can be executed in parallel by using simple AND and XOR gates. In addition, PLRs can
be inserted between the segments enabling extremely fast pipelined solutions to be built.
The most important characteristic is that the circuit is very regular and easily scalable.
Since the counting network computes the Hamming weight, it can be used as a HWCC
similarly to the circuits in the previous section.

Let us prove that the networks function properly for any N. Initially we assume that
N = 2¥ where P is any nonnegative integer: 0,1,2,... If N = 1 the network is obviously
correct, since it gives two possible and correct answers: 0 and 1. The maximum value on
the outputs of the network for any N is N = 2F. The maximum value on the outputs at
any level L (L =1,...,P; P = [log, N1) is 2L'. This is the first important characteristic
of these networks. The number of outputs of level L (L > 1) is always equal to L + 1,
where L is the number of outputs from any individual circuit of the previous level. This
is the second important characteristic of the networks.

The two important characteristics described above allow us to conclude that for any
P and N = 27 the network is correct. Indeed, if we consider any level L, it takes 2 x L



4836 V. SKLYAROV AND I. SKLTAROVA

C, =04 142

)y 7 bit result

64-bit input vector

FicUre 6. Counting network for N = 64 where (7, is the number of ele-
ments in one block of the level L; C'7°" is the number of XOR gates in one
block of the level L.

inputs (two L-bit outputs from the previous level) and computes an (L + 1)-bit output.
The maximum value on the outputs is 2*. Thus, the output bits, except for the most
significant bit, can be formed at the L bottom lines of the circuit. The most significant
bit always has the value 0 except in one case when both inputs are equal to 2~ and
this is obviously correct from the expression (28714 271 = 2L). Thus, the circuit at any
level L can be built in such a way that it first adds pairs of values on one-bit lines from
two inputs ag,...,ar_1 and by, ...,br,_1 with the same index i, i.e., ag and by, a; and by,
etc. The value 1 in the upper lines can appear if and only if both bits a; and b; are 1.
Thus, after the first segment the weight of the line ay (in the upper inputs) becomes 2
(input ag + input by with weights 1), the weight of the line a; becomes 4 (input a; +
input b; with weights 2),..., the weight of the line a;_; becomes 2 (input az_; + input
b_1 with weights 2£71). Since the case where both (ag,...,ar_1) and (b, ..., by_;) are
equal to 2F —1 is excluded, the value 1 cannot appear after the segment 1 on the line az_;
and this line is not taken for processing in further segments. In the second segment, all
the other lines ag, ..., a;_o are added to the bottom lines by, ..., b;_; that have the same
weights, i.e., the new value a, (with the weight 2) is added to b; (with the same weight 2),
the new value a; (with the weight 4) is added to by (with the same weight 4),..., the new
value ay,_» (with the weight 2/7') is added to by _; (with the same weight 2-71). After
the segment 2 the weight of ay becomes 4, the weight of a; becomes 8, and so on. Similar
actions are applied to all the segments, giving the correct sum after the last segment.

The number C7, of the elements in any individual block (i.e., the basic unit of any level)
at level L of a combinational counting network is:

L
L+1
CL:ZZ':LX ;L
=1
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The total number C' of the elements in the entire network with N = 2¥ inputs is:

P
C:ZC’ixg
=1

For our example in Figure 6: C| =1; Cy = 3; C3 = 6; Cy = 10; C5 = 15; Cg = 21 and
C=1x3243x16+6x8+10x4+15x2+21x1=219.
The delay Dy, of any level is: Dy, = L. The total delay D of the entire network is:

P
D=) i=px(p+1)/2
i=1

For our example in Figure 6: Dy =1; Dy = 2; D3 = 3; Dy = 4; D5 = 5; Dg = 6 and
D = 21. Thus, the counting networks are as fast as the best sorting networks.

Let us consider now combinational counting networks for any N (i.e., without the
condition N = 27). Clearly, for any P and 27! < N < 27 all unused 2” — N inputs can
be assigned to 0, which gives a solution, but this solution is redundant. However, if we
remove all elements from the network that do not participate in forming the result, the
circuit will function as intended and it becomes non-redundant.

