
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 11, November 2013 pp. 4565–4582

SELF-LEARNING GENETIC ALGORITHM FOR A TIMETABLING
PROBLEM WITH FUZZY CONSTRAINTS

Radomir Perzina and Jaroslav Ramik

Centre of Excellence IT4Innovations
Division of the University of Ostrava

Institute for Research and Applications of Fuzzy Modeling
30. dubna 22, 701 03 Ostrava, Czech Republic

{perzina; ramik }@opf.slu.cz

Received December 2012; revised April 2013

Abstract. A Timetabling Problem is an NP-hard combinatorial optimization problem
which lacks analytical solution methods. During the last two decades several algorithms
have been proposed, most of which are based on heuristics like evolutionary computation
methods. In this paper, to solve this problem we present a specific genetic algorithm
with fuzzy constraints. Our method incorporates a self-learning genetic algorithm using
indirect representation based on event priorities and heuristic local search operators to
tackle real world timetabling problems. By using fuzzy sets we measure the violation
of soft constraints in the fitness function in order to take care of inherent uncertainty
and vagueness involved in real life data. The proposed technique satisfies all of the hard
constraints of the problem and achieves a significantly better score in satisfying the soft
constraints. The algorithm is computationally effective as it is demonstrated on a small,
realistic example for which an optimal solution is already known due to exhaustive calcu-
lation. The structure of the algorithm enables parallel computations which are necessary
for solving large real life problems.
Keywords: Timetabling problem, Hard constraints, Soft constraints, Fuzzy sets

1. Introduction. In this paper, we deal with Timetabling Problem (TP), sometimes
called the Course Timetable Problem (CTP), see [2,8,24,25]. This problem represents an
important class of optimization problems in Operations Research. It is considered to be
one of the most interesting practical problems faced by universities (schools, colleagues,
professional education facilities, etc.) and education companies (offering, e.g., manage-
ment skills courses) today. The problem can be formulated as the allocation of given
resources (teachers, students, employees, etc. as well as classrooms) to objects (lectures,
seminars, educational events, etc.) being placed in time space and satisfying all of the
given constraints of existing facilities so that a set of desirable objectives is satisfied as
nearly as possible. Here, we focus only on a so-called course (event, etc.) timetabling
problem. The automation of timetabling problems is an important task as it saves a
lot of work for people and institutions and provides optimal solutions that can boost
productivity, quality of education and services. The real life timetabling problems have
many different forms, such as education timetable (courses and examinations), employee
timetable, timetable of sports events, timetable of construction, timetable of transporta-
tion, services. Timetabling problems and scheduling problems are generally NP-hard
constrained optimization problems, see, e.g., [5], of a combinatorial nature. As a rule, no
exact algorithm (excluding total enumeration) is known which generates a solution within
a reasonable time. These problems are also classified as constraint satisfaction problems,
see [5]. There are a number of versions of CTP differing from one area of application (e.g.,

4565



4566 R. PERZINA AND J. RAMIK

university) to another (e.g., transportation company), see, e.g., [6,9]. Specific work has
been done on this type of CTP problem in specific universities and many formulations
and algorithms have been tried. One of the most important computing paradigms is the
graph coloring concept, see [26], where vertices represent courses (or events) and an arc
joins two vertices only if they cannot be scheduled at the same time. The problem here
is to find the chromatic number of resulting graphs. The chromatic number problem is,
however, also NP-hard. Due to the complexity of the problem, most of the publications
concentrate on heuristic algorithms which try to find “good” approximate solutions, see
[1-4,10,20-25,28]. Some of these include Genetic Algorithms (GA), see [6,13,27,30], Tabu
Search (TS), see [11,16,32], and Simulated Annealing (SA), see [31]. Heuristic optimiza-
tion methods are explicitly aimed at looking for good feasible solutions that eventually
may not be optimal where the complexity of the problem or limited time available does
not allow the finding of an exact solution. Generally, two questions arise:
(1) How fast is the “optimal” solution computed?
(2) How close is this solution to the exact optimal one?
Between time and quality a tradeoff is often required, and this is taken care of by

running the simple algorithm more than once. The empirical evaluation of the heuristic
method is based on the analytical difficulty involved in the problem and pathological
worst case result. Recently, these heuristic tools have been combined among themselves
with knowledge elements, see [13,23,31], as well as with more traditional approaches.
Developing solutions with these tools offers two major advantages:
(i) Shorter development time than traditional approaches, and
(ii) Robust systems being insensitive to noisy and missing data.
Keeping in view recent achievements, this work attempts to develop genetic algorithms

with fuzzy constraints for a CTP. A specific feature of our CT problem is a formulation
of the soft constraints of the problem by using fuzzy sets, and in particular trapezoidal
fuzzy numbers, allowing for the calculation of grades of membership. It is evaluated in the
fitness function (i.e., the objective function) that characterizes the solution of the problem
and calculates its overall fitness values as a sum of joint areas for all soft constraints. This
formulation of the problem has been proven to be suitable for the reduction of calculation
time. This is a significant and novel contribution of the paper because such formulation
is very important from practical point of view in many CTP problems. Our method also
incorporates an original formulation of the self-learning genetic algorithm using an indirect
representation based on the event priorities and heuristic local search operators. We tested
our approach on the real timetabling problem at Silesian University in Opava – School of
Business Administration in Karvina, Czech Republic. The problem size is characterized
by the following parameters: number of rooms is 43, number of events is 705, number of
students is 1807, number of teachers is 112. We ran the genetic algorithm for that problem
and it was terminated when there was no increase in fitness fiction for 1000 generations,
which took about 5 hours on the standard model of PC with a 2 GHz processor. The final
timetable satisfied all of the hard constraints, i.e., there were no time conflicts for teachers
and all of the events were placed in acceptable rooms and also in acceptable times.
The contents of the paper are as follows. In Section 2, a CTP is described with corre-

sponding nomenclature and notation. A specific new feature of the problem included in
the overall fitness function is described in Section 3. Section 4 is devoted to a detailed
formulation of the proposed genetic algorithm. An application of the GA in a case study
of a smaller extent is presented in Section 5. The last sections summarize the results of
the paper and give some hints for the future research in the area.



