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ABSTRACT. This paper discusses the state feedback control problem for a class of non-
linear systems with low-order and high-order nonlinearities, and multiple time-varying
delays. The introduction of sign function together with the method of adding a power in-
tegrator and Lyapunov-Krasovskii theorem makes the closed-loop system globally asymp-
totically stable.
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1. Introduction. Consider a class of nonlinear systems:
$l(t) = z?il(t) + fi(t7$(t>7$1<t - Tl(t))> o axn(t - Tn(t)))7 t=1--,n—-1,

Tn(t) = wP () + full, 2(t), 21t = 71(1)), - - 2t = Tu(t))), (1)
where z(t) = [z1(t), -+ ,2,(t)]" € R" and u(t) € R are the system state and control input,
respectively. For i = 1,--- n, 7;(t) : Rt — RT is time-varying delay with 0 < 7;(¢) < &,

where ¢; is a positive constant, p; € Rozdld = {§ € R™: p and ¢ are odd integers, p > ¢},

fi i RT X R" X R® — R is an unknown continuous function. The initial value x () is a
continuous function on § € [—7,0] with 7 = max{ey,--- ,&,}.

In recent years, the global stabilization for system (1) with both lower-order and higher-
order nonlinearities has become a hot topic being studied. In the latest papers [1, 2],
the authors discussed that these two papers encompass and substantially generalize the
existing results in [3-9].

In [1, 2], the following condition on the uncertain term f; is assumed:

i 1 TiJFW
IEDS (H gl ) | @)
j=1

where 1y = 1, 7p;—1 = 11 +w, i = 1,--- ,n. However, (2) needs the condition of w = 2
with s being an even integer and o being an odd integer, which results in ”j“’ in (2) being
J

always a ratio of odd integers. Naturally, an interesting problem may be proposed:

Is it possible to relax the assumption on w in (2)? Under the weaker assumption, can
one design a stabilizing controller?
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In this paper, by introducing the sign function approach, and overcoming several trou-
blesome obstacles in the design and analysis procedure, we focus on solving the above
problem under the assumption of the restriction on w being relaxed to any real number.

2. Mathematical Preliminaries. The following notations and lemmas are to be used
throughout the paper.

Notations: Rt stands for the set of all the nonnegative real numbers. For any vector
x =z, -+ ,z,]" € R", denote T; = [xl,...,mi]T eER,i=1,....n—1,|z|| £ /D 22,
ry = x(t+0),0 € [—-71,0], and ||z]lc = sup_, <4 ||z(t + 0)||, ¥t > 0. Use c or c(h;) to
represent any positive constant or constant dependent on [hy,--- , k], which may be
implicitly changed from place to place. A sign function sgn(z) is defined as: sgn(z) = 1
if > 0, sgn(z) = 0if z = 0, and sgn(z) = —1 if z < 0. The arguments of functions
(or functionals) are sometimes omitted or simplified; for instance, we sometimes denote a
function f(z(t)) by f(x), f(-), or f.
Lemma 2.1. [10] For z,y € R, p > 1 is a constant, then |x + y|P < 2P~ 1|aP + yP|,
(lel+lyl) < lal?+lyl?. Ifp € Ry, then [e—yl? < 227 ar =y, [or —yr| < 275y,

Lemma 2. 2 [10] Let m,n be positive constants. Given any positive number v > 0, then
2"y < nfam 4 2 y|m.

— m+n m+n fy B

Lemma 2.3. [11] For the continuous function f : [a,b] — R (a < b), if it is monotonically
increasing and satisfies f(a) =0, then |fabf(:r)d$| < [f(b)||b— al.

Lemma 2.4. f(z) = sgn(z)|z|* is continuously differentiable and satisfies f(x) = a|z|* 1,
where a > 1, v € R.

Proof: See the Appendix. [J

Lemma 2.5. [2] Let 0 < py < --- < p,, be real numbers and ¢c; >0, j =1,--- ,n. Then
for any x € R, one has ci|x|" + cplxtr <370 elalt < (D00 ) ([z + Jaft).

