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Abstract. This paper deals with the quantized H∞ control problem for uncertain net-
worked control system with Markovian jumps and time delays. In the study, network-
induced delays and limited communication capacity due to signal quantization are both
taken into consideration. The system contains time delays and Markovian jumps with
partially known transition probabilities. By linear inequality approach, a sufficient con-
dition is derived for the resulting closed-loop system to be stochastically stable with a
prescribed H∞ performance level. Finally, a numerical example is given to illustrate the
effectiveness and efficiency of the proposed design method.
Keywords: Network control system, Quantization, Markov jump linear system, Linear
matrix inequality

1. Introduction. Networked control systems (NCSs) with Markovian jumps are typical
complex stochastic dynamic systems, which can describe many real world systems, and
more attention have been paid on stability analysis and control synthesis of this kind
of complex stochastic dynamic systems, see for example [5-8] and the references therein.
Network control systems become an important way to study complex systems due to their
low cost, simple installation, maintenance and high reliability. Communication channels
can reduce the cost of cables and power, simplify the installation and maintenance of
the whole systems, and increase the reliability compared to the traditional point-to-point
wiring system. NCSs have many applications such as remote surgery, unmanned aerial,
vehicles and communication network. Now, more and more efforts have been devoted to
both the stability and the control of the NCSs [1-4].

Due to the limited transmission capacity of the network and some devices in closed-
loop systems, signals should be quantized before they sent to the next network node
in practical. In order to get better performance of considered systems, more effects of
quantization in NCSs should be took into consideration. The quantizer can be regarded as
a coder which converts the continuous signal into piecewise continuous signal taking values
in a finite set, which is usually employed when the observation and control signals are sent
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via limited communication channel. More attentions have been paid on the quantization
problems in recent years, see for example, [11-14], and the references therein.
In NCSs, one of the important scheduling issues to treat is the effect of the network-

induced delay on the system performance. For NCSs deal with different scheduling proto-
cols, the network-induced delay may be constant, time-varying, or even random variable.
There have been lots of works concerned with the analysis and synthesis problems for
NCSs with network-induced delay, see for example, [9-12]. Among them, the time-delay
NCSs modeled as Markov chains in NCSs have received much research attention. In the
literature, there have been basically two approach in describing time-delay in Markov
systems. Time-delay in Markovian jump systems independent and dependent on sys-
tems mode are reported in [15,17-20]. In [5-8], due to their practicality and simplicity
in describing network-induced delays [5-8], stabilization and H∞ problem are studied for
employing Markovian systems to describe the network-included delay.
Looking into the existing results of NCSs, there are many works in studying time-delay

modeled as Markov chains and quantization, respectively. However, in practice, network
stochastic delay and quantization are quite often. However, there has been very limited
work that has taken such type of multiple network-induced phenomenon into account. To
the best of the authors’ knowledge, up to know, little attention has been focus on NCSs
with quantization and time-delay modeled as Markov jump system. On the other hand,
NCSs lie at the intersection of control theory and communication theory. We need to
consider the problem of robust stability and immeasurabilty of network together.
The goal of this paper is to study robust H∞ control problem for uncertain NCSs with

quantization and time-delays. Partially unknown transition probabilities of Markov chain
with mode-dependent time-delays are used to model the system, and robust stochastically
stable condition and quantized feedback controller are developed based on the quantiza-
tion and delay-dependent with H∞ performance. The sufficient conditions proposed are
in linear matrix inequality (LMI) form. Finally, numerical examples are provided to
illustrate the effectiveness of the proposed design approach.

2. Problem Statement and Preliminaries. Consider the following NCS:

x(k + 1) =A(r(k))x(k) + Ad(r(k))x(k − d(r(k)))

+B(r(k))u(k) +Bw(r(k))w(k)

z(k) =C(r(k))x(k) + Cd(r(k))x(k − d(r(k)))

+D(r(k))u(k) +Dw(r(k))w(k)

(1)

where for k ∈ Z, x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input, w(k) ∈ Rp is
the disturbance input which belongs to L2[0,∞), z(k) ∈ Rq is the output to be controlled.
d(r(k)) is a constant, denoting the time-delay of the system when the system is in mode
r(k).
The parameter r(k) represents a discrete-time homogeneous Markov chain taking values

in a finite set I = {1, 2, · · · , N} with the associated transition probability matrix Λ ∈
RN×N whose elements are given by pij = Pr{r(k + 1) = j|r(k) = i}, where 0 ≤ pij ≤ 1,
∀i, j ∈ I, and

∑
N
j=1pij = 1, ∀i ∈ I.