SELF-LEARNING GENETIC ALGORITHM 4567

2. Course Timetabling Problem. A course timetabling problem (CTP) consists of
finding the exact time allocation within a limited time period for a number of events
(lectures and seminars) and assigning them to a number of resources (teachers, students
and classrooms) so that the constraints are satisfied, see, e.g., [8,21]. The constraints to
be satisfied by the timetable are usually divided into two categories: hard and soft ones.
Hard constraints must be rigidly fulfilled. Such constraints include:

(i) No resource (teachers, student groups and rooms) may be assigned to different events
(e.g., lectures) at the same time.

(ii) The rooms assigned to an event must belong to the set of valid resources for that
event. In this regard, the event is held in a room if the proper infrastructural arrangements
are there to organize the event, e.g., information technology.

(iii) The event is assigned to a teacher if he has the knowledge and capability for
delivering that particular event.

On the other hand, it is desirable to fulfill soft constraints to the best extent possible,
but it is not extremely essential for a feasible solution. Therefore, soft constraints can
also be seen as optimization objectives for our algorithm:

(Objective 1) Scheduling an event within a particular window of the whole period (such
as during evenings).

(Objective 2) Minimizing time gaps or travel times between adjacent lectures of the
same teacher.

Now we describe the input data for the scheduling problem and formalize the optimiza-
tion model. In this model we use the following notation:

nR – number of available rooms (classrooms, offices), {R1, R2, . . ., RnR
} –

set of available rooms.
nE – number of events (actions, lectures, seminars), {E1, E2, . . . , EnE

} –
set of events (actions).

nT – number of teachers, {T1, T2, . . ., TnT
} – set of teachers.

nS – number of students (group of students), {S1, S2, . . ., SnS
} – set of stu-

dents (group of students).
nP – number of time slots (time periods), {P1, P2, . . ., PnP

} – set of time
slots (time periods).

nG – number of time-room slots, {G1, G2, . . ., GnG
} – set of time-room slots.

C = {cij} – clash matrix with elements cij; i = 1, 2, . . ., nE; j = 1, 2, . . ., nE.
A = {aij} – room acceptance matrix with elements aij; i = 1, 2, . . ., nR; j =

1, 2, . . ., nE.
The purpose of the clash matrix C is to determine which events should not be scheduled

at the same time for each event. Each element of the clash matrix cij is a binary variable,
i.e., cij ∈ {0; 1}. If Ei and Ej cannot be scheduled at the same time, then cij = 1,
otherwise, cij = 0. Clash elements are equal to one for all events that are performed by
the same teacher or attended by the same student group. Some rooms are not acceptable
for specific events given by the room acceptance matrix A. Each element of the room
acceptance matrix aij is a binary variable, i.e., aij ∈ {0; 1}.

3. Soft Constraints and Fitness Function. Uncertainty measures and vagueness as-
sociated with the soft constraints of the problem in the final timetable schedule are mod-
eled by fuzzy sets allowing grades of membership. Our approach allows for the expressing
of some preferences to the ultimate schedule so that the related measure of violation is
appropriately represented. Among the soft constraints we preferably consider the best
availability schedule according to the wishes of the teacher.



4568 R. PERZINA AND J. RAMIK

Among a variety of shapes that can be used to represent membership functions we prefer
rectangular, triangular and trapezoidal, and other shapes, e.g., bell curves, s-curves, are
not applied here. Usually, a shape of membership function is subjective and allows for the
expressing of a teacher’s preferences, see Figure 1, showing an example of a trapezoidal
membership function of a teacher.
A scheduled timetable is then expressed by a rectangular membership function r(t)

which is equal to 1 for all times when the teacher is doing the event. The scheduled
timetable membership function r(t) for a single event starting at time u = 3 and ending
at time v = 5 is shown in Figure 2.
The membership function of satisfaction with teacher preferences s(t) is then expressed

by the minimum operator, i.e., by formula

s(t) = min{r(t), p(t)}
The membership function of satisfaction with the teacher preferences s(t) for r(t) and

p(t) above is shown in Figure 3.
The teacher’s satisfaction with the scheduled timetable H(r, p) is based on the joint

area under the membership functions s and r using the formula

H(r, p) = 1−
∫∞
0

s(t)dt∫∞
0

r(t)dt
(1)

where calculation of
∫∞
0

s(t)dt depends on the values of parameters a, b, c, d, and
∫∞
0

r(t)dt
on the values of u, v as shown in Table 1.
After the timetabler has produced a timetable, it is evaluated by the fitness func-

tion which characterizes the solution and calculates its overall fitness values as a sum of
weighted scores and penalties for all constraints, hard and soft. The fitness function z is

Figure 1. Teacher preference membership function p(t)

Figure 2. Scheduled timetable membership function r(t)

Figure 3. Membership function of satisfaction with teacher preferences s(t)