3. Design of State Feedback Controller.

3.1. Problem formulation. In this paper, we need the following assumptions:

Assumption 3.1. For each i = 1,--- ,n and any w > 0, there exists a known constant
M such that

|fi(t,$(t),$1(t ), an(t — (D))
< MZ (|xj P; Lz 1+ |17j<t - %(t))lpj'“ﬁ + |flfj(t) % X |:L’j(t _ Tj(t)) Tl;;w) |

where
T + w

7“1:1, Tit1 = N Z:L,?’L (3)

Assumption 3.2. For 7;(t), i = 1,--- ,n, there is a constant §; such that 7;(t) < §; < 1.

Remark 3.1. Compared with Assumption 1 in [2], two ingredients make the assumption

in this paper much weaker. One is that the restriction on w is removed. In (2), w = 2
with s being an even integer and o being an odd integer results in ’"Ti always being a
ratio of odd integers. The other is the appearance of multiple time-varying delays in state

variables. UJ
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3.2. State feedback controller design. We now design a state feedback controller to
stabilize system (1) under Assumptions 3.1 and 3.2.
Step 1: Define z(t) = x1(t) and 0 = r,11p1 - - - pn , and choose

Z% T 20—w bl t 9 3%’17'
Vit = 3+ 5 P 2 [ (B0 ) as

! [;)(ﬁ@wwﬁwﬁda (@

1 — 6
where by, ¢; are positive constants. (4) and 0 < 7;(t) < ¢; imply that
2 ’[" 20—w
Vi(t, z1e) > 9 -+ 2% l2a] 0 2 (),
| 216 ]|2 Ty 2 bigy C1€2 9 2o
V t < 1 < 1
(o < 0l e S X (CT R B
2 mia(llzale), (5)

where 11 (+), m2(-) are class K, functions.
From Lemma 2.2 and Assumption 3.1, it follows that

(=1 +sen)lal ) i
< e (= +saulal ) (Il + 12l + alt = n@) + |at - n@) =)
< ulb) (247 ) b (20 n(0) 427 - n(0)) Q
where 0 < by < by, A1(by1) > 0. By (1), (4), (6) and Assumption 3.2, we have

Vi< =t (20 n0) + 57 (¢ - () ) e (3 - o) + 207 - o)

b]_ C]_ 12%7 20— 7‘2p1
+(1_51+1_52> (zf+zll)+<zl—|—sgn(z1)|zl| >o/1”1

‘777‘2171 0'*"'2?1
+ (a+sguClal ) @ = o)+ (2 +senla)lal ) A

< —by (Zf(t —7i(t)) + 21% (t— Tl(t))> — ey (zf(t (1)) + Zf” (t— Tg(t)))
i (Al(i)”) 1 f151 1 i152) (Zf + zl) + <21 +sgn(a)|al T ) e

20— T2P1
(21 sgulz)lal ) (@ - of), (7)

where by; = by — bi1, 11 = ¢1. Then the first virtual controller a; defined by

o ®)

1
ai(z) = —h! (21 + sgn(z)
results in

Vi < —an <zf - 2121> — by (zf(t —7(t) + ng (t — Tl(t))>

20

e (4= n(0) 4 2 0= o)) + (1 4 smulenln] ") (2 ) @

where hy = aq1 + )\1(1_)11) + lﬁ_lth + 12_162’ ay; > 0.
Step k (k=2,--- ,n): We start with the following proposition:
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Proposition 3.1. Suppose that there is a continuously differentiable Lyapunov-Krasovs-
kii functional Vi_1(t, Zx—1+) satisfying

Tre-1,1(1Ze-1l]) < Vi1 (t, Ze-1e) < mem12((1Ze-1elle), (10)
and a series of continuous virtual controllers cug, -+, ay_1 defined by
zi(t) = 27" = o (2 (1),