In addition, the transition probabilities in Markov chain are considered to be partially
accessed, that is, some elements in matrix Λ are unknown. For instance, system (1) with
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four modes, the transition probability matrix Λ may be in the form:

Λ =


p11 ? p13 p14
p21 ? ? ?
p31 p32 ? p34
? ? p43 p44

 (2)

where “?” stands for the unknown element. For notation clarity, we denote that for any
i ∈ I

I i
k , {j : pij is known}, I i

uk , {j : pij is unknown}. (3)

To ease the presentation, in the following, we denote A(r(k)), r(k) = i by Ai. The same
notation will also be used for Ad(r(k)), B(r(k)), Bw(r(k)), C(r(k)), Cd(r(k)), D(r(k)),
and Dw(r(k)).

Consider the uncertainties in system (1), we assume that

A(r(k)) = Ā(r(k)) + ∆A(r(k))

Ad(r(k)) = Ād(r(k)) + ∆Ad(r(k))

B(r(k)) = B̄(r(k)) + ∆B(r(k))

C(r(k)) = C̄(r(k)) + ∆C(r(k))

Cd(r(k)) = C̄d(r(k)) + ∆Cd(r(k))

D(r(k)) = D̄(r(k)) + ∆D(r(k))

where Ā(r(k)), Ād(r(k)), B̄(r(k)), C̄(r(k)), C̄d(r(k)), and D̄(r(k)), for r(k) = i, i ∈
I, are known real-valued constant matrices of appropriate dimensions that describe the
nominal system. ∆A(r(k)), ∆Ad(r(k)), ∆B(r(k)), ∆C(r(k)), ∆Cd(r(k)) and ∆D(r(k))
are unknown matrices denoting the uncertainties in the system.

The admissible parameter uncertainties in this paper are assumed to be modeled as(
∆A(r(k)) ∆Ad(r(k)) ∆B(r(k))
∆C(r(k)) ∆Cd(r(k)) ∆D(r(k))

)
=

(
G1(r(k))
G2(r(k))

)
∆r(k)

(
H1(r(k)) H2(r(k)) H3(r(k))

)
with ‖∆r(k)‖ ≤ I, ∀k ∈ Z and ∀r(k) = i, i ∈ I.

Consider the quantization effect, it is assumed that the measurement signals will be
quantized through the network before they are transmitted to the controller. The set of

Figure 1. The structure of network control systems (1)
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quantized levels is described as U = {±ui, ui = ρiu0,±1,±2, . . .}∪{0}, 0 < ρ < 1, u0 > 0,
and the logarithmic quantizer q(·) as in [13] is applied

q(v) =

 ui, if 1
1+δ

ρiu0 < v ≤ 1
1−δ

ρiu0;
0, if v = 0;
−q(−v), if v < 0

(4)

where the parameter ρ is termed as quantization density, and δ = 1−ρ
1+ρ

. From [13], we

have

q(v) = (1 +4k)v (5)

where 4k ∈ [−δ, δ], which is a suitable model for the logarithmic quantizer q(v) with
parameter δ.
Consider the quantizing effects are transformed into sector bounded uncertainties, as-

sociated to system (1), state feedback controller based on quantized state information is
designed as

u(k) = K(r(k))q(x(k)) = Ki(I +∆k)x(k), ‖∆k‖ ≤ δ (6)

where the matrix Ki are controller gains, and combining (1) and (6), the closed loop
system is as follows:

x(k + 1) = Âix(k) + Adix(k − d(r(k))) +Bwiw(k)

z(k) = Ĉix(k) + Cdix(k − d(r(k)))Dwiw(k)
(7)

where Âi = Ai +BiKi(I +∆k), Ĉi = Ci +DiKi(I +∆k).

2.1. Several definitions and theorems. In order to present the main results of this
paper, we first introduce the following definitions and lemmas, which will be essential for
the development of our main results. In order to present the main results of this paper,
we first introduce the following definitions, which will be essential for our results.