The counting networks are very appropriate for devices that process multiple bits in
parallel, such as the DSP48E1 slice for Xilinx FPGAs [41]. Each slice contains a 48-bit
adder/subtractor and implements a number of bitwise logic functions (including AND
and XOR) over 48-bit operands. Since two 48-bit operands can be taken, logic operations
over 96-bit vectors are executed non-sequentially in one slice. Taking into account that
the networks can be easily pipelined and that a pipeline can be implemented in devices
[41] without any additional resources, we expect the proposed counting networks to be
very efficient.

6. Networks with Reusable Cores. In the introduction we mentioned that one of the
objectives of the work is to support run-time operations such as finding minimum /maxi-
mum values in the calculated weights, sorting weights, and weight frequency computation.
Solving such tasks is required for numerous practical applications discussed in Section 3.
Figure 7 demonstrates how these operations can be applied. An input stream/matrix con-
tains binary vectors that need to be analyzed. The vectors can be digitized signals (for
example, for the rank-order filter algorithm and median detection [9]), data for combinato-
rial search algorithms (e.g., matrices representing sets and graphs [14-16]), etc. We would
like to analyze such streams/matrices by applying the operations indicated in the intro-
duction and in Figure 7, to the results of Hamming weight /distance counters/comparators
that we described in the two previous sections. The distances are measured relative to a
given vector (base for distance in Figure 7). Comparison is done with a supplied threshold.
Sorting the input streams enables us to verify the distribution of input vectors relative to
the given threshold, to find potential problems in algorithms, to recognize errors (e.g., a
wrong threshold), and so on.

High throughput is an important feature for operations in Figure 7 and sorting is
considered to be a core operation. Indeed, the result of sorting contains the maximum and
minimum values. We will show later that the most frequently occurring item can be found
easier in the sorted set. The fastest known parallel sorting methods are based on even-odd
merge and bitonic merge networks [17,29-32]. However, they require enormous hardware
resources [4]. The main idea of our proposed method is to find a good compromise between
pure combinational parallel operations and sequential stages which execute the parallel
operations. The emphasis is on circuits that are as regular as possible and thus easily
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scalable, avoiding the need to redirect data by multiplexing operations. An analysis and
comparison of different networks shows that even-odd transition [4,34] and maz-min are
among the most regular solutions. Thus, we discuss our results based on these. Figure 8
presents examples of such networks (even-odd transition in Figure 8(a) and maz-min in
Figure 8(b)) for N = 8 data items, which can easily be scaled for any number N. Given
input data (72, 64, 26, 95, 18, 59, 33, 24) are sorted in descending order in Figure 8(a). The
network in Figure 8(b) finds the items with the maximum and minimum values.

The network in Figure 8(a) contains N vertical lines (levels) of comparators (they are
numbered at the top) and each comparator exchanges input values in such a way that
the maximum value is placed on the upper line and the minimum value is placed on the
bottom line. If data items are swapped they are shown in italic and underlined in Figure
8. If there is no exchange at any vertical line then after this line all data are sorted. Hence,
the decision about the result can be taken earlier than after propagation through all N
lines. The network in Figure 8(b) executes a hierarchical search for the maximum and
minimum values. The first vertical level (1) of comparators finds the maximum /minimum
values in each pair of input lines. The second level (2) executes similar operations applied
to pairs of the maximum/minimum lines from level (1). The iterations are repeated until
the overall maximum and the minimum values are found. The number of iterations is
[log, N1

The circuits in Figure 8 can be implemented either non-sequentially or sequentially.
Non-sequential (combinational) implementations have many limitations. For example, the
results of [31] show that even in the relatively advanced and expensive FPGA XC5VFX130T
from the Xilinx Virtex-5 family, the maximum number of input data items (of size M = 32
bits) is 64. We suggest an alternative solution to the networks in Figure 8, which is out-
lined in Figure 9.

The idea is to involve a feedback register R and to reuse the same levels sequentially [4],
but still applying many parallel operations in the reusable levels. The circuits in Figure
9 have a number of advantages. Hardware resources are obviously decreased. Indeed, the
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FIGURE 7. The operations allowing binary streams/matrices to be analyzed
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networks in Figure 8(a) and in Figure 8(b) require N x (N —1)/2 and N + ZSigf N)=2 gn
comparators, respectively, whereas the networks in Figure 9(a) and in Figure 9(b) require
N — 1 and N/2 comparators. The implementations of the networks in Figure 9 are
very regular, easily scalable for any N and do not involve complex interconnections. The
number of paths through the vertical levels of comparators is decreased. Indeed, the result
of sorting in Figure 8(a) is produced at level 4, but since the network is hardwired, the
remaining levels 5-8 are involved, causing unnecessary 4 paths and 4 additional propagation
delays. The network in Figure 9(a) does not involve additional iterations. As soon as the
enable signal that is produced at the odd (the rightmost) level is 0, sorting is finished
[4]. Since the depth of comparators is just 2 in Figure 9(a) and just 1 in Figure 9(b), the
propagation delay is negligible.