'L+1 7

ozi(zi(t)):—h;'ﬁ (5(6) +sen(z@)=@ )™ i=2, k=1 (1)

such that
Vi1 (t, Ze—14)
k’—l 20 k?—l 20
< — Z ap—1,5 (2]2 + Z;jplmpjl) . Z bkz—l,j (Z?(t . Tj(t)) + Z;J'P1<.-pj*l (t — 7 (t)))
j=1 J=1
k—1

20— TkPE—1

— ) Cr-1 (Zﬂz(t = 7a(t) + 27t - Tj+1(t))) " (Sgn(zk1)!2k1|”“‘”’1"'p’€‘2

1
_'_Zk_fl..-pk_g) (I,zk—l o ale_—f)) (12)
where T_11(+), Tp—12(-) are class Ko functions, h;, i =2,--- [ k—1, ax_1j, bp—1;, ck—1;,
7 =1+ k—1, are positive constants. Then, by defining z, = xil PRt — PR the
kth functional
Vie(t, Zre) = Viea (t, Zi—1,) + Wi (Zk) + Wak(Zk) + Wok(t, Zike) (13)
1s continuously differentiable and satisfies
T ([[26]]) < Vit Zre) < mea(lZelle) (14)
. TEET Tt 1Pk Pl“l'Pk
and one can design a controller oy,(zx) = —h,' ™" (zk + sgn(zk)|zx| ) such that
k 20
Vi(t, Zre) < _Z(ij <z +z Jpl = 1> Zbkj (zj —7(t)) + 27Tt - Tj(t)))
j=1
k

Tvpl?f’pv_l 20-Thi1pk
- ch] 22— 1 (b)) + 27" (= 1) )+ ( sen(zk) |z e

_ 1
+2, P1-~~pk1> (lefu _ a]l;k)’ (15)
k1 (+), Tra(+) are class K functions, ag;,byj, ckj,j =1,--- , k, are positive constants,
Lk 91
WLk() — / (Spl“‘pk—l _ Oézl_lpkil) PLroPh—1 (s,
A —
gkl 29 Tk41Pk
WHk() — / sgn (Spl“'pk—l _ azilpk—l) }Spl“'pk—1 _ aZilpk—l TRPL T PE—1 d37
Qp—1
bi J, o i, e
Wion(-) = L 7% (1) + t=T41(t) (ZZ(S) + Z’;km.,pk_l (S)) ds, bg,c, > 0. (16)
1 — 0y 1 — 0p11

Proof: See the Appendix. [J
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Hence, at step n, by choosing V,,(:) = V,i—1(-) + Wi (-) + Wan(-) + Wpi(+), designing
appropriate constants such that a,; > 0, b,; = ¢,; =0, j = 1,--- ,n, and constructing
the controller as
(17)

1 1
Tn+1pn) PL-Pn
Y

u(t) = an(z,(t)) = —pln (zn + sgn(z,)|zn| ™

it is easy to get

n 20
Vo< =Y an <z§. + 4]‘““"’]‘1) . (18)

j=1
4. Stability Analysis. We state the main result in this paper.

Theorem 4.1. If Assumptions 3.1 and 3.2 hold for system (1), under the continuous
state feedback controller (17), then the equilibrium at the origin of the closed-loop system
15 globally asymptotically stable.

Proof: Firstly, by the existence and continuation of the solutions, the states z(t) and
z(t) are defined on [—7,t)], where the number ¢); may be infinite or not. The following
analysis focuses on [—7,ty/]. Secondly, from Proposition 3.1, we know that

T ([[2(O1) < Valt, z) < mall2ele), (19)

where 7,1 (+), m.2(-) are class K, functions. (18) and Lemma 4.3 in [12] imply that there
exists a class K function m,3(-) such that

V(t,2) < —mas([l2()])). (20)
Thirdly, for any € > 0, since 7, (+) is a class K function, one can always find a 8 = ((¢)
satisfying § > e > 0 such that m,2(¢) < m,1(5). If ||z0(0)||lc < €, (19) and (20) yield

T ([[2@)]1) < Valt, 2:(0)) < Va(0, 20(0)) < mna(l[20(0)llc) < Tna(e) < mna(B8), VE € [0, Ear],

which means that ||z(t)|| < 5, Vt € [T, ty]. Suppose that ¢y, is finite, then lim;_,, ||2(¢)]|
= 400, which contradicts ||z(¢)|| < 8, Vt € [T, tn]. Hence, the state z(t) is well defined
on [—7,400), so is x(t).

