
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 11, November 2013 pp. 4419–4430

PROOF OF UNSATISFIABILITY OF ATOM SETS BASED ON
COMPUTATION BY EQUIVALENT TRANSFORMATION RULES

Katsunori Miura1, Kiyoshi Akama2, Hidekatsu Koike3

and Hiroshi Mabuchi4

1Information Processing Center
Kitami Institute of Technology

Kitami, Hokkaido 090-8507, Japan
k-miura@mail.kitami-it.ac.jp

2Information Initiative Center
Hokkaido University

Sapporo, Hokkaido 060-0811, Japan
akama@iic.hokudai.ac.jp

3Faculty of Social Information
Sapporo Gakuin University

Ebetsu, Hokkaido 069-8555, Japan
koike@sgu.ac.jp

4Faculty of Software and Information Science
Iwate Prefectural University

Takizawa, Iwate 020-0193, Japan
mabu@iwate-pu.ac.jp

Received December 2012; revised April 2013

Abstract. Equivalent Transformation (ET) rules can be used to construct correct se-
quential and parallel programs, as they are inherently correct. One important method
for making ET rules uses logical formulas. Among logical formulas, unsatisfiable con-
junctions of finite atoms, each of which is represented by an atom set in this paper, are
especially useful for making many ET rules that are used for constructing efficient pro-
grams. This paper proposes a method of proving unsatisfiability of an atom set based on
computation by ET rules. The proposed method is recursive, in the sense that, during
proving the given atom set, it may find a new atom set based on subset relation or in-
ductive structure. Since our proposed method incorporates search based on subset and
inductive relations, it can be used to prove unsatisfiability of various atom sets that can-
not be proven by conventional methods.
Keywords: Unsatisfiability, Proof, Equivalent transformation rule, Induction

1. Introduction. Equivalent Transformation (ET) rules are useful for developing algo-
rithms for sequential program construction [1, 9]. An ET rule is a procedure that is used
to replace one clause set with another while preserving the original clause’s declarative
meaning. In recent years, methodologies for constructing parallel programs, which extend
the methodologies used to construct sequential programs, have been proposed [3]. In the
ET program construction, correct programs are constructed by accumulating ET rules
made from specifications, sets of logical formulas, one by one. Methods for automatically
making ET rules are therefore useful for constructing correct programs.

Miura et al. [14] recently proposed a method for making ET rules from logical formulas
(each called a Logical Equivalence (LE)) made from specifications. An LE describes an
equivalence relationship between two logical formulas under some specified preconditions.

4419

4420 K. MIURA, K. AKAMA, H. KOIKE AND H. MABUCHI

Since ET rules can be made from LEs using this method, methods by which correct logical
formulas can be made from specifications are therefore essential.
One objective of this paper is to propose a solution for making LEs from specifications.

We achieve this by proposing a new method for proving atom sets based on computation
by ET rules and constructing an algorithm based on the proposed method. An atom is a
logical formula that has no deeper propositional structure. Since an atom conjunction is
treated as an atom set in this paper, it is called an atom set.
In this paper we specially focus on the proof of unsatisfiable atom sets: that is, atom

sets in which one or more atoms do not satisfy the constraint of predicates. An LE made
from such an atom set is efficient for making False rules, which are useful ET rules for
constructing efficient programs. A False rule removes any definite clause that contains
body atoms which do not satisfy the constraints of predicates.
In proposing a method for proving the unsatisfiability of atom sets, this paper

1. Defines the concept of an unsatisfiable atom set with respect to background knowl-
edge,

2. Gives a sufficient condition for an unsatisfiable atom set,
3. Proposes procedures for checking whether a given atom set satisfies the condition.

Further, we explicate a method for proving unsatisfiability of atom sets using induction
based on computation by ET rules.
The remainder of this paper is organised as follows: Section 2 expounds on the purpose

of this paper by discussing the importance of ET rules in program synthesis. Section 3
discusses background knowledge as it relates to program synthesis and gives a definition
for unsatisfiable atom sets. Examples of this type of atom set are also presented. Section
4 defines declarative meaning and the concept of an ET rule, and outlines the conditions
that must be satisfied for an atom set to be deemed unsatisfiable. Section 5 presents an
algorithm for proving unsatisfiability of an atom set based on computation by ET rules.
Section 6 outlines the process involved in proving unsatisfiability of a concrete atom set
using the algorithm. Section 7 discusses the usefulness of the method proposed in this
paper and compares it with other approaches. Section 8 gives conclusions.