Definition 2.1. For system (1) is said to be stochastically stable, if for any initial
(x(0), r(0)), the following holds

E

{
∞∑
k=0

‖x(k)‖2|x(0), r(0)

}
< ∞ (8)

Definition 2.2. Given the disturbance input w(k) ∈ L2, a scalar γ > 0, system (1) is
stochastically stable and with an H∞ performance level γ if satisfies the following two
requirements:
1. When w(k) = 0, system (1) is stochastically stable in the sense of Definition 2.1.
2. When w(k) 6= 0, under zero initial conditions, the following inequality holds

E

{
∞∑
k=0

‖z(k)‖2
}

< γ2‖w(k)‖2 (9)

Hence, the aim of this paper is to design state feedback controller Ki such that the
system (7) with partially unknown transition probability Markovian chain is stochastically
stable with an H∞ performance level γ.

Lemma 2.1. For any vectors x, y ∈ Rn, matrices D, E and F with appropriate dimen-
sions, and any scalar ε > 0, if F TF ≤ I, then

DFE + ETF TDT ≤ εDDT ε+ ε−1ETE (10)
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3. Main Results. Based on the previous results, our main purpose in this section is
to develop the robust stochastically stable condition and design the feedback controller
with an H∞ performance for the NCS with time-varying delay, quantization and partially
unknown transition probabilities Markovian chain. Firstly, sufficient conditions are given
to ensure that the condition (8) holds.

Theorem 3.1. Consider the system (7), when w(k) = 0, the system (7) with partially
unknown transition probabilities Markovian chain is stochastically stable, if there exist
matrices Pi > 0, Ki > 0, i ∈ I and R > 0 satisfying:

Φi =

 −Pi + (dm − dn + 1)R ∗ ∗
0 −R ∗
Âi Adi −P̄−1

i

 < 0 (11)

where P̄i =
∑N

j=1 pijPj, dm = max{di, i ∈ I}, dn = min{di, i ∈ I}.

Proof: Construct the following Lyapunov functional candidate for system (7) as

V (x(k), r(k)) = V1(x(k), r(k)) + V2(x(k), r(k)) + V3(x(k), r(k))

V1(x(k), r(k)) = xT (k)P (r(k))x(k)

V2(x(k), r(k)) =
k−1∑

s=k−d(k)

xT (s)Rx(s)

V3(x(k), r(k)) =

k−d1∑
j=k−d2

k−1∑
s=j

xT (s)Rx(s)

(12)

Let E{·} stand for the mathematics statistical expectation of the stochastic process, one
has from (7) for r(k) = i and r(k + 1) = j is given by

E{∆V (k)} , E{V (x(k + 1), r(k + 1))|x(k), r(k)} − V (x(k), r(k))

then for each r(k) = i, i ∈ I, we obtain

E{∆V1(k)} =(Âix(k) + Adix(k − d(r(k))))T P̄i(Âix(k) + Adix(k − d(r(k))))

E{∆V2(k)} =xT (k)Rx(k)− xT (k − d(k))Rx(k − d(k))

+
k−1∑

s=k+1−d(k+1)

xT (s)Rx(s)−
k−1∑

s=k+1−d(k)

xT (s)Rx(s)

≤xT (k)Rx(k)− xT (k − d(k))Rx(k − d(k)) +

k−d1∑
s=k−d2+1

xT (s)Rx(s)

E{∆V3(k)} =

k−d1∑
j=k−d2

k∑
s=j

xT (s)Rx(s)−
k−d1∑

j=k−d2

k−1∑
s=j

xT (s)Rx(s)

= (d2 − d1)x
T (k)Rx(k)−

k−d1∑
s=k−d2+1

xT (s)Rx(s)

(13)

A combination of (13) leads to

E(∆V (k)) ≤ ηT (k)Φ̄iη(k)
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where

ηT (k) =
[
xT (k) xT (k − d(k))

]
Φ̄i = diag{−Pi + (dm − dn + 1)R,−R}+ [Âi Adi]

T P̄i[Âi Adi]

by Schur Lemma, we can get Φ̄i ≤ Φi. From Theorem 3.1, we can obtain Φ̄i < 0, that
means

E{∆V (k)} ≤ 0

thus

E{V (x(k + 1), r(k + 1))|x(k), r(k)} − V (x(k), r(k))

≤ − λmin(−Φ) ≤ −βx(k)Tx(k)
(14)

where λmin(−Φ) denotes the minimal eigenvalue of −Φ and β = inf{λmin(−Φ)}, from (14)
we can obtain that for any T ≥ 1

E{V (x(T + 1), r(T + 1))} − E{V (x(0), r(0))} ≤ −β

T∑
k=0

E{x(k)Tx(k)}

Thus, the following holds for any T ≥ 1

T∑
k=0

E{x(k)Tx(k)} ≤ 1

β
(E{V (x(0), r(0))} − E{V (x(T + 1), r(T + 1))})

≤ 1

β
E{V (x(0), r(0))}

Implying
T∑

k=0

E{x(k)Tx(k)} ≤ 1

β
E{V (x(0), r(0))} < ∞

Therefore, by Definition 2.1, it can be verified that the system (7) is stochastically stable.
This complete the proof.