(19), (20) and Lyapunov-Krasovskii theorem in [13] result in the transformed closed-
loop z-system being globally asymptotically stable at the equilibrium z = 0, which, to-
gether with (11), directly leads to the globally asymptotic stability of the closed-loop
system at the origin z = 0. UJ

5. Conclusions. By combining the method of adding a power integrator together and
the sign function design approach, this paper further discusses the global stabilization for
a class of high-order nonlinear systems with multiple time-varying delays.

Recently, [14-41] discuss different control problems for stochastic nonlinear systems.
However, all these references only consider the systems with linear or higher-order growth
condition. An important problem is how to give the design and analysis of controller
for stochastic nonlinear systems with both lower-order and higher-order nonlinearities by
adopting this method in this paper.
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Appendix.

Proof of Lemma 2.4: It is easy to verify that f(z) is continuously differentiable
with f(z) = alz|*! (a > 1) for the case of  # 0. When z = 0, one can calculate
£(0) = lim, o+ 2% = 0 = lim, - (—2)*" = f.(0), i.e., f(0)=0. O

Proof of Proposition 3.1: (i) Firstly, by 2 — —L— > 1, 221 > 1 and Lemma

L. . pl“?k—l _"’ TkP1"Pk—1
2.4, it is clear that Wiy, Wik, Wpy are continuously differentiable.

Secondly, when xp > aj_1, from Lemma 2.1, it follows that

T
WLk() > C/ (8 _ Oék_1>2p1mpk*1_1d8 > C(l‘k _ ak_l)Qm'"Pk717
alcx;l 2(7—7‘k+1pk 2 —w
Whe() > c/ (s —ag_1) ™ ds>clog —ap_1| ™ . (21)
A —1

Similarly, it can be shown that (21) still holds when z; < aj_;. (16) together with (11),
Lemmas 2.1, 2.3 and Assumption 3.2 implies that
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2——1 _
Win(s) <z 7otz — gy | < oz < C||Zk:t||§7
20—Tp 1Pk #
Wi (-) < |z o vh-1 |og — agq| < C|Zl~c|”’“”1 no < cl|Zellc™ T, (22)

by ! Ck ' 2 TR P
Wpi(:) < (1_5k/ +1_—5k+1/t—sk+1 2 (s) + 2, (s) ) ds

bkgk CLEk+1 ﬁ
(1—5k + 1— Oper 12kl + 1|26l

Tra([|Zellc), (23)

where To(+) is a class Ko function obviously. It follows from (10), (13), (21)-(23) and
WDk() Z 0 that

IN

>

20 —w
Vi() < mec1o(|Ze-1elle) JFCHZktHcJrCHZimt||W1 T T (|| Zeelle)
< 12| Zrelle) JFCHZktHcJFCH»’?ktHW1 4 T ([ Zrele)
A
= mi2([|Zktllc) (24)
Vi(+) > me_11(|Zes1l]) + c(zp — apy) P Prt

1 2p1-pr—1
= (i) + e (o 4 027 ()T — aa(an)

2 Wiz, (25)

Obviously, mga(+) is a class Ko function. Next we show that Wy (Z) is positive definite and
radially unbounded. On one hand, it is easy to know that Wy (zx) > 0 and Wy(z,) = 0 if
and only if z; = 0. On the other hand, ||Z;|| — +o00 means ||Z;_;|| — 400 or |z;| — +o0.
When ||Zx_1|| = 400, we obtain from (25) that Wi (zx) > mr—1.1(||Zk=1|]) = +00, ||zk]| —
+00. As for the case of |z — 400 and ||z,_1|| < M for a finite positive constant M,
since ay,_1(2x_1) is continuous on zj,_; and |z;_1| < ||Zx_1|| < M, we have

2p1Pr—1

Wi(z) > ¢ <(zk + A T (2 ) ) PR = -1 (25— 1)) — +00, [[Zk]| = +00(26)

)
Above analysis implies that Wy(Zz;) is radially unbounded. Hence, there is a class Ko
function g (+) such that 7 (]| 2k(¢)]]) < Wi(Zk) < Vi, which and (24) arrive at (14).