The network in Figure 9(a) sorts N input data items in T clock cycles and Ty < N/2
[34]. Indeed, there are N/2 even-odd levels in Figure 8(a) [34] and the number of cycles
in Figure 9(a) is less than or equal to N/2 because the result can be produced before
passing sequentially through all the levels (such as that depicted in Figure 8(a)). The
network in Figure 9(b) finds the minimum and maximum values in T clock cycles and
Tr = ([logy N]) — 1. Indeed, at the iteration ([log, N|) — 1 the results are ready on
the outputs of the combinational comparators. In the next section we will compare the
proposed networks with the known alternatives.

Suppose we have a set of N sorted weights which eventually include repeated items and
we need the most frequently repeated item to be found. The proposed solution for this
problem is shown in Figure 10 where N — 1 comparators form a binary vector. The most
frequently repeated item can be discovered if we find the maximum number of consecutive
ones in the vector and take the item from any input of the comparators that forms the
sub-vector with the maximum number of successive ones.

The binary vector that represents the result of comparison is saved in the feedback
register R. The right-hand circuit in Figure 10 implements the method described above
which enables the same combinational unit (such as that composed of AND gates in Figure
10) to be reused iteratively in each subsequent clock cycle. This forces any intermediate
binary vector that is formed on the outputs of the AND gates to be stored in the register
R. Hence, any new clock cycle reduces the maximum number of consecutive ones Oy ax
in the vector by one and as soon as all outputs of the AND gates are set to 0 we can
conclude that Op.e = £ + 1, where £ is the number of the last clock cycle. Indeed, when
there is just one value 1 in the register, all the outputs of the AND gates are set to 0 and
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an additional clock cycle is not required to reach a conclusion. The index of the single 1
in the register is the index (position) of the first value 1 (from the top) in the set with
Omax- The feedback from the outputs of the AND gates enables any intermediate binary
vector to be stored in the register. Not all the gates are entirely reused. At the first
step there are N — 1 active gates. In each subsequent clock the number of such gates is
decremented because the lower gate is blocked by 0 to be written to the bottom bit of
the register. In each new clock cycle, this zero always propagates to an upper position
and blocks another gate. Much like the circuit in Figure 9, the circuit in Figure 10 is very
simple and fast. It is composed of just N — 1 AND gates, the register R, and minimal
supplementary logic. Thus the maximum attainable clock frequency is high, as we will
show in the next section. Additionally, combining combinational (a set of AND gates)
and sequential techniques enables the results to be obtained very fast. Certainly, there
is no propagation through redundant paths. The result is ready when all outputs of the
AND gates are zeros.

7. Experiments and Comparisons. We present in this section a thorough evaluation
and comparison of the proposed designs. The charts in Figure 11 compare the archi-
tectures suggested with the known alternatives from [1,9,27,28,35,36]. All the circuits
were synthesized, implemented, and tested in the Xilinx Zynq zc72020 microchip. The
first chart (Figure 11(a)) shows the maximum combinational path delay in pure combina-
tional implementations of different Hamming weight counters. The second chart (Figure
11(b)) indicates the number of FPGA slices for different designs. The total number of
available slices in the microchip zc720201s 13 300. For our circuits we considered pipelined
implementations which include additional PLRs between layers of LUT-based designs and
between some levels of counting networks. We found that the maximum delay between
PLRs can be as little as 1.3ns for the LUT-based designs and 0.7ns in counting networks.
Thus, potential throughput can be less than 2ns per weight in LUT-based designs and
less than 1ns per weight in counting networks. The latter might be the best solution
for pipelined implementations where the registers are inserted between all vertical lines
(see Figure 6). Even without pipelining, the proposed LUT-based designs are the best in