SELF-LEARNING GENETIC ALGORITHM 4569

Table 1. Calculation of joint area S

defined in (2), and the optimization problem is defined as follows:

z =

nT∑
i=1

Hi (r, p) → min; (2)

s.t.

nE∑
i=1

xijk ≤ 1, j = 1, 2, . . ., nR, k = 1, 2, . . ., nP ,

nR∑
j=1

nP∑
k=1

xijk = 1, i = 1, 2, . . ., nE,

nR∑
j=1

nP∑
k=1

ajk · xijk = 1, i = 1, 2, . . ., nE,

nE∑
i=1

nE∑
l=1

nR∑
j

nP∑
k

nR∑
m

nP∑
n

cilsametime (xijk, xlmn) = 0,

where xijk is a binary variable determining whether the event Ei is scheduled in the room
Rj and time-slot Pk. The expression sametime(xijk, xlmn) is the function that is equal



4570 R. PERZINA AND J. RAMIK

to 1 if the event Ei is scheduled at the same time as the event El, otherwise it is equal to
zero, i.e.,

sametime(xijk, xlmn) =

{
1 for k = n,
0 otherwise.

4. Genetic Algorithm for Timetabling Problem. In this section, we present a ge-
netic algorithm (GA) for our course timetabling problem. To solve the timetabling prob-
lem, we develop an optimization method based on GA that incorporates a number of
techniques and specific local search operators. It is well known that GA is an iterative
search procedure widely used in solving optimization problems motivated by biological
models of evolution. A population of candidate solution is maintained in each iteration,
see, e.g., [12]. Specific genetic operators such as mutation and crossover are applied to
evolve solutions and find a “good solution” that has a high chance to survive for the next
iteration. Firstly, the method is required to encode the timetable solution into an encoded
form or chromosome suitable for applying genetic operators. Generally, two different ap-
proaches are considered, which are direct and indirect. A direct representation directly
encodes all event attributes: classroom, teacher, time slot, etc. for all events. GA has
to make decisions for all of the timetable parameters and deliver a complete and con-
straint free schedule. However, directly encoded solutions that undergo genetic operators
frequently result in invalid solutions that have to be handled. An indirect representa-
tion [24], on other hand, considers an encoded solution, i.e., a chromosome that usually
represents an ordered list of events which are placed into a timetable according to some
predefined method (timetable builder).

4.1. Timetable builder. The timetable builder can use any combination of heuristics
and local searches to place events into a timetable while observing the constraints of the
problem. For GA implementation of this work, we have considered an indirect represen-
tation that encodes 3 fields for each event into the chromosome:
(a) Teachers to be assigned to events – here, this problem is performed beforehand

(manually) as each teacher’s profession (specialization) determines his/her allocation to
particular events.
(b) Classroom where the event will be held.
(c) Time slot within the classroom. All fields are first encoded and then entered into

the chromosome as real numbers. When GA produces such a solution, it first decodes it
to gain these 3 fields for every event in the schedule. Then the timetabler is invoked and
works as follows:
(i) It sorts events according to their priority values in ascending order. Values with

high priorities are placed first.
(ii) It takes the first event with the highest priority, marks it as taken, and places it

into the schedule.
(iii) Starting from a time slot, it places the event and checks if any constraint is violated.

If the allocation is not fixed, the algorithm moves on to the next event.
(iv) The violated constraints are allocated to the event into subsequent time periods

until all constraints are satisfied.
(v) If no time period exists for which all constraints are satisfied, the event is marked

to violate the maximum time periods which exceed the constraints.
(vi) The algorithm continues with the next event in the list. When all events have been

processed, the timetabler stops. The timetabler satisfies all hard constraints and all other
constraints are satisfied in a satisfaction degree calculated by the fitness function.



SELF-LEARNING GENETIC ALGORITHM 4571

4.2. Genetic algorithm encoding. Encoding is a major element of every genetic al-
gorithm. The structure of the self-adaptive genetic algorithm’s encoding is depicted in
Figure 4. The idea of the proposed encoding consists of a redundancy of information
through a hierarchical evaluation of individuals.

As we can see, in the population each individual – chromosome is composed of Ng genes,
where each gene is linked to exactly one optimized variable. Each gene is composed of Ne

gene elements. The number of gene elements varies for each gene, and this is continuously
updated throughout evolution. Each gene element contains low-level parameters which
encode the optimized variables and parameters of evolution. All parameters are listed in
Table 2.

The upper index “E” denotes that it is a gene element value of the parameter. As
the encoding is hierarchical, there are several levels of the parameters, so gene values of

Figure 4. The structure of population

Table 2. The structure of a gene element

Name Description Range

xE Optimized variable [0; 1]

qEm Parameter of mutation [−1; 1]

rEm Radius of mutation [0; 0.5]

pEc Probability of crossover [0; 1]

rEc Ratio of crossover [0; 1]

qEd Parameter of deletion [−0.1; 0.1]

qEu Parameter of duplication [−0.1; 0.1]

sEm Identifier of myself for mating [0; 1]

sEw Wanted partner for mating [0; 1]

rEr Ratio of replacement [0; 1]

rEt Ratio of population for selection [0; 1]

rEp Ratio of population for 2nd partner selection [0; 1]

cEd Coefficient of death [0; 1]

NE
p Wanted size of population [0; 1]



4572 R. PERZINA AND J. RAMIK

parameters are marked by the upper index “G”, individual values by “I” and population
values by “P”. Since genetic operators are applied only to the low level values of pa-
rameters (gene element), the upper level values of parameters cannot be updated directly
through the evolution process, only indirectly by the evaluation mechanism from low level
values.