(ii) Using (1), (13), (14), (16) and Assumption 3.2, we have

Vi
k—1 20 k—1 20
< — Z ap—1,5 (3]2 + Z;J'Pl..-l’j—l) . Z bkfl,j (Z?(t — 7 (t)) + Z;jp1...17j—1 (t mys (t)))
j=1 j=1
k—1 20 20
=ity (0= 1) + 7 (= (0)) e (5T (- ()
j=1

20

it = 7i(t) ) — e Zi(t = Toga (1) + 2" (- Tk+1(t)>>

b ¢ TRy 25 ki
- — O
1

Pk % ST Pk _ Dk Pk-1 _ _Pko1
gt + | sgn(zk )|zl + 2 (Tp1 — k) + (7, )

1 20—TLPKp_1 20 T4 1Pk 2— L

2—
(Zk ;e +Sgn(2k1)‘2k1\T’“1p1””2> + <Sgn(2k)’2’k|r’“““")’“ +z, " pkl)
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OW g GWHk v
fit Z ( 0z 3mj (gt i), (21)
Next, we estimate the last three terms on the right-hand side of (27).
First of all, it follows from (11), Lemmas 2.1, 2.2, 2.5 that
L 20—T}PR—1
O O N ) [C e
20 20
S ak,kfl,l <Zk . + Z,:k 11101 Pg— 2) + )\kl(dk,kfl,l) (zi 4 Z}:kpy,pkl) , (28)
where ay ;—11 > 0 and Mgy (@kx—1,1) > 0 are constants.
In view of (3), one can deduce that
1 < 741D Tk+1Dk Tk4+1Dk < Tk+1Dk

Pr--"Pr—1  TiPr-Prk—1 TijPr---Pj—1 Tj+1iP1---Pj  TjP1- " Pj-1

which and (11), (29), Lemmas 2.1, 2.2, 2.5 yield

k-1

fil) < C<hk—1>(2 (!zxt — T ()T 4 [zt T]-H(t))p;'if?;;’:)

J=1

k "k+1Pk 1
+ 3 (IO + 305 + 130 - o)

Jj=1

Hilt = )75 ) ). (30)

With the help of (30), Lemmas 2.2, 2.5, and rg1py -+ pr <o, k=1,---

, 1, we get

2—1,1.‘.11% 20T}y 1Pk
2 4 sgn(zg) | zg| e e ) fy,

- 1 20Tkt 1Pk b 1 "k+1Pk
< ellncr) (I 9T 4 L ) (3 (I OFT 4 J 05

7=1

k—1
1 "k+1Pk
Fz (6 = (8) [P 4 |z(E = 75(2)) [P 1> Z <|Za — Ty (8))[PrmRr =

7=1
Tk+1Pk
Hay(t =y (0] 75 )
—2 20 k 20
< C_ijl (2]2 4 Z;Jm Pj—l) + Z bkjl (Z] (t . T](t)) + ngpl...p] 1 (t . T](t)))
j=1 j=1

20 -1 20
g 1,2 <Zk R 2) + D i (Z?(t = Ty () + 27t Tj+1(t)))

20
_ _ T 2 TRPL T PE_1
FMe2(@r11s - 5 Gh—1,2, Ok11s -+ 5 Dkkts Crnts -+ 5 Crok—1,15 hi—1) (Zk + 2 ) (31)

where Qi1+« Gpk—2,15 Tk k1,2, k115 5 Okt Cris -+ 5 Chop—1,1, and Apa(@rrr, - -

7ak,k—2,l)
A k—1,2> Ok11, Dkt s Crans - - -

. Ckk—1,1, hk—1) are some positive constants to be designed.
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By (11), (16) and Lemmas 2.1, 2.3, we have
— (aka OW iz
1