2. Importance of ET Rules and Proof of Unsatisfiability.

2.1. Importance of ET rules in program synthesis. Methodologies for the construc-
tion of both sequential and parallel programs based on program synthesis by ET rules
have been proposed [1, 3]. In the proposed methodologies, ET rules are used to describe
procedures. An ET rule guarantees partial correctness with respect to a specification;
thus, if a program is constructed using ET rules then partial correctness of that program
is also guaranteed. Additionally, since each ET rule is completely independent and indi-
vidually correct, partial correctness of the program is guaranteed even if a new ET rule
is added to the existing program.
Program synthesis using ET rules is important in our proposed method for proving

atom sets. In program synthesis using ET rules, programs can be constructed simply
by making ET rules and accumulating them one by one [2, 12]. In order to prove atom
sets, it is necessary to construct an algorithm for the proof. As algorithms become more
complex, the need for the construction of cost-effective and reliable algorithms increases.
Program synthesis based on the accumulation of components can effectively construct
complex algorithms. Since ET rules can be considered components of a program, they
can confer considerable advantage in this respect.

PROOF OF UNSATISFIABILITY OF ATOM SETS BASED ON COMPUTATION 4421

2.2. Importance of proof of unsatisfiability. An ET program transforms a clause
set into a simpler one repeatedly, while preserving its declarative meaning. ET rules
can be used to describe various procedures. Efficient programs may be constructed by
making efficient ET rules from a specification, and by accumulating them. Thus, methods
for making ET rules are important for constructing efficient programs. The efficiency of
this computation depends on the number of clause set transformations. Generally, it is
preferable to decrease the number of transformations for the efficiency of the computation.

A False rule is a useful rule that speeds up computation by removing definite clauses
that contain body atoms which do not satisfy the constraints of predicates. Since there is
no need to obtain a set of answers for a clause that is removed by a False rule, transforming
such a clause unnecessarily increases the number of clause set transformations. Thus, it
is better to remove that clause as early as possible. A False rule can remove the clause,
so the rule is useful for constructing efficient programs.

This paper proposes a new method for proving that a given atom set is an unsatisfiable
atom set. The method is important in the making of False rules from specifications.
Assume that a False rule that applies to a clause C is made. The False rule can be made
using the following steps:

1. Select an atom set from the body of clause C.
2. Check whether the atom set is unsatisfiable.
3. Make a False rule from the unsatisfiable atom set.

In Step 1, one or more atoms are nondeterministically selected from the body atoms.
Step 3 can be accomplished using the method proposed by Miura, in which False rules
are generated from LEs made from specified unsatisfiable atom sets [13]. Step 2 of the
procedure has not yet been realized; therefore, it is essential that a method for Step 2 be
developed. This paper proposes just such a method for proving that a given atom set is
an unsatisfiable atom set; consequently, making the overall procedure complete.

3. Definition of Unsatisfiable Atom Set with Examples.

3.1. Background knowledge. The decision as to whether an atom set is unsatisfiable
is dependent on background knowledge. Background knowledge is defined by predicates
described by a set of clauses, denoted by D. A predicate is generally defined by one or
more clauses. For example, a predicate app for the concatenation of lists is defined by the
following two clauses:

cl1 : app([], X, X)←
cl2 : app([A | X], Y, [A | Z])← app(X, Y, Z)

Clause cl1 means that the concatenation of an empty list and a list X yields a list
X. Clause cl2 means that if list Z is the concatenation of lists X and Y , then list
[A | Z] is the concatenation of lists [A | X] and Y . Ground atoms obtained from the
two clauses are valid atoms; otherwise, they are unsatisfiable atoms. app([], [1], [1]) and
app([a, b], [c], [a, b, c]) are valid atoms, while app([], [1], []) and app([a], [b], [c]) are unsat-
isfiable atoms. A predicate rev is defined by the following two clauses and the definition
of the app predicate:

cl3 : rev([], [])←
cl4 : rev([A | X], Z)← app(Y, [A], Z), rev(X,Y)

Clause cl3 means an empty list is an empty list even if it is in reverse order. Clause
cl4 means that if a list Y is an element of a list X in reverse order and a list Z is the
concatenation of Y and [A], then Z is an element of [A | X] in reverse order.