4.3. Gene parameters evaluation. The encoding is polyploiditial, i.e., each gene is
composed of Ne gene elements. The number of gene elements is variable and undergoes
evolution. Gene values of gene elements are evaluated by Formula (3) as

XG =
1

Ne

Ne∑
i=1

XE
i (3)

where X stands for parameters that must be evaluated, i.e., x, sm, sw, rr, rt, rp, cd, Np,
it.

4.4. Individual parameters evaluation. Parameters concerning the whole individual,
such as sIm, s

I
w, r

I
r , r

I
t , r

I
p, c

I
d, N

I
p are evaluated by Formula (4) as

XI =
1

Ng

Ng∑
i=1

XG
i . (4)

The number of genes Ng is not variable, because one gene contains exactly one optimized
variable.

4.5. Population parameters evaluation. Parameters concerning the whole popula-
tion, rPr , r

P
t , c

P
d , N

P
p , are evaluated as weighted average, with weights according to their

relative fitness wf defined as

wf =
NP

p − i+ 1

(1+NP
p )NP

p

2

, (5)

where i is an index of ith individual in population sorted by fitness in descending order,
i.e., the individual with the highest value of the fitness function has the value of i equal to
1, and the individual with the second highest value of the fitness function has the value
of i equal to 2, etc.

4.6. Genetic operators. A standard genetic algorithm uses standard genetic operators:

(1) Selection – a standard tournament selection method.
(2) Crossover – a standard uniform crossover with probability of crossover pc (e.g., pc =

0.5).
(3) Mutation – a standard mutation operation with probability pm (e.g., pm = 0.05).

As the proposed encoding is specific, the genetic operators must be adjusted to fit the
encoding. There are not only common genetic operators such as selection, crossover or
mutation used, but also some specific ones, as described in following text.

4.6.1. Selection. In genetic algorithms the selection of both mating parents is usually
based on their fitness, but this is not true in nature. In nature, a winner of a tournament
selects his/her partner according to his/her individual preferences. One important thing
is that he/she cannot take into account his genotype, i.e., directly the values of his/her
genes nor his/her fitness, but only his/her phenotype, i.e., only expression of the genes
to the outside. In a similar way, we try to imitate nature by using parameters sIm and
sIw. The parameter sIw represents individual preferences for mating, and the parameter
sIm represents an individual’s phenotype for mating, so the first parent is selected by



SELF-LEARNING GENETIC ALGORITHM 4573

a tournament selection method with a variable ratio of population rPt from which the
fittest individual is selected. The second parent is selected according to the individual’s
preferences represented by the parameter sIw, i.e., the first parent chooses an individual
with the minimal value of expression

∣∣sIw − sIm
∣∣, but selection is made from only a limited

ratio of population rIp.

4.6.2. Crossover. The crossover operator is applied to every gene element of the first
parent with the probability pEc . The crossover itself proceeds only between gene elements
of mating parents according to formula

XE
3 = XE

1 +
(
XE

2 −XE
1

)
· rEc (6)

where X stands for all parameters of a gene element, see Table 2, rEc is a ratio of crossover
of the first parent defined in this gene element, the lower index “1” denotes the gene
element of the first parent, the index “2” denotes the second parent and the index “3”
denotes the child of both parents. The gene element of the second parent is selected
randomly, but it is of the same gene as the gene element of the first parent.

4.6.3. Mutation. The mutation operator is applied to every gene element with probability
pEm =

∣∣qEm∣∣. Notice that the probability of mutation is calculated as the absolute value

of the parameter of mutation, because the mean value of pEm should be zero. Moreover,
every gene element has its own probability of mutation. The mutation formula is defined
as

XE
new = XE

old +
(
XE

max −XE
min

)
· U

(
−rEm, r

E
m

)
(7)

where X stands for all parameters of the gene element, U (a, b) is a random variable with
uniform probability distribution in the interval [a; b], XE

new is the value of the parameter
after mutation, XE

old is the original value of the parameter, andXE
max (X

E
min) is the maximal

(minimal) allowed bit element value of the parameter in Table 2.

4.6.4. Duplication. The duplication operator is applied to every gene element with prob-
ability pEu =

∣∣qEu ∣∣. The gene element is duplicated (copied) with the same value of all

parameters, with the only exception being that the values of parameter qEu of both gene
elements are divided by the coefficient 2 in order to inhibit the exponential growth of bit
elements.

4.6.5. Deletion. The deletion operator is applied to every gene element with probability
pEd =

∣∣qEd ∣∣. It means that the gene element is removed from the gene. By using deletion
and duplication operators the degree of polyploidity is controlled.

4.6.6. Replacement of individuals. For every individual the parameter of a life strength –
L is defined. When the individual is created, its life strength L is set to one, and in every
generation it is multiplied by the coefficient cL defined as

cL = 1− cPd (1− wf ) . (8)

Evidently, through evolution a less fit individual causes a greater decrease in L. In
every generation all XP parameters are evaluated, and by using the above listed genetic
operators NP

p · rPr new individuals are created. Then a randomly selected individual is
“killed” with probability (1−L). This process of eliminating individuals is repeated until
only NP

p individuals survive in the population.