Ox; Oz, ) Mgil 1)

L) T -1 -1 20—
—_ _/ D1 Dk-1 . (Splmpkq _ ail_”l'pkfl)l PLPh—1 | ﬂ
ap_1

b1 Pe—1 TEP1 " " Pk—1

- k—1 D1 Pk—1
20 Tk4+1Pk a
22T k+1Pk g
N ePrPE—1 P17 PE—1 e § : Q1
|8 Qg TEP1PE—1 )dS —8 ( ]+1+fj)
L
20 —w -1 k-1
TkP1'Pk—1 .
< e |zl + 2]
] 1
k—1

7kp1 pk 1 > Z|x |p1 Pj-1— 1 |x]+1|_‘_|f]|)H(1—|—|Zl|ﬁ> . (32)

l=j

Jj=1
PLDr—1
do, |

| (4115

< e (Jasl + |l

Next, we will prove that for j = 1,--- k—1,k=2--- norj=1,--- n—1,
k:]+17 , 10,
k—1

N (A EAT O | | (1+ |zl’71)
I=j
- i TkPLPh—1¥e TRPLPR—1Hw
< c(hj-1) (Z (|Zi| + [zi| reria ) +Z (|zz )] + |zi(t — 7:(2))| i )
=1

! 2_; ('Zi(t = Tis1 ()| + |2(t — Tz‘+1(t>)|m:;1ﬁ:jw)) ' (33)

The conclusion can be proved by an inductive argument on k.
First of all, by (11), (30) and Lemmas 2.2, 2.5, then for j = 1,--- ,n—1,k = j+1,--- | n,
k—1

- 1(|xj+1|+yfj|)H(1+|zlm>

1=j

_ 1— 1 1— 1 ](pl Pj—1 1)
< c(hj-1) (|Zj| R | R o L )

J 1 _ 1Py 1 Ti+1Pj
. Z |Zl|p1---l7]'_1 + |Zl|’l‘lp1u~pl71 + |Zl(t _ Tl(t))|p1..‘pj_1 4 |Zl(t _ Tl(t))|rlp1“.p171

=1

=1

A 1 Tj4+1Pj
+zja |7 o= + Z <|Zl (t — 1 (8)) PPt + |z (t — Tl+1(t>>|rlp1“‘pll)

k-1

11 (1 + |zl|f7> . (34)

l=j
For any j € {1,2,--- ,n — 1}, when k = j + 1, (34) and Lemmas 2.2, 2.5 imply that

(1—|—|Zj’7j> |I |P1 Pj—1— 1(|x]+1’+’fj|)

_ w _ 1 1_ 1 rj(p1-pj—1—1)
< c(hj_y) (1 + IzJ'\“”j) (!zﬂ R e L7l IR Il ] I )

_Ti+1P5 S S Tip1Pj
Z (|Zl|P1 Pi-1 4 |z | mer |z (= 1 (2))| P 4+ | 2(E — Tl(t))|rl1’1"'lﬁz_1)
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. 1 Tj+1Pj 1
+ 3 (lalt = OV + alt = s )T ) 3y T

=1
Jj+1 . s J , ps
_ TjE1PL P TiH1PL P
< ¢(hj-1) (Z (|Zl| + Jz| e ) +) (|zl(t — ()] + |zt — 7(t)] e )
=1 I=1

j—1 Tj41P1 P tw
* ('Zl(t—n+1(t>)|+IZz(t—Tz+1(t))| e )) (35)

which means that (33) holds for £k = j + 1.
Suppose that (33) holds for k = m, j +1 < m < n. Then when k = m + 1, it can be
shown from (34) and Lemmas 2.2, 2.5 that

sl P (2P + 1D T ] <1+ |Zl|ﬁ>
l=j
7 - TmP1Pm_1te
< c(hj—1)(1 + ‘Zm|rm Z (‘Zz — Tir1 ()| + |zi(t — Tiga(2))]| 7errpia >
- TmpL P 1t J mpL P 1t
+> (rzi\ o Jaf e ) +> (rzi@—w))r la(t — ()| ))
i=1 i=1
m+1 )
- Tmg1p1
< c(hj-1) (Z (|Zz| + |z| rirrric )
=1