4422 K. MIURA, K. AKAMA, H. KOIKE AND H. MABUCHI

3.2. Definition of unsatisfiable atom sets. An unsatisfiable atom set contains atoms
that do not satisfy predicate constraints on background knowledge D. The condition of
an unsatisfiable atom set is read as the equivalence relationship of the unsatisfiable atom
set and {false} with respect to D. The false atom is a special built-in atom that always
equates to false.

Definition 3.1. An atom set E is unsatisfiable with respect to background knowledge D
iff the formula

M(D) |= ∀(E↔ {false})
is true.1

3.3. Examples of unsatisfiable atom sets. Let us now look at examples of unsatisfi-
able atom sets using the predicates app and rev. The atom neq(A1, A2) means that A1
is not equal to A2.

E1 : {app(A, [X], A)}
E2 : {app(A, B, C), app(A, B, D), neq(C, D)}

Set E1 means that the concatenation of lists A and [X] is A. From the viewpoint of the
meaning of the predicate app, the third argument is a list that adds an element X to
the last element of A. Since the atom does not satisfy the predicate constraint, E1 is
unsatisfiable with respect to D. The next example is a set E2. This set means that lists
C and D result from the concatenation of lists A and B, and C is not equal to D. If the
neq atom satisfies the predicate constraint, then the two app atoms are false. Whereas,
if the two app atoms satisfy the predicate constraint, then the neq atom is false. Thus,
E2 is unsatisfiable with respect to D.

E3 : {rev(A, B), rev(A, C), neq(B, C)}
The set E3 means that lists B and C are elements of the list A in reverse order, and B
is not equal to C. From the viewpoint of the meaning of the predicate rev, B is equal to
C. Thus, E3 is unsatisfiable with respect to D.

4. Theorem for Unsatisfiable Atom Set.

4.1. Declarative meaning. In Theorem 4.1 (see Section 4.2), the unsatisfiability of an
atom set is proven by using the equivalence of declarative meaning. Given a set D of
definite clauses, the declarative meaning of D, denoted byM(D), is given by Definition
4.1.

Definition 4.1. Declarative meaning
Let S be the set of all substitutions. Let G be all ground atoms, where G ⊆ G. Given a

set A of atoms, pow(A) denotes the power set of A. Given a definite clause cl, a mapping
Tcl from pow(G) to pow(G) is defined by

Tcl(G) = {g | (cl = (H ← B)) & (θ ∈ S) & (Bθ ⊆ G) & (g = Hθ ∈ G)} .
Given a set D of definite clauses, TD is defined by

TD(G) = {
∪

Tcl(G) | (cl ∈ D)} .
M(D) is defined by

M(D) =
∪∞

n=1[TD]
n(∅) ,

where n is a non-negative integer, and [TD]
1(∅) = TD(∅), [TD]

n(∅) = TD([TD]
n−1(∅)).

1Let G be a set of ground atoms and let F be a logical formula. G |= F means that G is a model of F .
From G |= F ,M(D) |= ∀(E↔ {false}) is equal to ∀θ : (Eθ ⊆ G ⇒ (Eθ ⊆M(D)↔ false)).

PROOF OF UNSATISFIABILITY OF ATOM SETS BASED ON COMPUTATION 4423

4.2. Theorem for unsatisfiable atom set. From the definition of the declarative mean-
ing, if E is valid with respect to background knowledge D, then M({ans ← E}) is the
set of ans atoms. On the other hand, if E is unsatisfiable, then an empty set is obtained.

Theorem 4.1. Let E be an atom set. It is assumed that ans does not exist as predicates
on D. An atom set E is unsatisfiable with respect to D iff the formula

M(D ∪ {ans← E}) =M(D)
is true.

Proof: M(D) is a model of D.
M(D ∪ {ans← E}) =M(D)

m
M(D) ∪ {ans | ∃θ : Eθ ⊆M(D)} =M(D)

m
{ans | ∃θ : Eθ ⊆M(D)} = ∅

m
¬(∃θ : Eθ ⊆M(D))

m
∀θ : (Eθ ⊆ G ⇒ Eθ 6⊆ M(D))

m
∀θ : (Eθ ⊆ G ⇒ (Eθ ⊆M(D)↔ false))

m
M(D) |= ∀(E ↔ {false})

�
4.3. Definition of ET rules. In this paper, proof that an atom set is unsatisfiable
is computed using ET rules. An ET rule is a rewriting rule that replaces a clause set
with another one while preserving its declarative meaning with respect to background
knowledge D.