4574 R. PERZINA AND J. RAMIK

5. Case Study – Computational Results. In this section, we present a realistic ex-
ample – case study with a relatively small extent so that the exact optimal solution can be
calculated by total enumeration of 12 (about 500 million) variants of feasible timetables.
Let us suppose we have 10 events (lectures or seminars) E1, E2, . . ., E10 and 3 teachers

T1, T2 and T3. Teacher T1 is teaching events E1, E2, E3, teacher T2 is teaching events E4,
E5, E6 and teacher T3 is teaching events E7, E8, E9, E10. The clash matrix for such a
schedule is shown in Table 3.
Now, suppose there are four students (or groups of students) S1, S2, S3 and S4. Student

S1 is attending events E1, E3, E5, E10, student S2 is attending events E2, E3, E6, E8,
student S3 is attending events E1, E4, E5, E9 and student S4 is attending events E2, E4,
E7, E10. A sample clash matrix for such schedule is shown in Table 4.
The clash matrix for students and teachers is then calculated as

cij = max
{
cTij, c

S
ij

}
,

where cTij is a clash matrix element for teachers and cSij is a clash matrix element for
students. The total clash matrix for such a schedule is shown in Table 5.
The purpose of the room acceptance matrix A is to determine which events can be

scheduled in particular rooms. Each element of the clash matrix aij is a binary variable
aij ∈ {0; 1}. If aij = 1, then event Ej can be scheduled in the room Ri. Let us suppose we
have two rooms R1 and R2. Events E1, E2, E3, E4, E5, E6 can be scheduled in room R1

Table 3. Clash matrix for teachers

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 0 1 1 0 0 0 0 0 0 0
E2 1 0 1 0 0 0 0 0 0 0
E3 1 1 0 0 0 0 0 0 0 0
E4 0 0 0 0 1 1 0 0 0 0
E5 0 0 0 1 0 1 0 0 0 0
E6 0 0 0 1 1 0 0 0 0 0
E7 0 0 0 0 0 0 0 1 1 1
E8 0 0 0 0 0 0 1 0 1 1
E9 0 0 0 0 0 0 1 1 0 1
E10 0 0 0 0 0 0 1 1 1 0

Table 4. Clash matrix for students

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 0 0 1 1 1 0 0 0 1 1
E2 0 0 1 1 0 1 1 1 0 1
E3 1 1 0 0 1 1 0 1 0 1
E4 1 1 0 0 1 0 1 0 1 1
E5 1 0 1 1 0 0 0 0 1 1
E6 0 1 1 0 0 0 0 1 0 0
E7 0 1 0 1 0 0 0 0 0 1
E8 0 1 1 0 0 1 0 0 0 0
E9 1 0 0 1 1 0 0 0 0 0
E10 1 1 1 1 1 0 1 0 0 0



SELF-LEARNING GENETIC ALGORITHM 4575

Table 5. Clash matrix for teachers and students

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 0 1 1 1 1 0 0 0 1 1
E2 1 0 1 1 0 1 1 1 0 1
E3 1 1 0 0 1 1 0 1 0 1
E4 1 1 0 0 1 1 1 0 1 1
E5 1 0 1 1 0 1 0 0 1 1
E6 0 1 1 1 1 0 0 1 0 0
E7 0 1 0 1 0 0 0 1 1 1
E8 0 1 1 0 0 1 1 0 1 1
E9 1 0 0 1 1 0 1 1 0 1
E10 1 1 1 1 1 0 1 1 1 0

and E4, E5, E6, E7, E8, E9, E10 can be scheduled in room R2. A sample room acceptance
matrix for such a schedule is shown in Table 6.

Table 6. Room acceptance matrix

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

R1 1 1 1 1 1 1 0 0 0 0
R2 0 0 0 1 1 1 1 1 1 1

In order to demonstrate the calculation of the objective function, let us suppose we
have teacher time preferences as described in Table 7, and time-room slots are assigned
to events as shown in Table 8.

Table 7. Teacher time preferences

a b c d
T 1 0 0 3 4
T 2 1 2 3 4
T 3 2 3 5 6

Then the ratio of satisfaction for T1 is 0, the ratio of satisfaction for T2 is 0.833, and the
ratio of satisfaction for T3 is 0.375. Therefore, the total value of the objective function
z = 1.208.

5.1. Decoding chromosome. We have 10 events and 12 time-room slots so the chromo-
some for such a simple timetable will have 22 genes. Let us suppose that after evaluation
the gene values of parameters are as shown in Table 9.

First, events must be sorted according to the values of their parameters in the chro-
mosome (part A), and as a result the order is E10, E2, E3, E6, E1, E9, E5, E4, E7, E8.
The time-room slots have to be sorted according to the values of their parameters in the
part B of the chromosome, so the order will be G7, G8, G4, G10, G12, G9, G6, G5, G1, G2,
G3, G11. The process of assigning time-room slots is depicted in Table 10. The selected
time-room slot for each event is marked by the symbol X, and time-room slots used for
previous events have a grey background.