T

Test for 0

Binary vector

F1GURE 10. Most frequent weight computation in a given sorted set of weights
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FIGURE 11. Latency (a) and cost (b) comparison from the result of experiments

both latency (see Figure 11(a)) and cost (see Figure 11(b)). Some inconsistencies with
theoretical results [1,9,27,28,35,36] have appeared because routing involves additional re-
sources and delays which are not the same for different designs and these are not taken
into consideration in theoretical expressions [1,17,31]. The worst routing results are for
the designs [9,35,36]. We think that this is due to the irregularity of the network (details
are given in [4]). In particular, the actual delay for the design [35] is significantly worse
than the predicted delay for the best sorting networks [17,29,31]. Finally, we decided that
it made no sense to continue experiments for the designs [9,35,36] when N > 512. This
conclusion is in conformity with the results [1]. The relationship between LUT-based
circuits and the designs from [1] is more or less what we expected, although the delays
for [1] are, indeed, not bad. We believe that this is because of the availability of highly
optimized arithmetic-targeted circuits in FPGAs.

We compared the proposed reusable circuits shown in Figure 9 with the even-odd merge
networks, which have the same latency as bitonic merge networks (and a little bit lower
cost). The size M of data items was set to 16. The value M = 16 permits weights of
up to N = 2'® to be compared, which exceeds the requirements of any practical problem.
Figure 12 presents the comparison charts. Note that the circuit in Figure 9 forms the
result through the sequential activation of two levels (i.e., an odd and an even level) and
all the comparators of these levels are active in parallel. Thus, the output is ready after
only Ty clock cycles. The maximum value of Ty (Tiay) in the worst case is equal to N/2
[34]. This value (i.e., T§) is almost always smaller because the result is ready as soon
as the enable signal (see Figure 9(a)) is equal to 0. We have not taken into account the
eventual reduction in T but have selected T; = N/2 (i.e., the worst case for our designs)
as a coefficient so as to normalize the results of comparison (see the chart marked with
“Proposed x T,” in Figure 12(a)).

From Figure 12 we can see that up to N = 40 the proposed design is the best in
both cost and latency. If N > 40 the latency is better for the even-odd merge network.
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However, the main problem is the cost (i.e., the resources consumed). While our design
for N = 40 requires about 3.5% of FPGA slices, the even-odd merge consumes 27% and
for N =128 it cannot be implemented at all due to the lack of FPGA resources (see the
horizontal line indicating the number 13 300 of available FPGA slices in Figure 12(b)).
For our reusable network in Figure 9(a) we were able to synthesize, implement, and test
the circuit for N = 512 (M = 16), which requires a bit more than 50% of the FPGA
resources and the remaining slices are sufficient to implement other circuits that may
be needed for an analyzer of binary matrices/streams. If we consider matrices of size
1000 x 1000 and take into account that M can be reduced, with values for M up to 10 the
results of the complete analysis (including the Hamming weight computation and sorting
for lines/columns) are ready after less than 0.5 us and the analyzer can be built on one
Zynq xc72020 microchip.

Sorted data can be used to find the most frequent weight with the aid of the circuit
shown in Figure 10. The required resources are small. We implemented and tested the
circuit for N = 1024, M = 16 and it consumes 412 slices and works with the maximum
attainable frequency 274.2MHz.

If only the maximum and/or the minimum values need to be found, then the circuit can
be built in the way shown in Figure 9(b). It consumes fewer resources and is faster. We
synthesized, implemented, and tested the circuit for N = 1024, M = 16 and it consumes
4809 slices and operates with the maximum attainable frequency 657.4MHz.

We also implemented and tested a combined DSP-based architecture which includes
a counting network and a set of adders. The circuit contains 11 embedded DSP slices
DSP48E1 [41] (from 220 available slices in the used Zyngq z¢72020 microchip). The first 4
segments of the network (see Figure 6) were implemented in 7 DSP slices. Two segments
(5 and 6) were built as counting networks on FPGA logical slices. The remaining part
employs 4 DSP slices configured as 15 independent 12-bit adders. The total number of
logical slices in the entire circuit is only 37. Thus, the cost is small. Since DSP slices [41]
implement pipelining without the need for extra resources, the latency is also very good.
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From the previous results we can conclude that the proposed solutions are better than
the best known alternatives and they permit digital Hamming weight and distance ana-
lyzers for binary vectors and matrices to be implemented in FPGA devices.