Definition 4.2. Definition of ET rules
A rewriting rule r is an ET rule with respect to D iff the formula

M(D ∪ cls1) =M(D ∪ cls2)

is true for any clause sets cls1 and cls2 such that cls1 is transformed to cls2 by r.

5. Algorithm for Proving Unsatisfiability of Atom Set.

5.1. Algorithm P. In this section, we present an algorithm P for proving unsatisfiability
of an atom set E using ET rules. From Theorem 4.1, a set E is an unsatisfiable atom
set with respect to background knowledge D iff E satisfies the conditionM(D ∪ {ans←
E}) =M(D). If an empty set { } is obtained from the clause set {ans← E} due to the
application of ET rules, then set E satisfies the conditionM(D ∪ {ans← E}) =M(D).
The proof procedure using algorithm P is as follows:

[Algorithm P = unsat(CS,R)]
Algorithm P is a function unsat. The inputs to the function are a clause set CS(=

{ans← E}) and an ET rule set R; while the output is {true, false}.
1. Transform CS into CS ′ by applying R zero or more times.
2. If CS ′ = { }, the output is true.
3. Find an atom set E ′ and a clause set CS ′′ such that

i. B is a set of atoms,

4424 K. MIURA, K. AKAMA, H. KOIKE AND H. MABUCHI

ii. {ans← B} ∪ CS ′′ = CS ′, and
iii. E ′ ⊂ B.

If unsat({ans← E ′} ∪ CS ′′, R) = true, then stop with success.
4. Select a clause ans← B and a clause set CS ′′ such that

i. B is a set of atoms and contains one or more variables, and
ii. {ans← B} ∪ CS ′′ = CS ′.

Select a variable V such that
i. V is a variable that has appeared in B.

Repeat the selection of other {ans← B} ∪ CS ′′ and other V until true is obtained
for all the outputs of procedures ©1 , ©2 , ©3 and ©4 .
©1 Make a substitution θ0 and a clause C0 such that

i. θ0 = {V/[]}, and
ii. C0 = (ansθ0 ← Bθ0).

Call unsat({C0} ∪ CS ′′, R).
©2 Make a substitution θk and a clause Ck such that

i. θk = {V/[P | Q∼k]}, and
ii. Ck = (ansθk ← Bθk).

Generate an inductively-used rule iR such that
i. θi = {V/Q∼k}, and
ii. iR = gen(∀(Bθi ↔ {false})).

Call unsat({Ck} ∪ CS ′′, R ∪ {iR}).
©3 Make a substitution θnum and a clause Cnum such that

i. θnum = {V/X∼num}, and
ii. Cnum = (ansθnum ← Bθnum).

Call unsat({Cnum} ∪ CS ′′, R).
©4 Make a substitution θsym and a clause Csym such that

i. θsym = {V/X∼sym}, and
ii. Csym = (ansθsym ← Bθsym).

Call unsat({Csym} ∪ CS ′′, R).

The algorithm contains many non-deterministic procedures. In Step 1 of the algorithm, if
an empty set is obtained from CS, it is preferable that clause transformation is repeated
until an empty set is obtained. However, an empty set is not necessarily obtained. In such
a case, the number of clause transformations is controlled in order to be able to select a
useful subset in Step 3 or a useful variable in Step 4. In Step 3, it is preferable that several
ground instances of E ′ are false with respect to background knowledge D. Since various
E ′s which satisfy that condition will exist, the set E ′ is nondeterministically selected from
among them. The variable V in Step 4 is nondeterministically selected from among useful
variables to execute an induction. gen is a function for relating an unsatisfiable formula
to an inductively-used rule. This function is expounded on in Section 5.2.

[Feature of induction in this paper]
The induction in this paper is executed by using the recursiveness of the list which

appears in an atom set. The computation is executed using a set of ET rules and an
inductively-used rule. Let δ1 be a substitution {V/[P | Q∼k]}; let δ2 be a substitution
{V/Q∼k}; and let δ3 be a substitution {V/[]}. V is a variable in an atom set E . The
unsatisfiability of Eδ1 is proven by induction in accordance with the following steps:

1. Make an inductively-used rule iR based on Eδ2, where it is assumed that Eδ2 is
unsatisfiable.

2. The unsatisfiability of Eδ3 is proven using rule set R.

PROOF OF UNSATISFIABILITY OF ATOM SETS BASED ON COMPUTATION 4425

3. The unsatisfiability of Eδ1 is proven using rule set R∪ {iR}.

5.2. Generation of inductively-used rules. An inductively-used rule is generated
from an unsatisfiable formula in Step 4 of algorithm P . An unsatisfiable formula called
Fe, describes the equivalence relationship of atom sets E and {false}, and is defined by

∀(E↔ {false}).