In the first step, we first assigned time-room slot G7 to the first event, E10. In the
second step we should assign G8 to E2, however G8 corresponds to room R2 which is



4576 R. PERZINA AND J. RAMIK

Table 8. Time-room slot assignments

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

R1M 1 1 0 0 0 0 0 0 0 0 0
R1M 2 0 1 0 0 0 0 0 0 0 0
R1M 3 0 0 1 0 0 0 0 0 0 0
R1M 4 0 0 0 1 0 0 0 0 0 0
R1M 5 0 0 0 0 0 0 0 0 0 0
R1M 6 0 0 0 0 1 0 0 0 0 0
R2M 1 0 0 0 0 0 1 0 0 0 0
R2M 2 0 0 0 0 0 0 0 0 1 0
R2M 3 0 0 0 0 0 0 0 0 0 0
R2M 4 0 0 0 0 0 0 0 1 0 0
R2M 5 0 0 0 0 0 0 0 0 0 1
R2M 6 0 0 0 0 0 0 1 0 0 0

Table 9. Chromosome

Part A B

Var E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Value 0.45 0.13 0.22 0.87 0.74 0.36 0.88 0.99 0.67 0.01 0.54 0.63 0.71 0.31 0.48 0.45 0.14 0.18 0.42 0.37 0.94 0.39

Table 10. Building timetable

not suitable for E2, therefore the next suitable time-room slot must be selected, i.e., G4.
In the third step, we should first assign unused time-room slot G8 to E3, but again, G8

corresponds to room R2 which is not suitable for E3, so the first suitable time-room slot
for E3 is G6. In the fourth step we can finally assign the skipped time-room slot G8 to E6.
We continue this way until either all of the events are assigned or any remaining events
cannot be assigned to a suitable time-room slot. In this example, the last event E8 cannot
be assigned to any suitable time room slot, and as a result the high penalty coefficient will
be added to the objective Function (2). The final timetable according to the chromosome
provided in the example will be: E1 → G5, E2 → G4, E3 → G6, E4 → G9, E5 → G12,
E6 → G8, E7 → G11, E8 →Unassigned, E9 → G10, E10 → G7, where symbol → stands
for “is assigned to”.

5.2. Evolution process of the standard GA. Firstly, we will describe standard evolu-
tion using a standard genetic algorithm. We start with an initial population of randomly



SELF-LEARNING GENETIC ALGORITHM 4577

generated chromosomes. Let us suppose that we have the following 4 chromosomes in the
initial population:

X1 A B

Var E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Value 0.96 0.78 0.46 0.45 0.13 0.15 0.63 0.58 0.93 0.48 0.02 0.98 0.85 0.80 0.33 0.61 0.27 0.34 0.42 0.31 0.35 0.82

X2 A B

Var E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Value 0.73 0.10 0.02 0.36 0.31 0.94 0.51 0.36 0.85 0.05 0.60 0.63 0.77 0.10 0.59 0.01 0.38 0.43 0.65 0.30 0.47 0.02

X3 A B

Var E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Value 0.56 0.94 0.00 0.59 0.81 0.22 0.21 0.87 0.55 0.20 0.16 0.65 0.62 0.86 0.84 0.72 0.05 0.33 0.81 0.41 0.51 0.84

X4 A B

Var E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Value 0.24 0.61 0.45 0.88 0.91 0.86 0.57 0.98 0.57 0.79 0.77 0.82 0.19 0.46 0.66 0.63 0.92 0.22 0.52 0.91 0.33 0.39

The fitness function is then calculated for each chromosome in the initial population as
follows:

Individual Fitness function
X1 −60002.083
X2 −40002.083
X3 −40001.625
X4 −60001.542

The first applied operator is a tournament selection. Let us suppose 4 pairs of chromo-
somes were selected in tournaments: (X1, X2), (X2, X3), (X3, X4), (X2, X3). A crossover
operator is then applied to each pair of chromosomes with probability pc = 0.5 (crossed
over genes are highlighted). The new value of each gene is calculated as the arithmetic
average of the parents’ gene values. After crossover we get 4 new offspring X1’, X2’, X3’,
X4’:

The last applied operator is a mutation, which adds a random value within an interval
[−0.1; 0.1] to each gene value with probability pm = 0.5 to each offspring (mutated genes
are highlighted). If the gene value after mutation is less than 0 or greater than 1, then



4578 R. PERZINA AND J. RAMIK

the new value of the gene is set to 0 or 1. After mutation we get 4 new chromosomes X1”,
X2”, X3”, X4”:

Now each chromosome in the new population is evaluated by a fitness function and
a new generation is again created using the genetic operators. The evolution process
continues until there is no increase in fitness function for 100 generations. The solution
of the problem is the fittest individual from all generations with a fitness function value
of 0.70833:

X1* A B

Var E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Value 0.91 0.18 0.23 0.45 0.51 0.62 0.63 0.78 0.83 0.89 0.09 0.89 0.05 0.11 0.96 0.98 0.40 0.31 0.26 0.56 0.84 0.73

This chromosome can be decoded into the timetable described in Table 11.

Table 11. Final timetable

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

R1M 1 0 0 1 0 0 0 0 0 0 0
R1M 2 1 0 0 0 0 0 0 0 0 0
R1M 3 0 0 0 0 0 0 0 0 0 0
R1M 4 0 0 0 1 0 0 0 0 0 0
R1M 5 0 0 0 0 0 0 0 0 0 0
R1M 6 0 0 0 0 0 0 0 0 0 0
R2M 1 0 0 0 0 0 0 1 0 0 0
R2M 2 0 0 0 0 0 1 0 0 0 0
R2M 3 0 0 0 0 1 0 0 0 0 0
R2M 4 0 0 0 0 0 0 0 1 0 0
R2M 5 0 0 0 0 0 0 0 0 0 1
R2M 6 0 0 0 0 0 0 0 0 1 0

5.3. Evolution process of the self-adaptive GA. The structure of the proposed ge-
netic algorithm is complex, and therefore it would be very confusing trying to demonstrate
the evolution cycle with all of the parameters (there would be over 600 parameters in a
single chromosome for this optimization problem). An example of such a chromosome is
shown in Table 12.