"m+1P1 " "Pm+w
+Z(|zz O]+ | = m(0)] )
"m+1P1 " "Pm+w
+Z(|Zl = Tir1 (D) + [2:(t — 7ia (B))] 7ivri ) ) (36)

which implies that (33) holds for k = m + 1.
(32) and (33) together with Lemmas 2.2, 2.5 arrive at

AN
(o)
~—~
>

T
[\
S~—
—_
N
=
+
~
=
3
ol
3
s
ol
-
_
N——
R

<|Zz'(t — ()| + zi(t = 7i(t)] o )
1

Jj=1 =
k TEP1PE—1tW i1 TRP1 T PE—1FwW
# 3 (Il 1l 57 ) 4 3 (it = )]+ J(e = )] )
i=1 =1
—2 20 k _ 20
< Za ej2 (z + 27" 1) - Zbkﬂ (zf.(t —7(t) + 27t - Tj(t)))
j=1 J=1

20 k—1 20
+an k13 (Zk e 2) + D Crje (z?(t — T () 4+ 27" Tt~ Tj+1(t))>
1

20
_ _ 7 7 _ - 7 2 TRPL"PR—1
FAe3(@r12, -+ 5 Gk—1,3, br12, -+ - Drk2, Cri2, - 5 Crp—1,2, Pk—2) <2k + 2, ) (37)
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where dpia, -, Gkp—2,2, Gkk—1,3, Dk12, 5 Drros Criz, -+ Crp—1,2 > 0 and Agg(@paz, -,
A k—2.2> Ok k—1.3, Dk12, -+ 5 bk2, Cr12, -+, Crk—1,2, he—2) > 0 are some constants to be de-
signed. Substituting (28)-(31) and (37) into (27), we get

k—1 20 2_ 1 20—7‘k+1pk
’ . ) 2 TPl P —1 P11 Pl—1 TPl Pr_1 Pk
Vi < E ap; (Zj + z; ) + (Zk + sgn(zg) |z #Pr -1 ) o

J=1

h b ¢ =
+ )\k<dk117 to 7676776—1,27 hk—l) + K —+ k . le + Zkkpl Pk—1
1— 516 1- 5k+1

_ é bij (Z?(t —7;(1) + Zyﬁ (- Tj(t)))

k 20
S, (z?-(t () £ wt»)
j=1

20 Tl 270 Lk P P
TRPLPh_ “Pk—1 k Dk
+ ( sgn(z)|zp| wPrre-t + 2, (T — apt), (38)
and constants satisfy
ak:{ak—l,j—cjkﬂ—am}(), . j=1- k=2
7 ap—1,j — Qg k-1, — Qpp—12 — Qpp—13 >0, j=k—1 ’

{ b1 — Bkjl__ bejo >0, j=1,--- k-1 S { C]c;l,{ ._ij}f__élkﬂ > 0,
) — kj j L )

b — bk — brra > 0, J=kK e >0,7=k

Me(@r11, - Chp—1,2, P—1) = A1 + M2 (@r11, -+ 5 Croo—1,15 P—1) + M3 (@r12, -+ 5 Co—1,2, Pe—2).

Choosing the virtual controller

by =

1
L "kt1Pk ) e
Y

() = —h ™ (a+sgala)lal (39)

_ P1Pk—1
_ cpr_1—1 — = b c
where hy = 2P0 PR (agy + A(@rnn, oo Cep-1,2, he-1) + 725+ 1—512“) , g > 0,

and noticing from Lemmas 2.1, 2.2, 2.5 that

L TR 1Pk \ 2— 1 20-Tp 1P
= (sl ) (s T sl

_ b c — 2
< —\ arr + (@1, -+ 5 Crp—1,2, 1) + F_ 4 u z + Z, ) (40)
1—0r 1—0k41

we obtain (15). O