This formula means that the truth-value of E is equivalent to that of {false} for any
ground substitutions of variables in E. An inductively-used rule, iR, is defined by

U⇒ not(B),U,

where E = U+B. If atom set B is an empty set { }, then the form of the generated rules
is U⇒ false. Function gen is a mapping that relates an element in iR to an element in
Fe. For example, it is assumed that the following formula is obtained as an element in
Fe:

∀({rev(X,Y), rev(X,Z), neq(Y, Z)} ↔ {false})

Atom set B is the set of built-in atoms. Since the built-in atoms in the above formula are
neq(Y, Z), atom sets B and U are

B = {neq(Y, Z)},
U = {rev(X,Y), rev(X,Z)}.

Thus, the following formula is obtained:

rev(X,Y), rev(X,Z)⇒ not(neq(Y, Z)), rev(X, Y), rev(X,Z)

⇓ not(neq(Y, Z)) = eq(Y, Z).

rev(X,Y), rev(X,Z)⇒ eq(Y, Z), rev(X,Y), rev(X,Z)
⇓ The right-hand side can be replaced with {eq(Y, Z), rev(X, Y)}.

rev(X,Y), rev(X,Z)⇒ eq(Y, Z), rev(X,Y)

6. Example of Proof of Unsatisfiability. In this section, we prove the unsatisfiability
of an atom set that comprises atoms of predicates rev and neq, and which is described as

Erev = {rev(X,A), rev(X,B), neq(A,B)}

Set Erev means that lists A and B are elements of a list X in reverse order and A is not
equal to B. An initial set of rules for proving the unsatisfiability of Erev is the following
set, Rrev.

Rrev =

r1 : rev(A,B)⇒ eq(A, []), eq(B, [])
⇒ eq(A, [A1 | A2]), rev(A2, A3), app(A3, [A1], B)

r2 : rev(A,B), rev(A,B)⇒ rev(A,B)
r3 : neq(A,A)⇒ {false}
r4 : eq(A,B)⇒ {A = B}
r5 : eq([A | B], [C | D])⇒ eq(A,C), eq(B,D)
r6 : eq(A,B), {ivar(A), getInfo(A, num), list(B)} ⇒ {false}
r7 : eq(A,B), {ivar(A), getInfo(A, sym), list(B)} ⇒ {false}

The clause set CS for this example is {ans ← rev(X, A), rev(X, B), neq(A, B)}. In
Step 1 of algorithm P , an empty set cannot be obtained from CS by applying Rrev, so
let CS be CS ′. In Step 3, a subset E′

rev in which true is obtained as an output of the
function unsat does not exist, so we execute Step 4. In Step 4, let variable X be a variable

4426 K. MIURA, K. AKAMA, H. KOIKE AND H. MABUCHI

selected from among those in the body of CS ′. Additionally, the following functions are
called in Step 4:

©1 : unsat({ans← rev([], A), rev([], B), neq(A,B)},Rrev)

©2 : unsat({ans← rev([P | Q∼k], A), rev([P | Q∼k], B), neq(A,B)},Rrev + {iRrev})
iRrev = (rev(Q∼k, A), rev(Q∼k, B)⇒ eq(A,B), rev(Q∼k, A))

©3 : unsat({ans← rev(X∼num, A), rev(X∼num, B), neq(A,B)},Rrev)

©4 : unsat({ans← rev(X∼sym, A), rev(X∼sym, B), neq(A,B)},Rrev)

[Executing function ©1]
An empty set is obtained from {ans← rev([], A), rev([], B), neq(A, B)} by applying

Rrev. In Step 1, the following set is obtained from the clause set:{
ans← neq(A, []), eq([], [C | D]), rev(D,E), app(E, [C], A)