8. Architecture and Practical Implementation of the Analyzer. It is practical
to combine software and hardware operations. For example, a processing system (PS)
might collect data from different sources (i.e., receive the results of measurements from
sensors shown in Figure 1) and execute such operations over the received data that do not
involve parallel computations. As soon as it is necessary to perform fast parallel opera-
tions (such as those shown in Figures 3, 4, 6, 8-10) the relevant data can be transferred
to programmable logic (PL) which executes parallel processing in hardware. The results
of the parallel processing are transferred back to the PS. Combining the capabilities of
software and hardware permits many characteristics of developed applications to be im-
proved. The earliest work in this direction was done at the University of California at Los
Angeles [42]. The idea was to create Fized + Variable structure computer and to augment
a standard processor by an array of reconfigurable logic, assuming that this logic can be
utilized to solve some processor tasks faster and more efficiently. Such a combination of
the flexibility of software and the speed of hardware was considered to be a new way to
evolve higher performance computing from any general purpose computer. The level of
technology in 1959-1960 did not permit this idea to be put in practice. Today a very
similar technique was implemented on a chip combining multi-core processors, embedded
blocks, and advanced reconfigurable logic. Figure 13 presents the main components of
the Xilinx Zynq xc7z020 Extensible Processing Platform (EPP) [37,43].

PS executes software programs that can be developed in the C/C++ languages. PL
is an Artix-7 family [43] FPGA implemented on the same microchip as PS. PS and
PL can exchange data using AXI (Advanced eXtensible Interface)-based high-bandwidth
connectivity. We used the xc7z020 microchip that is available on the ZedBoard [44] for
tests and experiments. Thus, in the same microchip we implemented and tested:

e Systems requiring the development of software and invoking on-chip processing
blocks.

e Application-specific hardware in programmable logic using embedded blocks (such
as DSP slices and memories) and arbitrary logic composed of slices and flip-flops.

e A Fized+ Variable structure computational system that combines a PS and a PL
with high-speed data exchange between them through the AXI-based interface.

Figure 14 describes the proposed scenarios of interactions between the PS and the PL.
Two types of computations were implemented and verified. In the first type (see Figure
14(a)) the PL functions as an autonomous system receiving data streams in the form of
vectors or matrices from external pins, executing the operations described in the previous
sections over the data, and transferring the results either to external pins or to the PS. In
the second type (see Figure 14(b)) the PL is considered to be a slave sub-system of the
PS. As soon as the PS needs to accelerate operations, it sends a request to the PL and
transfers data associated with the operations to the PL. The PL executes the operations
and informs the PS as soon as the results are ready. Finally, the results are sent back to
the PS.

Figure 15 presents the architecture of the final analyzer which includes: the accelera-
tors proposed and completed within this work; the interfacing circuit; and a sub-system
implemented in software of the PS (see Figure 13 and the block in Figure 15 surrounded
by a dashed line). The accelerators are the devices described in this paper:

e The Hamming weights counter (see Sections 4 and 5).
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e The Hamming weight comparator comparing either the weight of a vector A with a
given threshold x or the weights of two vectors A and B (see Section 4).

e A Hamming distance counter which is based on the Hamming weights counter and
XOR gates (see Sections 1 and 4).

e A sorter, outputting the sorted weights from a given binary matrix/stream (see
Section 6).

e A searcher for the maximum and/or the minimum values (see Section 6).

e A searcher for the most frequently occurring item (weight) in the sorted sequence
(see Section 6).

All the accelerators were described in VHDL using generate and generic statements. The
code is easily parameterized for different values of N and M and, thus, can be used for
numerous practical applications referenced in Sections 1-3.

Figure 16 gives more details of the interaction between the PS and the PL which is
organized with the aid of Xillybus Lite IP core [45]. The user software applications run in
the ARM Cortex-A9 under Linux. The accelerators are designed in Xilinx ISE 14.4 and
they interact with the Xillybus IP core as shown in Figure 16. The latter provides data
exchange with the PS through AXI.