Theorem 3.2. Consider system (7), when w(k) 6= 0, for given quantization density γ > 0,
the system (7) with partially unknown transition probabilities Markovian chain is robust
stochastically stable with an H∞ performance level γ under zero initial condition, if there
exist matrices Xi > 0, Ki, scalars ε1i > 0, i ∈ I and R > 0 satisfying:

Ωi =


−X−1

i + (dm − dn + 1)R ∗ ∗ ∗ ∗ ∗
0 −R ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗

W T
i Ãi W T

i Ādi W T
i Bwi φ44 ∗ ∗

C̃i C̄di Dwi ε1iW
T
i G1iG

T
2i φ55 ∗

H̃1i H2i 0 0 0 −ε1iI

 < 0

(15)
where

φ44 = −X + ε1iW
T
i G1iG

T
1iWi

φ55 = −I + ε1iG2iG
T
2i

H̃1i = H1i +H3iKi

Ãi = Āi + B̄iKi(I +∆k)
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C̃i = C̄i + D̄iKi(I +∆k)

X = diag{X1, · · · , XN}

Proof: First, by Theorem 3.1, the system (7) with w(k) = 0 is stochastically stable,
so next, we proceed to prove the system with disturbance (7) has H∞ performance level
γ. For the next, the same Lyapunov functional as (12) and same techniques in the proof
of Theorem 3.1 will be adopted to complete the proof of Theorem 3.2.

Define δT (k) =
[
xT (k) xT (k − d(k)) w(k)

]
, apply the inequality (15), we can obtain

E(∆V (k)) ≤ δT (k)Ω̄iδ(k)− (E(zT (k)z(k))− γ2wT (k)w(k))

where

Ω̄i =


−Pi + (dm − dn + 1)R ∗ ∗ ∗ ∗

0 −R ∗ ∗ ∗
0 0 −γ2I ∗ ∗
Âi Adi Bwi −P̄i

−1 ∗
Ĉi Cdi Dwi 0 I

 (16)

For system (7) with partially unknown transition probabilities, it is easy to get

P̄i =
N∑
j=1

pijPj =
N∑

j∈Iik

pijPj +
N∑

j∈Iiuk

pijPj

≤
N∑

j∈Iik

pijPj +

1−
N∑

j∈Iik

pij

 N∑
j∈Iiuk

Pj = P̃i.

(17)

Noting that

P̃i = WiPW T
i

where

Wi =

(
√
pi1, · · · ,

√
pij,

√
1−

∑N

j∈Iik
pij, · · · ,

√
1−

∑N

j∈Iik
pij, · · · ,

√
piN

)
P = diag{P1, · · · , PN}

and pij are known transition probabilities, and 1 −
∑N

j∈Iik
pij stands for the unknown

transition probabilities of elements.
According to Schur Lemma, we obtain Ω̄ < 0 if and only if there exist

Ω̃i =


−Pi + (dm − dn + 1)R ∗ ∗ ∗ ∗

0 −R ∗ ∗ ∗
0 0 −γ2I ∗ ∗

W T
i Âi W T

i Adi W T
i Bwi −P−1∗

Ĉi Cdi Dwi 0 I

 < 0 (18)

Note that all admissible uncertainties of system (7), (18) can be written as

Ω̃i =


−Pi + (dm − dn + 1)R ∗ ∗ ∗ ∗

0 −R ∗ ∗ ∗
0 0 −γ2I ∗ ∗

W T
i Ãi W T

i Ādi W T
i Bwi −P−1∗

C̃i C̄di Dwi 0 I


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+


0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

W T
i G1i∆iH̃1i W T

i G1i∆iH2i 0 0 ∗
G2i∆iH̃1i G2i∆iH2i 0 0 0

 < 0 (19)

In view of Lemma 2.1, we obtain that (19) holds, if and only if there exist scalars
ε1i > 0, such that

Ω̂i =


−Pi + (dm − dn + 1)R ∗ ∗ ∗ ∗

0 −R ∗ ∗ ∗
0 0 −γ2I ∗ ∗

W T
i Ãi W T

i Ādi W T
i Bwi −P−1 ∗

C̃i C̄di Dwi 0 I



+ ε1i


0
0
0

W T
i G1i

G2i

∆i

[
GT

1iWi GT
2i 0 0 0

]

+ ε−1
1i


H̃T

1i

HT
2i

0
0
0

∆i

[
H̃1i H2i 0 0 0

]
< 0

(20)

By Schur Lemma, let Xi = P−1
i . If matrix inequality (20) holds, from Theorem 3.2.