SELF-LEARNING GENETIC ALGORITHM 4579

Table 12. Chromosome of the self-adaptive GA

Therefore, for the purpose of this demonstration we have simplified the structure of the
genetic algorithm so that all of the main principles remain and the size of the chromo-
some is still manageable. Here, each gene has just a single gene element, and each gene
element contains just 2 parameters: one parameter for optimized variable and one control
parameter (radius of mutation). From all of the defined genetic operators, only mutation
is used. All of the other control parameters and genetic operators are based on the same
principle.



4580 R. PERZINA AND J. RAMIK

Let us suppose that we have the following chromosome in the population which should
be mutated:

X A B

Var E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Val 0.960.780.460.450.130.150.630.580.930.480.020.980.850.800.330.610.270.340.420.310.350.82

rEm 0.87 0.94 0.95 0.96 0.90 0.42 0.12 0.88 0.04 0.65 1.00 0.08 0.40 0.62 0.88 0.83 0.86 0.43 0.27 0.61 0.66 0.12

Each gene in the chromosome will be mutated with a probability of mutation pm = 0.1
(mutated genes are highlighted). Gene value after mutation is calculated using Formula
(5). Note that each gene has defined its own value of rEm. This means that each gene will
be mutated with a different random value. Also note that it is not only the optimized
variable which mutates, but that control parameter rEm is also mutated at the same time.
After mutation we get the following chromosome:

5.4. Solving real timetable. Finally, we tested the proposed model on the real timeta-
bling problem at Silesian University in Opava – School of Business Administration in
Karvina. The problem size and its structure can be characterized by the values of pa-
rameters: number of rooms nR = 43, number of events nL = 705, number of students
nS = 1807, number of teachers nT = 112, number of time slots nM = 60, and number of
time-room slots nG = 2580.
We ran the genetic algorithm for that model and it was terminated when there was no

increase in fitness fiction for 1000 generations, which took about 5 hours on a PC with a
2 GHz processor. The final timetable satisfied all of the hard constraints, i.e., there were
no time conflicts for the teachers and all of the events were placed in acceptable rooms.

6. Conclusions. In this work a genetic algorithm is presented for CTP. The technique
uses an indirect representation featuring some event allocation priorities and invokes a
timetable builder routine for constructing a complete timetable. The algorithm incor-
porates a number of techniques and domain specific heuristic local search operators in
order to enhance search efficiency. The non-rigid soft constraints involved in the problem
are basically optimization objectives for the search algorithm. A self-adapting principle
is also incorporated in the algorithm in order to improve the performance of the GA by
controlling the parameters during the evolution. There is an inherent degree of uncer-
tainty involved in objectives which are comprised of different aspects of real life data.
This uncertainty is tackled by formulating the measure of violation of soft constraints in
the fitness function and using membership functions of trapezoidal fuzzy sets. A special
version of the genetic algorithm has been applied on a real world CTP for which a manual
feasible solution is already available. It has been shown through an extensive simulation
that by incorporating certain combinatorial and domain specific operators the search effi-
ciency of the evolutionary algorithm is significantly enhanced. By comparing the genetic
algorithm with the manual solution it is evident that the technique satisfies all of the
hard constraints of the problem and achieves a significantly better score in satisfying the
soft constraints, and therefore its performance is superior. However, the algorithm is
computationally complex when compared to other GA based benchmark heuristics. Fur-
thermore, in order to verify the efficiency and robustness of the algorithm, it should be



SELF-LEARNING GENETIC ALGORITHM 4581

tested on different real world timetable problems. The algorithm can also be adapted to
solve other CTP and scheduling problems.

7. Future Work. In the process of developing CTP through genetic algorithms, all
hard and soft constraints are satisfied and significant results are obtained. However, the
computational time required is appreciably large. The future work entails the development
of well-known heuristics and neuro-fuzzy genetic or rough fuzzy genetic techniques which
can reduce the underlying computational complexity so that the quality of the solutions
is significantly enhanced.

Another area for future research is a parallel representation of the genetic algorithm.
Genetic algorithms are naturally parallel so the implementation can be straightforward.
A parallel structure can be used in which there is one master genetic algorithm and Na

slave genetic algorithms. This master genetic algorithm is responsible for performing
genetic operators and creating a new generation, while the slave genetic algorithms just
calculate the value of the fitness function presented by the master genetic algorithm. In
each generation, the master genetic algorithm distributes Np/Na tasks (individuals) to
each slave genetic algorithm. The master genetic algorithm communicates with the slave
genetic algorithms by TCP/IP protocol. Using parallel representation for the proposed
genetic algorithm allows us to solve large scale timetabling problems, especially when
using a supercomputer which will be built within the framework of the IT4Innovations
Centre of Excellence project.

Acknowledgement. This work was supported by the European Regional Development
Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] S. C. Brailsford, C. N. Potts and B. M. Smith, Constraint satisfaction problems: Algorithms and
applications, European Journal of Operational Research, vol.119, pp.557-581, 1999.

[2] E. K. Bruke and S. Petrovic, Recent research directions in automated timetabling, European Journal
of Operational Research, vol.140, no.2, pp.266-280, 2002.

[3] E. K. Bruke and J. P. Newall, Solving examination timetabling problems through adaptation of
heuristic orderings, Annals of Operations Research, vol.129, pp.107-134, 2004.

[4] E. K. Burke, B. McCollum and A. Meisels, A graph based hyper heuristic for educational timetabling
problems, European Journal of Operational Research, vol.176, no.1, pp.177-192, 2007.

[5] T. B. Cooper and J. H. Kingston, The complexity of timetable construction problems, Lecture Notes
in Computer Science, vol.1153, pp.283-295, 1996.