}
Since the first argument of the underlined atom is an empty set [] and the second argument
is a list, [C | D], composed of one or more elements, the constraint of the eq predicate
cannot be satisfied. An empty set is obtained because this clause is removed.
[Executing function ©2]
By applying the rules in Rrev + {iRrev} four times, the following set is obtained from
{ans← rev([P | Q∼k], A), rev([P | Q∼k], B), neq(A,B)}:{

ans← neq(A,B), app(C, [D], A), app(C, [D], B), rev(E∼k, C)
}

We now treat the underlined atoms as an atom set. The atom set can be read as follows:
The concatenation of lists C and [D] results in lists A and B, and A is not equal to B.
From the viewpoint of the meaning of the app predicate, it is believed that A is equal to
B. Thus, there is a possibility that the atom set is an unsatisfiable atom set. In Step
3, let E ′ be the atom set {neq(A,B), app(C, [D], A), app(C, [D], B)}. The details of the
computation of the following function is omitted in this paper due to space constraints.

unsat({ans← neq(A,B), app(C, [D], A), app(C, [D], B)},Rrev)

[Executing function ©3]
An empty set is obtained from {ans ← rev(X∼num, A), rev(X∼num, B), neq(A,B)}

when Rrev is applied. In Step 1, the following set is obtained from the clause set:

{ans← rev(A∼num, B), neq(C,B), eq(A∼num, [D | E]), rev(E,F), app(F, [D], C)}
Since the first argument of the underlined atom is a digit and the second argument is
a list, the constraint of the eq predicate cannot be satisfied. An empty set is obtained
because this clause is removed.
[Executing function ©4]
An empty set is obtained from {ans← rev(X∼sym, A), rev(X∼sym, B), neq(A,B)} when

Rrev is applied. In step 1, the following set is obtained from the clause set:

{ans← rev(A∼sym, B), neq(C,B), eq(A∼sym, [D | E]), rev(E,F), app(F, [D], C)}
Since the first argument of the underlined atom is a symbol and the second argument is
a list, the constraint of the eq predicate cannot be satisfied. An empty set is obtained
because this clause is removed.
Consequently, since the outputs of the four functions ©1 , ©2 , ©3 , and ©4 are true, Erev

is deemed unsatisfiable with respect to D.

PROOF OF UNSATISFIABILITY OF ATOM SETS BASED ON COMPUTATION 4427

7. Discussion and Comparisons.

7.1. Application to program generation. Methods for generating programs from
specifications are essential. Methods for generating C, C++, and Java programs have
been proposed by many researchers [5, 8, 11]. We also proposed a system for generating
C programs from sets of ET rules [16]. Consequently, if ET rules can be automatically
generated from specifications, then C programs can be automatically generated (indi-
rectly) from those specifications (via ET rules) by combining the system and an ET rule
generator. Therefore, methods for generating ET rules, such as the LE-based method
[13], are very important.

The proof method proposed in this paper is closely connected to the methods for making
ET rules. In particular, the proof method is very useful when ET rules are generated via
the LE-based method. In the LE-based method, ET rules are generated from specifications
via LEs. An LE describes an equivalence relationship between two logical formulas under
specified preconditions. It is necessary to prove the equivalence of LEs when ET rules are
made by the LE-based method. The proof method proposed in this paper is useful for
proving the equivalence of LEs.

Methods for proving the correctness of logical formulas have been proposed before
[6, 7, 15]. However, these proposals were not focused on its application to program
generation, so the methods are not closely connected to program generation. As a result,
the proposals cannot be applied to problem settings such as those dealt with in this paper.

7.2. Comparison with related studies. Researchers such as Hsiang and Srivas [6] and
Sakurai and Motoda [15] proposed methods for proving the correctness of logical formulas.
In their proposed methods, the correctness of logical formulas is proven based on logic
programming theory [10]. Sakurai and Motoda [15] presented problems [4] that cannot
be proven except by induction and proposed a method for proving those problems. On
the other hand, Hsiang and Srivas [6] proposed a method for proving logical formulas that
includes a list data structure that is similar to our app predicate. Induction is also used
in a proposed method by Huet and Hullot for proving sets of equations [7].