Ωi < 0 is equal to Ω̂i < 0. Then

E(∆V (k)) + E(zT (k)z(k))− γ2wT (k)w(k) ≤ δT (k)Ω̄iδ(k) < 0 (21)

taking the sum of both sides of (21) from k = 0 to ∞, and recalling that x(0) = 0, the
following inequality holds

E

{
∞∑
k=0

zT (k)z(k)

}
≤ γ2

∞∑
k=0

wT (k)w(k)

Therefore, by Definition 2.2, system (7) with partially unknown transition probability
Markovian chain is stochastically stable with an H∞ performance level γ.

4. Control Design. In this section, we will consider the quantizer, and a robust quan-
tized controller will be designed such that system (7) with time-delay and partially known
transition probabilities Markovian chain is robustly stochastically stable and has a robust
H∞ performance level γ for all admissible parameter uncertainties.

Theorem 4.1. Consider system (7), for given quantization density γ > 0, system (7)
with partially unknown transition probabilities Markovian chain is robust stochastically
stable with an H∞ performance level γ under zero initial condition, if there exist matrices
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Xi > 0, R̃i > 0, Yi, and scalars ε1i > 0 and ε2i > 0, i ∈ I satisfying:

Πi =



φ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −R̃i ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗ ∗ ∗
φ41 W T

i ĀdiXi W T
i Bwi φ44 ∗ ∗ ∗ ∗

φ51 C̄diXi Dwi ε1iW
T
i G1iG

T
2i φ55 ∗ ∗ ∗

φ61 H2iXi 0 0 0 −ε1iI ∗ ∗
0 0 0 B̄T

i Wi D̄T
i 0 −ε2iI ∗

Yi 0 0 0 0 0 0 −ε2i
δ2

I


< 0 (22)

and the suitable controller (6) is Ki = YiX
−1
i where

φ11 = −Xi + (dm − dn + 1)R̃i φ41 = W T
i (ĀiXi + B̄iYi)

φ44 = −X + ε1iW
T
i G1iG

T
1iWi φ51 = C̄iXi + D̄iYi

φ55 = −I + ε1iG2iG
T
2i φ61 = H1iXi +H3iYi

Proof: Consider the quantizer effect, (15) can be rewritten as

Πi =


−X−1

i + (dm − dn + 1)R ∗ ∗ ∗ ∗ ∗
0 −R ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗

W T
i (Āi + B̄iKi) W T

i Ādi W T
i Bwi φ44 ∗ ∗

C̄i + D̄iKi C̄di Dwi ε1iW
T
i G1iG

T
2i φ55 ∗

H̃1i H2i 0 0 0 −ε1iI



+


0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗

W T
i B̄iKi∆k 0 0 0 ∗ ∗
D̄iKi∆k 0 0 0 0 ∗

0 0 0 0 0 0

 < 0

(23)

In view of Lemma 2.1, we obtain that (22) holds, if and only if there exist scalars
ε2i > 0, such that

Πi =


−X−1

i + (dm − dn + 1)R ∗ ∗ ∗ ∗ ∗
0 −R ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗

W T
i (Āi + B̄iKi) W T

i Ādi W T
i Bwi φ44 ∗ ∗

C̄i + D̄iKi C̄di Dwi ε1iW
T
i G1iG

T
2i φ55 ∗

H̃1i H2i 0 0 0 −ε1iI



+ ε−1
2i


0
0
0

W T
i B̄i

D̄i

0


[
0 0 0 B̄T

i Wi D̄T
i 0

]
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+ ε2i


KT

i

0
0
0
0
0

∆2
k

[
Ki 0 0 0 0 0

]
< 0

due to

∆2
k ≤ δ2

By Schur Lemma, we can get

Πi =



−X−1
i + (dm − dn + 1)R ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −R ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗ ∗ ∗