Software applications were developed in C' and they execute the following tasks: 1)
getting data from the host PC; 2) partitioning the data and transmitting them to the PL

Processing System (PS):
Dual ARM® Cortex™-A9 MPCore™

Programmable Logic (PL):

13 300 slices (53 200 Look-Up Tables (LUT);

220 DSP slices {with up to 48 bit operands);
106 400 flip-flops;

560 KB block RAM (36 Kb each block)

a
=

=%

=

=

o

High-bandwidth “23:'
connectivity [=%
between PS5 and PL "=
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=

-]

=%

S

=

=

FIGURE 13. The main components of xc7z020 extensible processing platform
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FIGURE 14. Interactions between PS and PL: PL provides fast parallel
processing of external data and PS can use the results (a); PL executes
dedicated operations for PS on internal requests from PS (b).
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when required; 3) getting an application-specific analysis of the results from the PL (see
Section 3); 4) support for experiments with the developed hardware in the PL. Accelerator
projects in the PL can be configured to support both the types of computations shown
in Figure 14, i.e., initial stream is uploaded either from external pins or internally from
the PS through AXI. Since the PL hardware can be modified and improved, the proposed
digital Hamming weight and distance analyzers for binary vectors and matrices can be
seen as an example of an on-chip Fized+ Variable structure computational system.

Let us consider an example that demonstrates the efficiency of the analyzer. Suppose we
want to find a minimal row cover of a given binary matrix, i.e., a minimum number of rows
such that in conjunction they have at least one value ‘1’ in each column. The approximate
algorithm [14] that allows this problem to be solved requires the following sequence of
steps (see Figure 17(a)): 1) discovering a matrix column Ciyip, with the minimal Hamming
weight N}, (if N}, = 0 then the covering does not exist); 2) discovering a row Ryax, with

; 3) removing

the value ‘1’ in the column C\,;,, with the maximum Hamming weight N&lax,

the row Rpax and all the columns, which have values ‘1’ in the Ryay; 4) repeating the
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steps 1-3 until the matrix is empty. Figure 17(b) gives an example of a particular matrix
to which the steps in Figure 17(a) have been applied.
The proposed analyzer (see Figures 15 and 16) can be used as follows:

e The PS receives the given matrix from the host PC.

e The matrix is transmitted to the PL and all horizontal and vertical masks (see Figure
17(b)) are reset to zero.

e The PL executes step 1 and sends the values N, and Cy;, to the PS;

o If N!.. = 0, the PS informs the host PC that there is no solutions, otherwise it
indicates for which rows the value N! . has to be found in the PL;

e The PL finds R, and sends it to the PS;

e The PS updates masks in the PL. The masks are used to indicate the rows and
columns that have been removed and, thus, the same masked (reduced) matrix is
taken for subsequent steps;

e The steps above are repeated until the covering is found or until it is concluded that

the solution does not exist.

Experiments with arbitrary generated matrices (in total more than 100) have demon-
strated that the result is found faster than in software [14]. Comparing with the imple-
mentation of the algorithm in Figure 17(a) just in reconfigurable logic (see, for example,
[46]) we found that:

1. The EPP-based implementation is more regular and easier scalable;

2. The number of FPGA components is reduced because a part of the job is done in
software;

3. Throughput is increased because of the rational hardware/software co-design and
parallel execution of the operations in software and in hardware.
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Similar experiments were carried out with some practical applications from Section
3. For all of them the results were better than for alternative implementations that
do not involve our proposed methods (see Sections 4-6). The methods themselves were
additionally tested and compared in Section 7.

9. Conclusion. The paper is dedicated to digital Hamming weight and distance analyz-
ers for binary vectors and matrices and suggests:

1. LUT-based circuits and counting networks for Hamming weight/distance counters/
comparators that are faster and less resource consuming than the best known alter-
natives;

2. Sorters/searchers for weights in sets of vectors originating as binary matrices or
streams. These combine combinational with sequential operations to provide better
solutions for the applications considered than the popular even-odd merge and bitonic
merge networks;

3. An EPP-based implementation of the analyzers that combines software and recon-
figurable hardware, which can be seen as an example of an on-chip Fized+ Variable
structure computational system.

The architecture of the analyzer was implemented and verified in commercially available
microchips. The results were compared both theoretically and practically. The practical
analysis consisted of numerous experiments using the most recent extensible process-
ing platform combining a processing system and reconfigurable logic. The experiments
comprehensively demonstrated that the analyzers incorporating our novel designs outper-
formed the currently published alternatives by a significant margin. It is also shown that
the analyzer and its accelerating modules can be used in numerous practical applications
in such areas as digital signal, image and data processing, coding and error correction,
cryptography, and combinatorial search.
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