In this paper and related studies, the correctness of logical formulas is proven by replac-
ing a logical formula with another until certain specified conditions have been satisfied.
The condition used in this paper is that the result of replacements is an empty set. In re-
lated studies, a logical formula in which atoms on the right-hand side are equal to those on
the left-hand side is obtained. The method proposed in this paper (the structural method)
replaces a logical formula using a set R of ET rules, while the methods proposed in related
studies (the flat method) use procedures obtained from a set D of definite clauses. The
difference between our proposed method and those methods is that the set R can add
new rules while the set D cannot. The structural method can prove logical formulas by
making new rules and adding them to the set R if rules that are needed for the proof do
not exist (refer to the left side of Figure 1). Our original contribution in this paper is
the concept underlying the structural method. For example, a rule that is made based
on {app(A, B, C), app(A, B, D), neq(C, D)} is needed to prove unsatisfiability of
{rev(A, B), rev(A, C), neq(B, C)}. In the structural method, the rule can be made by
proving the unsatisfiability of {app(A, B, C), app(A, B, D), neq(C, D)} in the middle
of the proof of {rev(A, B), rev(A, C), neq(B, C)} if the rule does not exist in the set
R. Additionally, the application of ET rules can be recycled for various proof problems,
so a competent procedure set can be constructed by accumulating ET rules.

7.3. Enhancement of ET rule generation system. The LE-based method and a
meta-computation-based method [2] have been proposed for generating ET rules from

4428 K. MIURA, K. AKAMA, H. KOIKE AND H. MABUCHI

Logical formula (Atom set)

{not(Z), X, Y}

{ yes ! not(Z), X, Y }

Replace!

{ }

{ yes ! not(Z), P, Q, Y }

Replace
(By ET rules in R)!

A set R of ET rules

{ yes ! not(Z), P, T }

Replace!

"Prove a logical formula#!

{ yes ! Q, Y }

{ }

Replace
(By ET rules in R)!

"Prove a logical formula#!

Make new ET rule
and

Add new rule to R

Find sub-problem

Find sub-problem

"Prove a logical formula#!

Given!

$ Structural method (This paper)!

Given!

Logical formula (Clause)

Z ! X, Y

"Prove a logical formula#!

Z ! X, Y

Z ! P, Q, Y

Replace
(By procedures obtained from D)!

W, P ! P, Q, Y

Replace!

W, P ! W, P

Replace!

A set D of definite clauses

% Flat method (Related studies)!

Figure 1. Difference between the proof method proposed in this paper
and those from related studies

Table 1. Atom sets that can be proved using our proposed method

Atom set

Pattern which does not need induction {app(A, [B], [])}, {rev([], [A | B])}

Pattern which needs induction

{app(A, [B], A)},
{app(A, [B | C], C)},
{app(A, B, C), app(A, B, D), neq(C, D)},
{rev([A | B], B)},
{rev(A, B), rev(A, C), neq(B, C)},
{rev(B, A), rev(A, C), neq(B, C)}

specifications. By incorporating our proposed method into the LE-based method, the
range of ET rules that can be made by the LE-based method is expanded. As a result,
many False rules, which are important for solving constraint satisfaction problems, can
be made based on the proof of unsatisfiable atom sets [2]. By proposing a method for
proving unsatisfiable atom sets, the correctness of the following LE can be guaranteed.
The E in the following formula is a set of atoms.

∀(E↔ {false})
The correctness of this LE cannot be proven by conventional LE-based methods.
The following rule can be generated by the method proposed in this paper, but not by

the meta-computation-based method:

r : rev(A, B), rev(A, C), neq(B, C)⇒ false.

Rule r is made by the following three steps:

1. Prove that atom set {rev(A, B), rev(A, C), neq(B, C)} is unsatisfiable.
2. Make an LE ∀({rev(A, B), rev(A, C), neq(B, C)} ↔ {false}) from the atom set.
3. Generate rule r from the LE.

PROOF OF UNSATISFIABILITY OF ATOM SETS BASED ON COMPUTATION 4429

One reason why r cannot be made by the meta-computation-based method is that the
variable A in r can present lists of any length. If the first argument in the rev atom of r
is a variable, then induction is necessary. The induction mechanism is incorporated into
our proposed method, whereas it is not in the meta-computation-based method.

In this paper, we proposed, for the first time, an induction method based on computa-
tion by ET rules which greatly increases the number of provable atom sets. With a focus
on atom sets for the app and the rev predicates, we proved unsatisfiability of the eight
(8) atom sets shown in Table 1 using our proposed method. An induction mechanism was
necessary to prove the unsatisfiability of six (6) of the atom sets listed. The unsatisfiabil-
ity of these atom sets has been proven for the very first time as a result of our proposed
method.