W T
i (Āi + B̄iKi) W T

i Ādi W T
i Bwi φ44 ∗ ∗ ∗ ∗

C̄i + D̄iKi Dwi ε1iW
T
i G1iG

T
2i φ55 ∗ ∗ ∗

H̃1i H2i 0 0 0 −ε1iI ∗ ∗
0 0 0 B̄T

i Wi D̄
T
i 0 −ε2iI ∗

Ki 0 0 0 0 0 0 −ε2i
δ2

I


< 0

(24)
Letting Ki = YiX

−1
i , multiplying the both sides of (23) by diag{Xi, Xi, I, I, I, I, I, I},

defining new matrix R̃i = XiRXi, we can get condition (17). This completes the proof.

5. Numerical Example. In this section, an economic system [27] is considered to show
the usefulness of the results above.
Consider system (7) with the following parameters. The system has three modes,

I = {1, 2, 3}. d1 = 1, d2 = 2, d3 = 3, ρ = 0.2. The initial condition is selected as
x(0) = [0 0]. The disturbance is a Gauss white noise, and the mode switching governed
by partially unknown transition probabilities is supposed to be 0.1 ? ?

0.4 0.2 0.4
? ? ?


the other parameters are set as follows:

Ā1 =

[
0 1

−2.5 3.2

]
Ā2 =

[
0 1

−43.7 45.4

]
Ā3 =

[
0 1
5.3 −5.2

]
Ād1 =

[
0.3 0.1
0 0.2

]
Ād2 =

[
0.2 0.1
0 0.1

]
Ād3 =

[
0 0.5
0 0.4

]
B̄1 = B̄2 = B̄3 =

[
0
1

]
Bw1 = Bw2 = Bw3

[
0 0.1
0 0.1

]
C̄1 = C̄2 = C̄3

[
0 0.1
0 −0.1

]
C̄d1 = C̄d2 = C̄d3

[
0.1 0
0.1 0

]
D̄1 = D̄2 = D̄3

[
0
1

]
Dw1 = Dw2 = Dw3 =

[
0 0.4
0 0.4

]
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H11 = H12 = H13

[
0.1 0
0.1 0.1

]
H21 = H22 = H23

[
0.4 0.1
−0.1 0.1

]
H31 = H32 = H33

[
0

−0.1

]
G11 = G12 = G13

[
0 0
0 0.1

]
G21 = G22 = G23

[
0.1 0
0 0

]
Solving (17), the optimal value for H∞ performance γ = 0.9875, and the quantized
feedback controller gains matrices can be designed as

K1 =
[
2.5008 −3.0367

]
K2 =

[
2.5000 −3.0365

]
K3 =

[
2.5010 −3.0368

]
The simulation result of Markov chain is shown in Figure 2. There are three modes in

the results, which are stochastic with partially unknown probabilities. The state response
of system with disturbance is shown in Figure 3. It should be pointed out that the results
in [22], time-delay, quantization and uncertain parameter are considered in system, but
they are unavoidable in an economic system. we can also demonstrate that our system
with these practical multiple network-induced phenomenons is still with better stochas-
tically stability than those in [21,22]. Due to the complexity of the network disturbance,
we enhance the disturbance of system, the results we obtain is less conservative than in
[5,9,14]. At the same time it can show that our approach have better results in deal
with multiple network-induced phenomenons. The state response of system with double
disturbance is shown in Figure 4. It is easily observed that the proposed method has a
better robust appearance.

6. Conclusions. In this paper, we have present a new approach on H∞ control problem
for uncertain network control system with time-varying delay and quantization. The sys-
tem is modeled as Markovian jump linear system with mode-dependent time-delay, and

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

step

Figure 2. Parameters change of r(k)
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0 20 40 60 80 100
−10

−5

0

5

step

x1

0 20 40 60 80 100
−5

0

5

10

step

x2

Figure 3. The state response of system with disturbance

0 20 40 60 80 100
−100

−50

0

50

100

step

x1

0 20 40 60 80 100
−50

0

50

100

step

x2

Figure 4. The state response of system with double disturbance

the transition probabilities are partially unknown. Based on the new model, sufficient
conditions are developed for the robust stochastically stable of the system, and the quan-
tized feedback controller gains are given in LMI form. A numerical example shows the
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effectiveness of the obtained approach. Further research work will focus on developing
the approach to NCSs with nonlinear plant, using fuzzy logic theory to solve problem.
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