[6] A. Chaudhuri and K. De, Fuzzy genetic heuristic for university course timetable problem, Int. J.
Advance Comput. Appl., vol.2, no.1, pp.100-123, 2010.

[7] P. Cote, T. Wong and R. Sabouri, Application of a hybrid multi-objective evolutionary algorithm to
the uncapacitated exam proximity problem, Selected Papers from the 5th International Conference
on the Practice and Theory of Automated Timetabling, Lecture Notes in Computer Science, vol.3616,
pp.151-168, 2005.

[8] D. De Werra, An introduction to timetabling, European Journal of Operations Research, vol.19,
pp.151-162, 1985.

[9] S. Deris, S. Omatu and H. Ohta, Timetable planning using the constraint-based reasoning, Computer
and Operations Research, vol.27, pp.819-840, 2000.

[10] D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncer-
tainty, New York, 1988.

[11] A. A. A. Esmin and G. Lambert-Torres, Application of particle swarm optimization to optimal
power systems, International Journal of Innovative Computing, Information and Control, vol.8,
no.3, pp.1705-1716, 2012.

[12] A. Gunawan, K. M. Ng and K. L. Poh, Solving the teacher assignment-course scheduling problem by
a hybrid algorithm, International Journal of Computer and Information Engineering, pp.137-142,
2007.



4582 R. PERZINA AND J. RAMIK

[13] A. Gunawan, K. M. Ng and K. L. Poh, A mathematical programming model for a timetabling
problem, Computers and Operations Research, vol.39, pp.3074-3088, 2012.

[14] S. A. Kazarlis, A. G. Bakirtzis and V. Petridis, A genetic algorithm solution to the unit commitment
problem, IEEE Transactions on Power Systems, vol.11, no.1, pp.83-92, 1996.

[15] S. A. Kazarlis, S. Papadakis, J. Theocharis and V. Petridis, Micro genetic algorithms as general-
ized hill climbing operators for genetic algorithm optimization, IEEE Transactions on Evolutionary
Computation, vol.5, no.3, pp.204-217, 2001.

[16] K. Kim, M. Gen and M. Kim, Adaptive genetic algorithms for multi-resource constrained project
scheduling problem with multiple modes, International Journal of Innovative Computing, Informa-
tion and Control, vol.2, no.1, pp.41-49, 2006.

[17] G. Klir and T. Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall, New Jersey, 1988.
[18] A. Konar, Computational Intelligence Principles, Techniques and Applications, Springer Verlag,

Netherlands, 2005.
[19] D. Kordalewski, C. Liu and K. Salvesen, Solving an exam scheduling problem using a genetic algo-

rithm, TR-2009-1, Department of Statistics, University of Toronto, Toronto, Canada, 2009.
[20] R. Lewis and B. Paechter, Application of the grouping genetic algorithm to university course

timetabling, Evolutionary Computation in Combinatorial Optimization, LNCS, vol.3448, pp.144-
153, 2005.

[21] S.-Y. Lin and C.-Y. Chang, Genetic algorithm based iterative two-level algorithm for resource allo-
cation problems and applications, International Journal of Innovative Computing, Information and
Control, vol.8, no.10(B), pp.7157-7168, 2012.

[22] M. R. Malim, A. T. Khader and A Mustafa, Artificial immune algorithms for university timetabling,
Proc. of the 6th International Conference on the Practice and Theory of Automated Timetabling,
Czech Republic, 2006.

[23] C. Marco, B. Mauro and S. Krzysztof, An effective hybrid algorithm for university course timetabling,
Journal of Scheduling, vol.9, no.5, pp.403-432, 2006.

[24] R. Perzina, Solving the university timetabling problem with optimized enrollment of students by a
parallel self-adaptive genetic algorithm, Proc. of the 6th International Conference on the Practice
and Theory of Automated Timetabling, Brno, Masarykova Univerzita, pp.264-280, 2006.

[25] R. Perzina, Solving multicriteria university timetabling problem by a self-adaptive genetic algorithm
with minimal perturbation, Proc. of the 2007 IEEE International Conference on Information Reuse
and Integration, pp.98-103, 2007.

[26] J. Ramik and M. Vlach, Generalized concavity in optimization and decision making, Fuzzy Sequenc-
ing and Scheduling, pp.253-283, 2001.

[27] J. Ramik, A decision system using ANP and fuzzy inputs, International Journal of Innovative
Computing, Information and Control, vol.3, no.4, pp.825-837, 2007.

[28] A. Scholl and C. Becker, State-of-the-art exact and heuristic solution procedures for simple assembly
line balancing, European Journal of Operation Research, vol.168, pp.666-693, 2006.

[29] E. Singh, V. D. Joshi and N. Gupta, Optimizing highly constrained examination timetable problems,
Journal of Applied Mathematics, Statistics and Informatics, vol.4, no.2, pp.193-197, 2008.

[30] S. O. Tasan and S. Tunali, A review of the current applications of genetic algorithms in assembly
line balancing, Journal of Intelligent Manufacturing, vol.19, pp.49-69, 2008.

[31] M. Tuga, R. Berretta and A. Mendes, A hybrid simulated annealing with Kempe chain neighborhood
for the university timetabling problem, Computer and Information Science, 2007.

[32] G. White, B. Xie and S. Zonjic, Using tabu search with longer term memory and relaxation to create
examination timetables, European Journal of Operational Research, vol.153, no.16, pp.80-91, 2004.

[33] L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, pp.338-353, 1965.