8. Conclusions. In this paper, we outlined the importance of proving atom sets in the
making of ET rules and explained the need for an induction mechanism based on compu-
tation by ET rules for proving various atom sets. Consequently, we proposed an induction
mechanism based on computation by ET rules and derived a new method for proving atom
sets using the mechanism. In particular, in this paper we focused on proof of unsatis-
fiability of atom sets. Our proposed method executes induction using the recursiveness
of a list that appears in an atom set. Since the proof of unsatisfiability of atom sets is
effective for making False rules, we believe that many False rules can be made from the
results outlined in this paper. Future work will include further development of ET rules
generation system based on the method proposed in this paper.

REFERENCES

[1] K. Akama, H. Koike and E. Miyamoto, A theoretical foundation for generation of equivalent transfor-
mation rules (program transformation, symbolic computation and algebraic manipulation), Research
Institute for Mathematical Sciences Kyoto University Koukyuroku, vol.1125, pp.44-58, 2000.

[2] K. Akama, E. Nantajeewarawat and H. Koike, Program generation in the equivalent transformation
computation model using the squeeze method, Proc. of PSI2006, LNCS, vol.4378, pp.41-54, 2007.

[3] K. Akama, E. Nantajeewarawat and H. Koike, Constructing parallel programs based on rule gen-
erators, Proc. of the 1st International Conference on Advanced Communications and Computation
(INFOCOMP 2011), Barcelona, Spain, pp.173-178, 2011.

[4] R. S. Boyer and J. S. Moore, Proving theorems about lisp functions, Journal of the ACM, vol.22,
no.1, pp.129-144, 1975.

[5] M. Harada, T. Mizuno and S. Hamada, Executable C++ program generation form the structured
object-oriented design diagrams, Transactions of Information Processing Society of Japan, vol.40,
no.7, pp.2988-3000, 1999 (in Japanese).

[6] J. Hsiang and M. Srivas, Automatic inductive theorem proving using prolog, Theoretical Computer
Science, vol.54, no.1, pp.3-28, 1987.

[7] G. Huet and J. M. Hullot, Proofs by induction in equational theories with constructors, Proc. of the
21st Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp.96-107,
1980.

[8] M. Ikeda, T. Nakamura, Y. Takata and H. Seki, Algebraic specification of user interface and its
automatic implementation, The Special Interest Group Notes of IPSJ. SE, vol.2001, no.114, pp.9-16,
2001 (in Japanese).

[9] H. Koike, K. Akama and E. Boyd, Program synthesis by generating equivalent transformation rules,
Proc. of the 2nd International Conference on Intelligent Technologies, Bangkok, Thailand, pp.250-
259, 2001.

[10] J. W. Lloyd, Foundations of Logic Programming, 2nd Edition, Springer-Verlag, 1987.
[11] Y. Lu, H. Awaya, H. Seki, M. Fujii and K. Ninomiya, On a translation from algebraic specifications of

abstract sequential machines into programs, The IEICE Transactions on Information and Systems,
vol.J73-D-I, no.2, pp.201-213, 1990 (in Japanese).

4430 K. MIURA, K. AKAMA, H. KOIKE AND H. MABUCHI

[12] H. Mabuchi, K. Akama and T. Wakatsuki, Equivalent transformation rules as components of pro-
grams, International Journal of Innovative Computing, Information and Control, vol.3, no.3, pp.685-
696, 2007.

[13] K. Miura, K. Akama and H. Mabuchi, Creation of ET rules from logical formulas representing
equivalent relations, International Journal of Innovative Computing, Information and Control, vol.5,
no.2, pp.263-277, 2009.

[14] K. Miura, K. Akama and H. Mabuchi, Generating Speq rules based on automatic proof of logical
equivalence, International Journal of Computer Science, vol.3, no.3, pp.190-198, 2008.

[15] A. Sakurai and H. Motoda, Proving definite clauses without explicit use of inductions, Lecture Notes
in Computer Science, vol.383, pp.11-26, 1989.

[16] T. Wakatsuki, K. Akama and H. Mabuchi, A framework for synthesizing low-level imperative pro-
grams from deterministic abstract programs, Technical Report of the Institute of Electronics, Infor-
mation and Communication Engineers, vol.107, no.392, pp.37-42, 2007 (in Japanese).

